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Abstract: Thermo-mechanical Pulping (TMP) is one of the
most energy-intensive industries where most of the elec-
trical energy is consumed in the refining process. This pa-
per proposes the energy-saving refining optimization strat-
egy by integrating the machine learning algorithm and
heuristic optimization method. First, refining specific en-
ergy consumption (RSEC) and pulp quality identification
models are developed using Artificial Neural Networks. In
the second step, the developed identification models are
incorporated with the Genetic algorithm to minimize the
total refining specific energy consumptionwhilemaintain-
ing the same pulp quality. Simulation results prove that
a deep multilayer perceptron neural network is a power-
ful tool for creating refining energy and quality identifica-
tionmodels with themodel correlation coefficients of 0.97,
0.94, 0.92, and 0.67 for the first-stage RSEC, second-stage
RSEC, final pulp fiber length, and freeness prediction, re-
spectively. Findings confirm that the average total RSEC re-
duction of 14% is achievable by utilizing the proposed op-
timization method.

Keywords: artificial neural network; data analysis; forest
industry; machine learning; refining energy simulation;
thermo-mechanical pulping.
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Introduction

Energy efficiency is one of the most critical issues in the
energy-intensive industries (Talebjedi and Behbahaninia
2021), such as the pulp and paper sector, which stands as
the fourth largest industrial energy user worldwide (Inter-
national Energy Agency 2007, Oliveira and Almada-lobo
2012). Pulp mills are trying to achieve a more sustain-
able production process by increasing energy efficiency
and reducing energy costs to remain competitive (Hong
et al. 2011). 20 to 25% of the world pulp production is me-
chanical pulp, and this figure is increasing because of the
high yield ratio of the mechanical pulping process and
limitation in fiber resources (Bajpai 2018). Refining is the
main process in the thermo-mechanical pulp (TMP) mill
in which the fiber is treated to achieve the desired quality
for the stocks sent to the paper mill. Different approaches
to increase refining energy efficiency include optimizing
the chip pre-heating condition, improving heat integra-
tion, using more appropriate refining plates by optimiz-
ing plate patterns geometry, advanced process optimiza-
tion, and control techniques (Sandberg et al. 2021). This
research aims to develop an advanced optimization tech-
nique to improve refining energy efficiency and achieve
sustainable production. The neural network concept has
been employed to create the refining energy andpulpqual-
ity identification models to introduce the nonlinear re-
fining behavior. The optimization objective function and
constraints are formulated by refining energy and final
pulp quality identification models. The optimization is
governed by the Genetic algorithm (GA), a subdivision of
the heuristic optimization algorithms. The generated re-
fining identification models can be further used to de-
velop an optimal refining control strategy where the op-
timal setpoints can be achieved using this research’s pro-
posed refining energy-saving optimization strategy. Using
neural networks to generate a modern process identifica-
tion model can significantly improve the performance of
the control models since an accurate system identification
model highly affects the control systems (Perrusquía and
Yu 2021).
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Figure 1:Mechanical refining principle.

All pulping processes aim to separate fibers bonded
together by a natural glue called lignin. The fiber sepa-
ration prepares fibers for the paper-making process. The
fibers can be separated either by the chemical or me-
chanical pulping process. In chemical pulping, fibers are
separated by dissolving lignin, where fibers are not be-
ing severely damaged. In the mechanical pulping pro-
cess, fibers are softened and mechanically treated (re-
fined, beaten) by mechanical forces. The typical mechan-
ical pulping process has a yield ratio of 97% for Norway
spruce, while the mentioned ratio is 45%–50% in chemi-
cal pulping (Bajpai 2016). A higher yield ratio implies that
more paper could be produced out of limited raw mate-
rial resources, which is beneficial from the ecological and
national economy point of view. In addition, mechanical
pulping is attractive to pulp producers due to its low in-
vestment cost and simplicity compared to chemical pulp-
ing. However, mechanical pulping also has drawbacks.
Themechanical pulping process requires high-quality raw
wood input materials, and electricity consumption per
unit of pulp production is high. Refining is the most
energy-intensive process in thermo-mechanical pulping,
which consumes almost 80% of the mill’s electricity. Due
to the process’s nonlinearity, complex dynamics, and the
fact that its operation is affected bymany factors, develop-
ing an advanced refining optimization strategy to achieve
the desired pulp quality with the minimum possible spe-
cific energy consumption is challenging. The main factor
in developing an optimization strategy is constructing the
refining identification model. Since it is not clear how the

energy transforms to the pulp in the chip refiner, generat-
ing an accurate refining identification model is challeng-
ing. For example, it is demanding to estimate the impact
of refining disturbance variables such as plate condition
and the quality of the input wood chips on the refining
process’s performance. The quality of the wood chips, in-
cluding the chip species, dramatically affects the pulp-
ing process and end-product characteristics (Li et al. 2011).
A number of studies address the seasonal variations in
wood chips properties and their effect on final pulp quality
and energy-saving opportunities (Browne et al. 2004, Fuhr
et al. 1998, Persson and Berntsson 2009). Based on the re-
search conducted by Talebjedi et al. (2021), the effect of
disturbance variables in the refining identification model
could be considered using artificial neural networks while
adding time as a predictor variable. Their research proves
a remarkable correlation between the main disturbance
variables and time. They suggest considering the time as a
predictor variable for the identification model to improve
the prediction accuracy. It is clear that the higher the refin-
ing identification model’s accuracy, the easier it will be to
adopt an energy-saving optimization strategy.

Figure 1 shows the refining principle by considering
a refiner having a single rotating disc and one stationary
disc.Wood chips are fed to the refiner stator and are beaten
by plate segments and patterned grooves. The refiner out-
put is pulp mixed by generated steam from moisture con-
tent in thewood chips and evaporation of refining dilution
water. The pulp is separated from steam by the following
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cyclone. Thegenerated steam is oftenutilized to supply the
paper machine heating demand in the drying section.

Several statistical regression approaches create refin-
ing energy and pulp quality identification models from
measured refining data. The general objective of these
methods, such as linear regression models, nonlinear re-
gression models, and discriminant analysis (which pri-
marily work by least-squares error or maximum likelihood
to measure the quality of an estimator) is to find a math-
ematical relationship (such as linear or polynomial) be-
tween the predictor variables and model outputs. How-
ever, these models’ efficiency decreases significantly with
the increasing number of variables and the complexity
of the problem. Harinath et al. (2011) used MATLAB two-
stage thermo-mechanical pulping toolbox as their con-
trol system identification model. Their prediction model
for refining motor load consists of the nonlinear regres-
sion model where the deficiencies of this model as refin-
ing energy identificationmodel are addressed in Talebjedi
et al. (2021). Their research objective is to minimize the re-
fining specific energy consumption while respecting the
model constraints, which is the pulp quality limit. Their
results show a 12% reduction in the process-specific en-
ergy consumption by integrating economic objectives to
nonlinear model predictive control (NMPC) construction.
In the other research, Talebjedi et al. (2021) developed a
refining identification model by further development of
MATLAB Thermo-mechanical pulping simulation toolbox
model. Their model is based on theoretical (mechanistic
methods) and empirical (resulting from linear and nonlin-
ear regression models) equations.

The artificial neural network (ANN) concept is an al-
ternative statistical approach for developing process iden-
tification models and pattern recognition in variable rela-
tionships when the hidden pattern is complex and hard to
present. Several researches (Wang and Elhag 2007, Jang
and Topal 2013, Talebjedi et al. 2020) address the supe-
riority of the neural network to the regression models.
These models can be utilized to develop accurate refin-
ing identification models in thermo-mechanical pulping.
To the authors’ best knowledge, Talebjedi et al. (1996) are
the only people who analyzed developing refining identi-
fication models in thermo-mechanical pulp mill based on
the artificial neural network. They conducted a compre-
hensive study to develop a refining energy identification
model in a thermo-mechanical pulp mill using six differ-
entmachine learning approaches. Their findings prove the
high efficiency of the machine learning methods to estab-
lish refining energy identification models despite the in-
creased complexity of the refining phenomena. They used
the nonlinear regression model discussed in Schwartz

et al. (1996) to validate the measured data from a thermo-
mechanical pulp mill. Their research proves the machine
learning algorithm’s superiority to the regression-based
models where the integration of the adaptive neuro-fuzzy
inference system (ANFIS) and the particle swarm opti-
mization (PSO) algorithm gives the most efficient combi-
nation. However, their research could be improved by per-
forming a parametric study and evaluating the effect of
the different refining manipulated variables on the refin-
ing energy simulation. Similar studies regarding the ap-
plication of the machine learning approach in chemical
pulping could be found in Simula and Alhoniemi (2006),
Ciesielski and Olejnik (2014), Musavi et al. (1995), Sainlez
and Heyen (2013).

The most critical changes in the morphology of wood
chips occur in the refining stages, making refining the
most energy-intensive process in the TMP mill. This re-
search provides a refining optimization strategy in two-
phase which can be further used to generate optimal set-
points for refining control strategy. In the first phase, the
refining identification models are developed utilizing a
deepmultilayer perceptron neural network. Refining iden-
tification models simulate the first and second stages of
the refining specific energy consumptions, final pulp fiber
length, and final pulp freeness based on the first and sec-
ond stages refining variables collected from the pulp mill.
Canadian Standard of Freeness (CSF) is considered a mea-
sure to evaluate the final pulp freeness. In phase 2, the Ge-
netic optimization algorithm has been employed to mini-
mize the total refining specific energy consumption byma-
nipulating the first and second stage refining plate gap
and dilution water. The developed refining identification
models in phase 1 are utilized to construct the optimiza-
tion objective function and constraints. The optimization
model is subjected to keep the pulp quality the same as
the current systemoperating condition to evaluate the per-
formance of the refining optimization strategy. CSF and
fiber length are considered as main variables to determine
the final pulp quality. Finally, the optimization results are
comparedwith the current operating conditions of thepro-
cess to assess the capability of the proposed energy-saving
refining optimizationmethod. Paper novelty and contribu-
tions are summarized as follows:
– An advanced energy-saving refining optimization

strategy is developed based on the integration of Ar-
tificial Neural Network (ANN) and Genetic algorithm
(GA).

– The performance of the proposed energy-saving opti-
mization strategy has been increased by considering
the effect of refining disturbance variables on the sys-
tem operation.
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Figure 2: Schematic of the main refining line with sample measured data.

– The developed energy-saving optimization strategy
has not been used before in the pulp and paper indus-
try and is applicable to other complicated industrial
processes such as chemical pulping.

– The proposed optimization strategy is compared with
the current system operating condition to evaluate the
efficiency of the suggested method.

Case study

Collected raw data for this study is measured data from
a thermo-mechanical pulp mill refining line in a Nordic
country. The studied mill has multiple parallel refining
lines with the same technical details. This research con-
siders the first refining line (main refining line) as the case
study. The main refining line’s schematic and representa-
tive measured process data are presented in Figure 2. Pro-
cessmeasureddata are refiningplate gap, refiningdilution
water, refining motor load for the first and second refin-
ing stages, feeder screw speed, final pulp freeness (CSF),
and pulp fiber length.Wood chips from thewood handling

unit are pre-heated and fed to the first stage refiner. Cy-
clone in the following of each refiner separates the pulp
from steam. The first cyclone in the refining line separates
backflow steam (which is undesirable). The final pulp is
directed to the screening unit after pulper for post refining
treatment and probable third stage refining in the reject re-
finer.

The data used in this research aremeasured data from
the TMP mill. Due to the contract made with the mill to
maintain data security, the raw data has not been pub-
lished, and the normalized version has been reported.
Therefore, data in Figures 7–11, Figures 13–14, and Fig-
ure 17 are normalized to keep the data security. Those fig-
ures which report the percentage of changes in variables
(such as Figure 12, Figures 15–16) are based on the actual
data, not the normalized one.

Pulp quality control tests

Pulp freeness

Themeasurement of the water portion in the pulp suspen-
sion (Freeness measurement) is a common method to ob-
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Figure 3: Pulp fibers characteristic and drainage ability a) before
and b) after refining.

serve stock preparation corrections. Freeness value could
represent the refining impacts on pulp properties since it
has a massive correlation with fines formation and fiber
fibrillation. Therefore, freeness could indicate the pulp
and fiber characteristics (Bhardwaj et al. 2007).

The Canadian Standard Freeness (CSF-test) is mainly
used to measure the drainability of a dilute pulp suspen-
sion under specific conditions according to ISO 5267-2 (sus-
pension of 3 g of pulp in 1 L of water), especially in the lab-
oratory scale. It is proven that some pulp properties such
as the distribution of fiber length in the short andmedium
fractions, conditions of the surface, and fiber compression
affect the pulp freeness. Drainability or freeness composes
a helpful index of the intensity of mechanical treatment to
which the pulp has been subjected (Browne et al. 2004).
CSF decreases with refining and is sensitives to the qual-
ity of water and fines. CSF is one of the most well-known
indicators to determine the pulp’s quality and the refining
level. CSF is utilized in this study to define the quality of
the final produced pulp.

To better understand the effect of refining on freeness
value, the theory of drainage ability in paper manufac-
turing could be helpful. Refining makes the fibers more
flexible and softer by swelling the fibers with mechani-
cal forces. In such a case, firmly entangled fibers make a
web in the drainage test. Moreover, secondary fines are
generated during the refining process external fibrilla-
tion or fiber shortening. These fines are not bound to the
fibers and can easily move through the pulp suspension
while eventually getting stuck between fibers pores. This
phenomenon decreases the drainage ability since fines
block the water flow path and increase the drainage time.
Therefore, the drainage ability is deteriorated by the refin-
ing, which is not desirable in the paper-making process
(Gao et al. 2009, Hubbe and Heitmann 2007, Paradis et al.
2002). Figure 3 givesmore information about the fibers and
fines formation before and after refining (Gharehkhani
et al. 2015).

Table 1: Typical ranges of the pulp freeness and energy consumption
in mechanical pulping.

Mechanical pulping subdivisions Canadian
Standard

Freeness (ml)

Specific energy
consumption
(kWh/ton of

pulp)

Thermomechanical (TMP) 400–30 800–3600
Chemi-thermomechanical (CTMP) 700–30 1000–4300
Refiner mechanical (RMP) 350–30 1600–3000
Groundwood (GW) 350–30 1100–2200
Pressure groundwood (PGW) 350–30 1110–2300

Table 1 shows the typical ranges of the energy
consumption and fiber length for different mechanical
pulping subdivisions such as thermo-mechanical pulp-
ing (TMP), chemi-thermomechanical pulping (CTMP), re-
finer mechanical pulping (RMP), groundwood (GW), and
pressure groundwood (PGW) pulping (Gharehkhani et al.
2015).

Fiber length

Fiber shortening is an unwanted change in the fiber qual-
ity due tofiber beating (refining) (Kerekes andOlson 2003).
Fiber breaking could occur by sufficient stress on the fiber
or when fibers get chopped through shearing forces dur-
ing the passages of the refiner bars or in case of being
pulled fromother fibers (Kerekes 1990). Also, fines are gen-
erated during the refining as a consequence of extreme
force throughout external fibrillation. Therefore, there is
a clear correlation between fines generation and fiber cut-
ting (Batchelor et al. 1994).More information regarding the
effect of fiber length on paper characteristics has been pro-
vided and investigated in Pulkkinen (2010), Seth and Page
(1988). Table 2 demonstrates the pulping properties of US
Softwoods and Hardwoods (Bajpai 2018).

Theory

Artificial Neural Network (ANN): the deep
learning method

ANN models are becoming more and more popular in re-
cent decades because of their capabilities to learn and dis-
cover nonlinear patterns, adapt to environmental distur-
bances, and tolerate errors in datasets andmeasurements.
Multilayer Perceptron Neural Networks (MLPNNs) are the
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Figure 4: The design structure of the genetic algorithm.

Table 2: Pulping Properties of the US Softwoods and Hardwoods.

Species Scientific Name Average Fiber
Length (mm)

Softwoods
Jack (pine) Pinus banksiana 3.5
Loblolly (pine) Pinus taeda 4.00
Lodgepole (pine) Pinus contorta 3.5
Monterey (pine) Pinus radiata 2.60
Black (spruce) Picea mariana 3.5
Blue (spruce) Picea pungens 2.8

Hardwoods
Ailanthus Ailanthus, altissima 1.20
Ash, green Fraxinus pennsylvanica 1.05
Maple, silver Acer saccharinum 1.75

prominent and popular feedforward artificial neural net-
works. The MLPNN models are easier to implement, func-
tion, and have a high level of training capability, evenwith
small datasets. Deep learning implemented with Deep
Neural Networks (DNNs) are models with more profound
neural network architecture where input data experience
more transformation to formmodel output. Recent studies
show that deep learning approaches emerged promising
in pattern recognition and simulating complicated indus-
trial processes such as mechanical and chemical pulping.
Although these models require higher execution time due
to the more complex structure of deep learning models,
deep learningmodels are very efficient indetectingnonlin-
ear hidden relationships between variables (Schmidhuber
2015).

Genetic Algorithm (GA)

The Genetic algorithm (GA) is an optimization technique
used to solve nonlinear or non-differentiable optimization
problems. GAoptimization is a heuristic searchingmethod
based on the natural evolution of Charles Darwin’s the-
ory. The name Genetic algorithm originates from the fact
that it mimics the evolutionary biology techniques but in
a number domain. The process begins with a random ini-
tial generation of the candidate’s solution tested against
the objective function. There is competition between pop-
ulation members to get reproduction right. Those who are
chosen for the next generation have a better performance
in fitness function reduction. Therefore, the fitter individ-
ual has more chances to be selected for the next genera-
tion. At the end of each iteration, the selected individuals
are licensed to produce progeny populations for the next
iteration if the stop condition is not met. The optimization
flowchart is summarized in Figure 4. After some iterations,
the optimum solution is obtained, where the stopping cri-
teria are satisfied, and the program converges.

Refining identification models and feature
selection

Refining energy and pulp quality identification models

The refining identification model describes the hidden
correlation between refining variables. A mathematical
model is required to simulate refining specific energy con-
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Figure 5: The architecture representation of the optimum ANN consists of four hidden layers.

sumption and pulp quality (fiber length and CSF). The
mathematical model in this study is generated using an
Artificial Neural Network. Four neural networks are estab-
lished and trained to predict the first and second stages
of the refining specific energy consumption, final pulp
fiber length, and final pulp freeness (CSF value). Model in-
put features and outputs for each neural network are ex-
plained in Refining variables and ANN feature selection
section.

Obtaining optimal hyperparameters of anMLPusually
includes a trial-and-error approach, and there is no avail-
able predefinedor analyticalmethod.Hyper-parameters of
theMLPmodel, suchas thenumber of neurons andhidden
layers, are calculatedbasedon the randomsearchmethod,
which has a lower computational load than the other trial-
and-error approaches such as grid search (Bergstra and
Bengio 2012). For the random search purpose, the exam-
ined neural networks include up to 4 hidden layers and
20 neurons in each layer. Optimal results show better per-
formance of a Multilayer Perceptron Neural Network with
four hidden layers, ten neurons in the first and fourth hid-
den layers, andfifteenneurons in the secondand thirdhid-
den layers. Figure 5 depicts the topology of the employed
multilayer perceptron neural network.

Identification model data sets consist of 3800 mea-
sured data from the TMPmill, randomly divided into three
parts; 70% as training data set, 15% for validation, and
the remaining 15% are dedicated for testing data set. The
training subset contributes to update the network biases,
weights and calculate gradients. The validation data set
evaluates the model fit on the training data set while tun-

ing themodel parameters. Validation error determines the
running stopping point to avoid overfitting to the train-
ing data set. When the model is entirely trained, the test
data set is used to evaluate the model’s accuracy by the
performance function of mean squared error (MSE). In or-
der to build a feedforward neural network, ‘trainlm’ net-
work training function is utilized inMATLAB software. The
network bias and weights are being updated according to
Levenberg-Marquardt optimization. Although ‘trainlm’ re-
quires more memory to run, it is still considered the best
option for supervised learning as it is the fastest backprop-
agation algorithm in the MATLAB toolbox. However, this
model has some limitations. The ‘trainlm’ function em-
ploys the Jacobian for computations, which supposes that
performance is amean or sum of squared errors (MSE). Ac-
cordingly, networks with this training function must use
MSE as a performance function.

The levenberg-Marquardt algorithm isdeveloped to in-
crease the training speed without the need to compute the
Hessian matrix, similar to the Gauss-Newton technique.
The Hessian matrix can be approximated by Equation 1
for the ordinary feedforward network performance func-
tion with a sum of squares formation.

H = JT J (1)

and the gradient can be computed as:

g = JTe (2)

Where e is a vector of network errors and J is the Ja-
cobian matrix including the first derivatives of the net-
work errors with respect to the biases and weights. The
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Table 3: Details of each neural network data sets.

Input data
combinations

Refining plate
gap – 1st stage

Refining dilution
water – 1st stage

Refining plate
gap – 2nd stage

Refining dilution
water – 2nd stage

Feeder screw
speed

Time

Data set 1 3 3 7 7 3 3

Data set 2 7 7 3 3 3 3

Data set 3 3 3 3 3 3 3

Jacobian matrix can be calculated via a standard back-
propagation approach which induces less computational
load and complexity than calculating the Hessian matrix.
Equation 3 is theMarquardt-Levenbergmodification to the
Gauss-Newton method:

xk+1 = xk − [J
T J + μI]JTe (3)

I is the identity matrix. The algorithm is as same as Gauss-
Newton’s method for small μ. For the large μ, the algo-
rithm becomes gradient descent with a low step length.
Newton’s method has a higher speed around the min-
imum error, so it is determined to move towards New-
ton’s method as fast as possible. The μ decreases after
each successful step that reduces the performance func-
tion, whereas if an unconfirmed step increases the per-
formance function, it causes to increase μ. Thus, the al-
gorithm is designed in such a way that the performance
function is always reduced along with it. A comprehen-
sive description of the Levenberg-Marquardt algorithm is
provided in Marquardt (1963). In addition, the application
of the Levenberg-Marquardt algorithm to the neural net-
work concept is discussed in Hagan and Menhaj (1994).
This algorithm has been shown to have the highest speed
in training medium-sized neural networks that can cover
up to several hundredweights. SinceMATLABhas an inter-
nal function for matrix equation solution, this algorithm
shows high performance in MATLAB software, and its fea-
tures are more prominent in MATLAB.

Refining variables and ANN feature selection

Refining variables could be categorized into refining ma-
nipulated, disturbance, and operating variables. Manip-
ulated variables are independent variables that influence
refining operating variables. Refining operating variables
such as production rate, refining motor load, pulp free-
ness, and fiber length can be predicted by the combi-
nation selection of the manipulated variables. The main
two-stage refining process manipulated variables are chip
transfer screw speed, primary and secondary refining

plate gap, and dilution water (Tian et al. 2020). Distur-
bance variables are basically uncontrollable and disrupt
the optimal control of the process by changing the sys-
tem operating conditions. The main refining disturbance
variables are seasonal changes in input wood chips qual-
ity and refiners plate condition. Changes in the quality of
wood chips, such asmoisture content, affect the pulp con-
sistency and production rate. It should be noted that there
is no accurate sensor for measuring pulp consistency, and
the consistency measurement includes huge undesirable
errors (in the studied mill, the error could be up to 20%).

On the other hand, the exact rate of pulp production
must be calculated based on pulp consistency, but due to
errors in measuring the pulp consistency, pulp mills usu-
ally calculate the production rate according to the empir-
ical equations based on screw feeder speed. This calcu-
lation method also has an error, but according to the ex-
perience, it seems more reliable than other consistency-
based calculation methods. On the other hand, with the
operation of refiner plates over time, these plates wear
out due to the harsh conditions inside the refining zone,
which causes changes in the system’s operating condition.
Li et al. (2011) reviews the effect of main variables of wood
chips qualities and refining process on the final quality of
TMP product. To apply the effect of disturbance variables
that affect the performance of the refining process, Tale-
bjedi et al. (2021) suggests adding the time variable as one
of thepredictor variables of theANN refining identification
model.

Three data sets are prepared to predict refining en-
ergy and quality operating variables by training four neu-
ral network models. Each dataset includes selected fea-
tures combination as ANN model input variables for the
particular refiningoperating variable prediction.Data set 1
is responsible for creating the first-stage refining specific
energy consumption (RSEC) identificationmodel. The sec-
ond data set (data set 2) is used as the set of selected
model features to simulate the second stage refining spe-
cific energy consumption, while the third data set (data
set 3) is dedicated for final pulp freeness (CSF) and fiber
length prediction. The total RSEC forms the objective func-
tion of the optimization model. Table 3 presents the data
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Table 4: Refining neural networks identification models input (predictor) and output (target) variables.

ANN1 (Refining energy
identification model)

ANN2 (Refining energy
identification model)

ANN3 (Pulp quality
identification model)

ANN4 (Pulp quality
identification model)

Predictor
variables

Target
variable

Predictor
variables

Target
variable

Predictor
variables

Target
variable

Predictor
variables

Target
variable

Data set 1 RSEC –
First stage

Data set 2 RSEC –
Second stage

Data set 3 Fiber
length

Data set 3 Freeness
(CSF)

sets details which construct the neural networks input fea-
ture combinations. Table 4 illustrates the different refin-
ing neural networks identification models input (predic-
tor) and output (target) variables.

Refining energy-saving two-phase
optimization plan

The simplified construction of the two-phase optimization
plan is presented in Figure 6. The optimization process
starts with phase 1, where generating refining energy and
pulp quality identification models (neural networks 1 to
4). As mentioned earlier, four datasets have been used to
model refining energy consumption and final refined pulp
quality, the details of which are given in Tables 3 and 4.
After the training phase (phase 1), neural networks are
used to form theGAoptimization constraints and objective
function in phase 2. The optimization method is limited to
keep the paper’s quality (CSF value and fiber length) at the
expected level (current operating condition) while mini-
mizing the model objective function, which is the summa-
tion of the first and second stage refining specific energy
consumption (RSEC). Other optimization constraints de-
fine the boundaries of the decision variables based on the
real system operating condition and the component char-
acteristic.

The optimization decision variables are the first and
second stages refining dilution water and plate gap. Once
the optimization is completed, the model reports the opti-
mal values of the primary and secondary refining dilution
water, plate gap, and refining specific energy consump-
tions as the final results. The obtained total refining spe-
cific energy consumption from the optimization plan is
compared to the measured values of the total refining spe-
cific energy consumption from themill (current systemop-
erating condition) to evaluate the performance of the pro-
posed optimizationmethod to increase the refining energy
efficiency. The following givesmore information about the
optimization objective function and constraints.

Optimization model objective function
The optimization objective function given in Equation 4 is
the sum of the primary and secondary refining specific en-
ergy consumptions. Refining is responsible for the most
changes in the fiber morphology and is the most energy-
intensive process in thermo-mechanical pulping. In our
case study, the average motor load for the secondary re-
finer (pulp refiner) is 70% of the primary refiner (wood
refiner), making the first stage of refining more energy-
intensive.

ObjFcn:RSEC1 + RSEC2 (4)

Optimization model constraints
The optimization model constraints are about the limits
on the upper and lower boundaries of the decision vari-
ables as well as the expected quality of the paper, includ-
ing the pulp freeness value and fiber length. Quality con-
straints are defined as inequality constraints to give more
flexibility to the model to avoid causing the probable in-
feasible optimization model. For this reason, the average
neural network error is considered as an acceptable inter-
val at each data point that the CSF value could settle to
satisfy the model pulp quality constraint. This fact is also
true for the fiber length as a measure of pulp quality con-
trol. The following equations show the optimizationmodel
constraints:

FLm,j − FLm,j ×MAPEANN
k

≤ FLj ≤ FLm,j + FLm,j ×MAPEANN
k ,j j = 1 :N ; K = 3

(5)

CSFm,j − CSFm,j ×MAPEANN
k

≤ CSF j ≤ CSFm,j + CSFm,j ×MAPEANN
k ,j j = 1 :N ; K = 4

(6)

DWmin,i,j ≤ DW i,j ≤ DWmax,i,j j = 1 :N ; i = 1 (7)

PGmin,i,j ≤ PGi,j ≤ PGmax,i,j j = 1 :N ; i = 1 (8)

DWmin,i,j ≤ DW i,j ≤ DWmax,i,j j = 1 :N ; i = 2 (9)

PGmin,i,j ≤ PGi,j ≤ PGmax,i,j j = 1 :N ; i = 2 (10)
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Figure 6: Schematic representation of the proposed advanced energy-saving refining optimization strategy.

Where i indicates the refining stage (i = 1, 2) and j is the
index for each data point. k specifies the neural network
number, andm stands for the measured value. N is the to-
tal number of data points.

Identification models evaluation criteria

Mean square error (MSE) is the neural network’s perfor-
mance function. It measures the network’s performance
according to the mean of squared errors. A lower value

for MSE designates a higher accuracy of the model. MSE
is a scale-dependent accuracy evaluation criterion that
could be used to explain the error in the original scales.
Whereas for comparing different models with different
datasets, other metrics such as Mean absolute percentage
error (MAPE) are required. Equation 11 and Equation 12
provide the mathematical terms for MSE and MAPE calcu-
lations, respectively.

MSE = 1
n

n
∑
i=1
(xj − yj)

2 (11)



444 | B. Talebjedi et al.: Advanced energy-saving optimization strategy in thermo-mechanical pulping

Figure 7: Refining SEC1 ANN model regression plots for the (a) train and (b) test data sets (model: ANN1).

MAPE = 1
n

n
∑
j=1

|xj − yj|
|xj|

(12)

The model correlation coefficient assesses the extent
of correlation between target and model output variables.
The correlation of zero (R = 0) indicates that there is no
relationship between model output and target variables,
while R = 1 indicates the perfect linear relation between
thementioned variables. Themodel correlation coefficient
is calculated using Equation 13.

R =
∑nj=1(xj − x)(yj − y)

√∑nj=1(xj − x)2∑
n
j=1(yj − y)2

(13)

Where xj, yj, x, y, and n are measured value, predicted
value, mean of measured data, mean of predicted data,
and the number of data, respectively.

Results and discussion

Identification models

For the optimization plan, mathematical models (identi-
fication models) are required to model the refining spe-
cific energy consumption and final pulp quality based on
systemmanipulated variables. Themodels for the refining
(first and second stages) energy simulation form the opti-
mization objective function, and the models for the final
pulp quality simulation contribute to construct the opti-
mization constraints. In this research, the concept of artifi-

Table 5: Neural Networks prediction performances on training and
testing data sets.

Neural networkModel Metrics Train Test

ANN1 (First stage-RSEC
prediction)

R 0.98 0.97
MSE 0.0112 0.0124
MAPE(%) 0.79 0.85

ANN2 (First stage-RSEC
prediction)

R 0.95 0.94
MSE 0.0122 0.0136
MAPE(%) 1.06 1.18

ANN3 (CSF prediction) R 0.72 0.67
MSE 3.112 4.313
MAPE(%) 1.69 1.95

ANN4 (Fiber length
prediction)

R 0.95 0.92
MSE 0.0110 0.0117
MAPE(%) 0.46 0.55

cial neural networks has been employed for refining iden-
tificationmodels generation. The identificationmodels are
four neural networks, each trained for a particular pur-
pose. ANN1 to ANN4 are generated to predict the first and
second stages of refining specific energy consumption, fi-
nal pulp fiber length, and final pulp freeness value. The
accuracy of the obtained models is examined by the three
variables listed in Table 5 and more discussed in Identifi-
cationmodels evaluation criteria section. In addition, data
are surveyed to check the relationship between the mea-
sured and predicted variables. Figures 7–10 show the re-
gression plot between predicted andmeasured data for re-
fining SEC, final pulpCSF, andfinal pulp fiber length simu-
lation. A higher value for the model correlation coefficient
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Figure 8: Refining SEC2 ANN model regression plots for the (a) train and (b) test data sets (model: ANN2).

Figure 9: Final pulp Fiber length ANN model regression plots for the (a) train and (b) test data sets (model: ANN3).

demonstrates a better connection between the target and
estimations of response.

According to Table 5, the evaluation criteria prove the
high efficiency of neural network models in predicting
refining operating variables. The obtained mathematical
models are reliable to use for building optimizationmodel
objective function and constraints. Results confirm lesser
accuracy for CSF prediction than other refining operating
variables, which could be because of ignoring the effect
of some other refining variables affecting CSF. Investigat-
ing the cause is beyond the scope of this article and is in-
tended as a research question only. From the performance

perspective, the optimum ANN structure for CSF predic-
tion gives a correlation of 0,72 for the train and 0,67 for
the test data set, whereas for fiber length prediction, the
ANN model correlation coefficient is 0.95 for the train and
0.92 for the test data set. The best ANN practice for the first
and second stage RSEC correlation coefficient is 0.98, and
0.95 for the train and 0.97, and 0.94 for test data sets, re-
spectively. On the other hand, the obtained mean square
error (MSE) for the best practice is 0.0124, 0.0136, 4.313,
and 0.0117 for the first stage RSEC, second stage RSEC, fi-
nal pulp CSF, and final pulp fiber length (FL) simulation,
respectively.
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Figure 10: Final pulp freeness ANN model regression plots for the (a) train and (b) test data sets (model: ANN4).

Figure 11: Representative measured and optimized data for the total RSEC.

Optimization result

Objective function

The optimization aims to minimize the total refining spe-
cific energy consumption at the same pulp quality as the
current system operating condition by manipulating the
refining manipulated variables. The integration of arti-
ficial neural networks (to develop refining identification
model) and Genetic algorithm (as an optimization tool)
has been proposed for the optimization strategy. The re-

liability of the proposed method for energy efficiency im-
provement in the refining process of thermo-mechanical
pulp mill has been examined by comparing the optimiza-
tion results to the measured values of the total RSEC. Fig-
ure 11 demonstrates measured and optimized total RSEC
values of the first 600 representative data points. Mea-
sured values that have been pointed out by the red dots
are the mill’s collected data under the current operating
condition where the refining process is handled utilizing
the model predictive controller (MPC). Black dots repre-
sent the optimized values of total RSEC obtained from the
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Figure 12: Representative changes in total RSEC while utilizing the proposed optimization plan compared to the current system operating
condition (the calculation term is explained in Equation 14).

optimizationplanproposed in this research.Asmentioned
earlier, these values are normalized to keep our promise
to the mill regarding maintaining data security. However,
the percentage of changes shown in Figure 12 is for ac-
tual data, not normalized. It is clear from Figure 11 that
almost in all of the data points, black dots that indicate
the optimized values are below the red dots, which are the
measured ones; meaning the optimization method has re-
duced the refining specific energy consumption,which im-
plies the fact that refining energy efficiency has been in-
creased. Figure 12 illustrates the percentage of total refin-
ing specific energy consumption changes using the pro-
posed optimization strategy compared to the current sys-
tem operating condition. Findings confirm that a specific
energy consumption reduction of up to 35% could be pos-
sible in some system operating conditions by employing
the proposedmethod, while the average reduction is 14%.
Equation 14 shows the expression for the percentage of
change in the refining variables.

Change(%)= 100× Optimized value−measured value
measured value

(14)

Decision variables (manipulated refining variables)

The optimum combination of refining plate gap and dilu-
tion water plays an essential role in constructing the re-

fining optimization strategy from the energy and quality
point of view (Harinath et al. 2013, Elahimehr et al. 2018).
The optimization model decision variables in the studied
refining process are the refining plate gap and dilution
water for the first and second refining stages. These vari-
ables are considered themost essential manipulated refin-
ing variables to optimize the refining energy consumption
and control final pulp quality. Figures 13 and 14 show the
optimum values of the first and second-stage dilution wa-
ter flow rate and plate gap obtained by the proposed opti-
mizationmethod aswell as themeasured values under the
current systemoperating condition for 600 hours’ time pe-
riod.

Figures 15 and 16 show the percentage of changes in
refining manipulated variables from the measured values
to the optimumvalues. The expression to calculate theper-
centage of changes in the refining variables from the opti-
mized values by the proposed optimization strategy and
the current system operating is provided in Equation 14. It
is clear from Figures 15 and 16 that in the majority of the
data points, the optimum value of the first-stage refining
plate gap and second-stage dilutionwater by the proposed
optimization strategy is higher than the current systemop-
erating condition with an average change of 11.56% and
3.50%, respectively. Meanwhile, the optimum first-stage
dilutionwater and second-stage plate gap are less than the
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Figure 13: Representative normalized optimum and measured values for first-stage a) refining plate gap, and b) refining dilution water.

Figure 14: Representative normalized optimum and measured values for second-stage a) refining plate gap, and b) refining dilution water.

measured values. The average changes in the first-stage
dilution water and second-stage plate gap are −7.6% and
−27.52%, respectively.

Optimization constraints: final pulp quality limit

Energy-saving optimization plan is limited to keep the fi-
nal pulp quality within a certain range around the cur-
rent pulp quality. Therefore, process optimization should
be designed in a way that the pulp quality is maintained
within the desired range, which is close to the current sys-

tem operating condition. In order to prevent the infeasi-
bility of the optimization model and increase the process-
ing speed, some flexibility is applied to the model con-
straints. The degree of flexibility is due to the error in the
final pulp quality identificationmodel, which is discussed
indetail inRefining energy-saving two-phase optimization
plan section. The ultimate goal of the proposed optimiza-
tion strategy is to achieve a certain pulp quality follow-
ing the current system operating conditions with the least
total refining specific energy consumption. Therefore, the
closer the estimated variables of pulp quality after energy
optimization and the measured variables (current system
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Figure 15: Representative percentages of change in the first-stage a) plate gap and b) dilution water from the measured value to the opti-
mized value (the calculation term is explained in Equation 14).

Figure 16: Representative percentages of change in the second-stage a) plate gap and b) dilution water from the measured value to the opti-
mized value (the calculation term is explained in Equation 14).

operating condition) are, the easier it is to evaluate the
performance of the proposed optimization strategy. Fig-
ure 17 shows themeasured and optimization strategy final
pulp fiber length and freeness (CSF). The proposed energy-
saving optimization strategy aims tominimize the percent-
age of changes in paper quality and keep it as close to the
measured values because the reduction in refining specific
energy consumption must be such that the quality of the
paper is maintained. Fewer changes in the pulp quality
indicate that the proposed optimization algorithm has a

higher power in maintaining pulp quality while reducing
energy consumption. The absolute average changes in the
final pulp FL and CSF are 1.33% and 1.53%, respectively.

Conclusions

This paper proposes an advanced energy-saving optimiza-
tion strategy in TMP mill by integration of machine learn-
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Figure 17: Final pulp quality before (red dots) and after (black dots) applying the proposed optimization strategy: a) Final pulp FL, b) Final
pulp CSF.

ing algorithm (artificial neural networks) and a heuristic
optimization approach (Genetic algorithm). In the begin-
ning, the refining identification models are created using
artificial neural networks to simulate the two-stage high
consistency refining process from the energy and pulp
quality point of view. The results indicate the high ac-
curacy of artificial neural networks in modeling the re-
fining process, confirming the license to use these mod-
els as refining identification models to develop the refin-
ing optimization strategy. While the generated neural net-
works are utilized as system identificationmodels, the Ge-
netic Algorithm (GA) is employed as an optimization solver
to minimize the total refining specific energy consump-
tion. The optimization objective function is the sum of the
first and second stage refining specific energy consump-
tion where the optimization is subjected to keep the fi-
nal pulp quality at the current system operating condi-
tion. Canadian Standard of Freeness (CSF) and pulp fiber
length (FL) are considered as a measure to evaluate the fi-
nal pulp quality. Optimization decision variables are the
first and second-stage refining dilution water and refining
plate gap. The proposed refining optimization strategy re-
sults are compared with the current system operating con-
dition to evaluate the energy-saving potential. Findings
confirm that an energy consumption reduction of up to
35% could be possible in some system operating condi-
tions by employing the proposed method, while the aver-
age reduction is 14%, equal to 305 kWh per ton of produc-
tion.
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funding of the Academy of Finland, grant number 315020.

Conflict of interest: The authors declare no conflicts of in-
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Nomenclature
MLi Refining Motor load (ith stage)
PGi Refining plate gap (ith stage)
DW i Dilution water (ith stage)
RSECi Refining specific energy consumption (ith stage)
CSF Canadian Standard Freeness
J Jacobian matrix
e Vector of network errors
R Correlation coefficient
MAPE Mean absolute percentage error
MSE Mean squared error
MPC Model predictive control
AI Artificial intelligence
ANN Artificial Neural Network
MLP Multi-Layer Perceptron
ANFIS Adaptive neural fuzzy inference system
GA Genetic Algorithm
PSO Particle swarm optimization
TMP Thermo-mechanical pulping
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Indices

i refining stage (1,2)
j index for data points
k iteration step
N total number of data points
m measured value
max maximum limit value for the variable
min minimum limit value for the variable
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