
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by you for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

Xu, Yuzhe; Mohammed, Thaha; Francesco, Mario Di; Fischione, Carlo
Distributed Assignment with Load Balancing for DNN Inference at the Edge

Published in:
IEEE Internet of Things Journal

DOI:
10.1109/JIOT.2022.3205410

Published: 15/01/2023

Document Version
Peer-reviewed accepted author manuscript, also known as Final accepted manuscript or Post-print

Please cite the original version:
Xu, Y., Mohammed, T., Francesco, M. D., & Fischione, C. (2023). Distributed Assignment with Load Balancing
for DNN Inference at the Edge. IEEE Internet of Things Journal, 10(2), 1053-1065. Article 9882293.
https://doi.org/10.1109/JIOT.2022.3205410

https://doi.org/10.1109/JIOT.2022.3205410
https://doi.org/10.1109/JIOT.2022.3205410

1

Distributed Assignment with Load Balancing
for DNN Inference at the Edge

Yuzhe Xu, Thaha Mohammed, Mario Di Francesco, and Carlo Fischione

©2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for
more information. DOI: 10.1109/JIOT.2022.3205410

Abstract—Inference carried out on pre-trained deep neural
networks (DNNs) is particularly effective as it does not require re-
training and entails no loss in accuracy. Unfortunately, resource-
constrained devices such as those in the Internet of Things may
need to offload the related computation to more powerful servers,
particularly, at the network edge. However, edge servers have
limited resources compared to those in the cloud; therefore,
inference offloading generally requires dividing the original DNN
into different pieces that are then assigned to multiple edge
servers. Related approaches in the state of the art either make
strong assumptions on the system model or fail to provide strict
performance guarantees. This article specifically addresses these
limitations by applying distributed assignment to deep neural
network inference at the edge. In particular, it devises a detailed
model of DNN-based inference, suitable for realistic scenarios
involving edge computing. Optimal inference offloading with
load balancing is also defined as a multiple assignment problem
that maximizes proportional fairness. Moreover, a distributed
algorithm for DNN inference offloading is introduced to solve
such a problem in polynomial time with strong optimality
guarantees. Finally, extensive simulations employing different
datasets and DNN architectures establish that the proposed
solution significantly improves upon the state of the art in terms
of inference time (1.14 to 2.62 times faster), load balance (with
a Jain’s fairness index of 0.9), and convergence (one order of
magnitude less iterations).

Index Terms—Distributed inference, DNN offloading, assign-
ment problems, edge computing

I. INTRODUCTION

Machine learning and artificial intelligence – particularly,
deep learning – are being more and more applied to diverse
scenarios [1]. In many cases of practical importance, learning
involves deep neural networks (DNNs) running at resource-
constrained embedded devices such as mobile phones, wear-
ables, and smart objects in next-generation networks [2, 3].
Unfortunately, the related algorithms generally require a sig-
nificant amount of computational resources to achieve satis-
factory results. In this respect, several techniques have been
proposed to specifically address the limitations of resource-
constrained devices, including hardware-accelerated comput-
ing and model simplification (i.e., pruning, quantization, and
compression) for DNN inference tasks [4, 5] as well as
federated learning for DNN training tasks [6–9]. However,
the above-mentioned approaches for DNN inference cannot

This work was partially supported by the Academy of Finland under
grants number 326346 and 332307, the Digital Futures research project
DEMOCRITUS, and the VR project MALEN.

Y. Xu and C. Fischione are with the School of Electrical Engineering and
Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden
(e-mail: {yuzhe,carlofi}@kth.se). T. Mohammed and M. Di Francesco are
with the Department of Computer Science, Aalto University, Espoo, Finland
(e-mail: {thaha.mohammed,mario.di.francesco}@aalto.fi).

always be applied or might reduce accuracy, especially when
the device capabilities are extremely limited, such as in the
Internet of Things (IoT) [10]. In contrast, DNN training with
federated learning incurs a significant overhead, as individual
devices have to exchange data with a coordinator to gain global
knowledge [11–13].

Computation offloading is a general approach to overcome
the constraints of embedded devices through resources offered
by third-party services over the Internet [14, 15]. Such an
approach can as well be applied to DNN computation: devices
do not need to perform any training but rather transfer data
to one or more powerful servers that then take care of the
actual processing, or just carry out inference on pre-trained
DNNs [16–18]. The latter option is particularly effective as
it does not need re-training and entails no loss in accu-
racy [16, 17, 19]. Offloading had originally leveraged the cloud
computing paradigm [20], while it has more recently shifted
towards edge computing as a compelling alternative [21, 22].
Indeed, the edge is an infrastructure of server-class devices
that are close to end users and can be reached with a low
latency [23]. The main challenge here is that the resources
provided by edge servers – in terms of both computation and
bandwidth – are limited compared to those in the cloud. As
a consequence, they may not be enough to run inference on
the original DNN as a whole, especially if the trained model
is very large [14].

To overcome this issue, the original DNN is divided into
different pieces – generally corresponding to the individual
layers therein – which are then assigned to individual edge
servers [16]. Both centralized and distributed approaches have
been proposed accordingly, for instance, based on graph
theory [16, 24], matching theory [17], and convex optimiza-
tion [18]. However, solutions in the state of the art suffer
from important limitations. In fact, most schemes built on
solid theoretical foundations are centralized and make strong
assumptions on the system model, such as that DNNs can
only be divided into two pieces [16]. Other approaches are
distributed and able to handle the complexities of real set-
tings [17, 18], but they are rather involved and fail to provide
strict performance guarantees, especially in terms of efficient
and fair use of resources (Section V).

This article explicitly addresses these limitations by ap-
plying distributed assignment to DNN inference at the edge.
Specifically, the offloading process is modeled as an assign-
ment problem [25], wherein inference tasks are associated to
edge servers while balancing the resulting load. In particular,
a distributed assignment mechanism is devised to maximize
proportional fairness, a widely used metric in network systems
which jointly characterizes resource utilization and load bal-

https://www.ieee.org/publications/rights/index.html
https://doi.org/10.1109/JIOT.2022.3205410

2

Smartphones IoT sensors Cameras

Edge

servers

REV 1.2

2011-08-08

REV 1.2

2011-08-08

REV 1.2

2011-08-08

End

devices

Access point WiFi hotspot

(a)

l12

l11

l13

t1

l22

l21

l23

l24

t2

(b)

l11

l12

l13

l21

l22

l23

l24

x112 = 1

x111 = 1

x113 = 0

x221 = 1

x222 = 1

x223 = 1

x224 = 1

(c)

Fig. 1: DNN inference offloading at the edge. (a) Reference architecture with heterogeneous end devices and more powerful edge servers.
(b) Sample DNN inference tasks t1 and t2 associated with different devices. Each task relies on a certain DNN architecture with multiple
layers li. (c) Sample assignment between these tasks and three edge servers.

ancing as a sum of logarithmic utility functions [26, 27]. The
proposed approach is expressive, analytically tractable, and
able to achieve a near-optimal solution in terms of resource
utilization and inference latency. To the best of the authors’
knowledge, this is the first work to provide strong optimality
guarantees in offloading of DNN inference with a distributed
scheme.

In detail, the main contributions of this work are the
following.
• It devises a detailed model of the DNN inference process,

suitable for realistic scenarios involving edge computing.
It also defines optimal inference offloading with load bal-
ancing as a multiple assignment problem that maximizes
proportional fairness (Section II).

• It introduces a distributed algorithm that solves the
multiple assignment problem in polynomial time and
achieves strong optimality guarantees (Section III).

• Extensive simulations employing different datasets and
DNN architectures (Section IV) establish that the proposed
solution significantly improves upon the state of the
art in terms of inference time (1.14 to 2.62 times faster),
load balance (with a Jain’s fairness index of 0.9), and
convergence (one order of magnitude less iterations).

II. DNN INFERENCE AT THE EDGE

This section introduces the system model1 of an edge com-
puting scenario wherein DNN inference tasks are offloaded
from end devices to edge servers. It first characterizes the
network and the inference tasks, then discusses the com-
putation aspects related to the DNN inference process. It
finally formulates an optimization problem for offloading DNN
inference tasks with load balancing. The notation used in the
article is summarized in Table I.

A. Network and Inference Tasks

The reference network architecture includes two different
components [28] distributed over a certain geographical area
(Fig. 1a): a set S of n = |S| edge nodes (i.e., servers) and a set

1The rest of the discussion makes certain simplifying assumptions on the
system model for the sake of clarity and analytical tractability. Additional
considerations on these assumptions will be provided in Section IV-B.

D of D = |D| end devices. Edge servers are connected to each
other and to the cloud through high-speed dedicated links [29];
as a consequence, the time needed by edge servers to exchange
intermediate results between each other is considered negligi-
ble. In contrast, end devices exchange data with edge servers
in their communication range over a shared wireless channel
(i.e., through WiFi) with a total bandwidth of B, according
to [16].

End devices execute DNN inference tasks indicated as T =
{t1, t2, · · · , tT }. Specifically, a given task t ∈ T evaluates
(i.e., obtains the output of) a DNN, represented as a linear
graph Gt = (Et,Lt) whose nodes in Lt = {lt1, lt2, · · · , ltn},
i.e., lti are the layers of the corresponding DNN. Here, lt1 and
ltn indicate the input layer and the output layers, respectively;
moreover, edges (lti , l

t
i+1) ∈ Et imply that lti+1 depends on lti ,

therefore, it must be evaluated first (Fig. 1b). For conciseness,
the index t is dropped from the notation in the rest of the
article; the related discussion refers to a given task, without
loss of generality.

B. DNN Inference Process

A given layer is either executed locally at the end devices
or sent to edge servers (with higher computational power)
together with its input. Each edge server k has a constant CPU-
cycle frequency of νk [30] and executes a layer immediately if
enough computational resources are available. Otherwise, the
edge server adds the layer to a local FIFO execution queue
with size Qk proportional to its computing power [17].

The input and output size of layer j at end device i are
denoted as Isij and Os

ij , respectively. The number of cycles
to process one element of the input (i.e., the task density)
is indicated as c. DNN layers are described by matrices that
either denote the corresponding weights or the feature map,
depending on their type. The total number of floating point
operations for a single convolutional layer j (assuming an
implementation based on a sliding window) from device i is
given by

Cij = 2 · Ihij · Iwij · (cin ·Kw
ij ·Kh

ij + 1) · cout

where: Ihij , Iwij , Kw
ij , and Kh

ij are the height and width of the
input feature map and the kernel, respectively; cin and cout

3

TABLE I
SUMMARY OF KEY NOTATION

Symbol Description
S, k Set of edge nodes (servers) and a given server
D, i Set of end devices and a given end device
G(E,L) DNN graph with layers L and edges E for task t
j A given layer in L
m Cardinality of layers L
n Cardinality of edge nodes
νk Computing power of edge node k
Qk Queue length of edge node k
Cij FLOPs for a convolutional layer j from device i
Fij FLOPs for a fully-connected layer j from device i
T c
ijk Time for computing a convolutional layer j at server k

T f
ijk Time for computing a fully-connected layer j at server k
Isij Size of the input layer j at end device i in bits
Os

ij Size of the output layer j at end device i in bits
Tijk Total time for layer j, from user i at edge node k
T e
ijk Execution time for layer j, from user i at edge node k
T t
ijk Transmission time for layer j, from user i at edge node k
T q
ijk Queuing time for layer j, from user i at edge node k
B Total bandwidth of shared wireless channel
X Set of final assignments (j, k) mapping layer j to server k
L(k) Subset of layers (⊆ L) that can use server k
S(j) Subset of servers (⊆ S) that can run layer j
Y Set of feasible assignments (j, k)

xijk Binary variable denoting assignment of layer j to node k
τijk Time threshold for layer j from user i at server k
n+
k , n

−
k Upper and lower bound on layers assigned to server k

c Task processing density of edge nodes
ajk Generic utility for executing a task j at server k
Y Cardinality of the set of feasible assignments Y
p Price of a server to run the layers
π Profits associated with layers as an incentive to servers

are the number of channels in the input feature maps and the
output. Thus, the execution time for a single convolutional
layer j from device i at edge server k is

T c
ijk = (Cij · c)/νk.

Similarly, the number of floating point operations for a
(fully-connected) feed-forward layer j from device i is

Fij = (Iij ·Oij +Oij · (Iij − 1)) = (2Iij − 1)Oij

where Iij and Oij are the input and output dimensions. The
related computation time at edge server k is

T f
ijk = (Fij · c)/νk.

The activation layer is assumed to be a rectified linear
unit, which simply computes f(x) = max(0, x). The related
execution time is not considered part of the total time, since
it is negligible compared to convolutions and dot products.
Accordingly, the time T e

ijk for executing a deep learning layer
j from device i is T e

ijk = T c
ijk for a convolutional layer and

T e
ijk = T f

ijk for a fully-connected layer.
Next, the time needed to exchange inputs and outputs

between an end device and an edge server are derived. In
particular, the time taken by an end device i to send the DNN

partition j to edge server k and receive the intermediate output
back (where applicable2) is

T t
ijk = (Isij +Os

ij)/B

where Os
ij=0 if the layer j+1 is also executed at server k.

Recall that offloaded layers may not be executed imme-
diately at the edge server, hence, they may be subject to a
queuing time

T q
ijk =

∑
jq∈Qk,j 6=jq

flops(jq) · c
νk

where flops(jq) are the floating point operations for layer jq
in the execution queue q ∈ Qk before task j at edge server k.

Then the total execution time for a layer j offloaded by end
device i to an edge server k is:

Tijk = T t
ijk + T e

ijk + T q
ijk (1)

where: T t
ijk is the time for transmitting the input of layer j

to server k and the possible intermediate output from server k
back to the device; T e

ijk is the time taken for computing layer
j at server k; and T q

ijk is the waiting time of layer j at k.

C. The DNN Inference Offloading Problem

Now that the system model has been introduced, it remains
to characterize the actual offloading process. Recall that an
end device can offload the execution of individual layers of a
given DNN inference task to edge servers. Edge servers can
run these layers faster than end devices; however, they may
not be able to process requests immediately due to precedence
constraints and the load coming from several nodes in the
network. Moreover, running layers at edge servers requires
exchanging the input and output of individual layers with
end devices over a bandwidth-constrained channel. Therefore,
offloading DNN inference must explicitly these factors into
account and reduce the total inference time while balancing
the load of the edge servers in the network.

For this reason, the offloading process is modeled as an
assignment problem: individual layers of DNN inference tasks
requested at end devices are mapped onto edge servers for
execution (Fig. 1c). Layer j executed by server k is indicated
as the (j, k) pair in the final assignment X . Not every layer can
be assigned to any server and vice versa. Specifically, L(k) ⊆
L is the set of layers that can use server k, whereas S(j) ⊆ S
is the set of servers that can run layer j. Furthermore, Y is a
feasible assignment3 as the set of all pairs such that (j, k) ∈ Y
if and only if k ∈ S(j) as well as j ∈ L(k).

The assignment problem describing the offloading process
is formally defined next.

2In particular, intermediate output does not need to be transmitted for
consecutive layers that are all executed at the same device.

3For now, it suffices to assume that such an assignment exists; additional
considerations on feasibility will be given in the next section.

4

Problem 1 (DNN Inference Offloading with Load Balancing).
The problem of offloading DNN inference with load balancing
is formulated as follows:

max
x

−
∑
i∈D

∑
(j,k)∈Y

log(Tijk) · xijk (2a)

s.t.
∑

k∈S(j)

xijk ≤ 1, ∀j ∈ L, i ∈ D (2b)

Tijk ≤ τijk, ∀(j, k) ∈ X , i ∈ D (2c)

n−k ≤
∑

j∈L(k),i∈D

xijk ≤ n+k , ∀k ∈ S , (2d)

xijk ∈ {0, 1}, ∀(j, k) ∈ Y, i ∈ D (2e)

In detail, Eq. (2a) is the objective function, which expresses
load balancing in terms of proportional fairness by maximizing
the sum of the logarithms for a certain utility [26]. Here, the
utility is inversely proportional to the total inference time Tijk
[as in Eq. (1)], therefore explaining the negative sign before the
summation. Clearly, the total inference time is considered for
the layers of all DNN inference tasks offloaded in a feasible
assignment Y . The decision variables xijk ∈ {0, 1} express
whether layer j from device i is offloaded to edge server k
(i.e., xijk = 1) or not (i.e., xijk = 0). The optimization is
subject to several constraints as follows. Eq. (2b) indicates
that not all edge servers may be assigned layers. Eq. (2c)
signifies that layer j is only offloaded if it is beneficial,
i.e., if its total execution time – including the computation
at the edge server in addition to the time for transferring
intermediate input / output data – is lower than time τijk for
local execution at the device. Eq. (2d) expresses an upper and
a lower bound (i.e., n+k and n−k , respectively) on the number
of layers assigned to a given server k. Finally, Eq. (2e) states
that decision variables are binary.

Problem 2 is an instance of a non-linear binary integer
programming model, thus, it is NP-hard [31]. The rest of the
article targets finding an approximate yet near-optimal solution
to the problem. In particularly, it focuses on a distributed
solution, as it is more suitable for the scenario with multiple
edge servers and possibly a large number of end devices.

III. DISTRIBUTED ASSIGNMENT FOR DNN INFERENCE

This section introduces and analytically characterizes a
distributed algorithm that obtains a near-optimal solution to
the problem introduced above. For the sake of exposition, the
rest of the discussion addresses first a multiple assignment
problem – wherein more than one tasks can be assigned to
a single server – with a linear objective function. It then
extends the proposed algorithm to the case of a logarithmic
objective function expressing proportional fairness. The rest
of the section focuses on offloading inference tasks involving
a single device4 for clarity.

4Accordingly, the index i denoting a specific device is dropped from all
notation for conciseness.

A. Multiple Assignment

The multiple assignment problem allows more than one
layer to be assigned to the same server as follows.

Problem 2 (Multiple Assignment). The multiple assignment
problem is defined as:

max
x

∑
(j,k)∈Y

ajkxjk (3a)

s.t.
∑

k∈S(j)

xjk = 1 , ∀j ∈ L , (3b)

n−k ≤
∑

j∈L(k)

xjk ≤ n+k , ∀k ∈ S , (3c)

xjk ∈ {0, 1} , ∀(j, k) ∈ Y , (3d)

where ajk expresses a generic5 utility, |L| ≥ |S| and |S| =
n. Note the linear objective function in Eq. (3a); here, the
constraints state that: all layers are assigned [Eq. (3b)], those
running at edge servers are within given lower / upper bounds
[Eq. (3c)], and decision variables are binary [Eq. (3d)].

The problem is addressed by transforming it into an equiva-
lent formulation in two steps. First, the problem is expressed as
a symmetric assignment by replacing each original server by
a virtual server that processes at most one layer. Accordingly,
S is replaced by S ′ = S ′+ ∪ S ′−, wherein S ′+ and S ′− are the
sets of n+k −n

−
k and n−k virtual servers, respectively. Second, a

supersource s is added to the network and is connected to each
virtual server k ∈ S ′+ with zero cost. This allows to express
the problem as a minimum-cost flow:

min
x

∑
(j,k)∈Y

−ajkxjk (4a)

s.t.
∑

k∈S′(i)

xjk = 1 , ∀i ∈ L , (4b)

∑
j∈L(k)

xjk = 1 , ∀k ∈ S ′− , (4c)

∑
j∈L(k)

xjk + xsk = 1 , ∀k ∈ S ′+ , (4d)

∑
k∈S′

+

xsk = m+ −m, (4e)

0 ≤ xjk , ∀(j, k) ∈ Y , (4f)

The meaning of the constraints is the following. Eq. (4b) and
Eq. (4c) indicate that the flow supply of each layer / server is
one unit, while Eq. (4d) states that a unitary flow eventually
reaches each virtual server. Moreover, Eq. (4e) signifies that
s is the supersource and that the flow it generates is m+−m
units, with m+ =

∑
k∈S n

+
k . Finally, Eq. (4f) enforces non-

negative flows.
It is now possible to consider the reformulated problem ac-

cording to the duality theory [31]. To this end, the Lagrangian
function is first derived by combining the objective function

5The rest of the discussion uses such a utility according to notation com-
monly used in the literature [25], also because the analytical characterization
derived next applies to multiple assignment in general. In practice, the utility
indicates the total inference time in Eq. (1) for the problem considered here.

5

with the constraints through the Lagrangian multipliers. For
clarity, the multipliers are divided based on the elements they
refer to: πj for the layers [Eq. (4b)]; pk for the servers [Eq. (4c)
and (4d)], and λ for the supersource [Eq. (4e)]. Accordingly,
the Lagrangian function is:

L(x,π,p, λ)

=
∑

(j,k)∈Y

(−ajk + πj + pk)xjk +
∑
k∈S′

+

(pk − λ)xsk

−
∑
j∈L

πj −
∑
k∈S′

pk − λ(m−m+), (5)

The corresponding dual problem can then be written as:

min
π,p

∑
j∈L

πj +
∑
k∈S′

pk − λ(m+ −m) (6a)

s.t. πj + pk ≥ ajk , ∀(j, k) ∈ Y , (6b)
λ ≤ pk , ∀k ∈ S ′+ , (6c)

The duality theory establishes a relationship between the (orig-
inal) primal problem and the dual problem. Such a relationship
is characterized in terms of the so-called complementary slack-
ness (CS) condition, which describes how the constraints in
the two problems are binding [31]. For the multiple assignment
problem, the following variant of CS is employed.

Definition 1 [ε-complementary slackness (ε-CS)]. Given a
positive scalar ε, an assignment X = {(j, k)|j = 1, · · · ,m}
and a pair (π,p) satisfy the ε-CS condition if:

πj + pk ≥ ajk − ε , ∀(j, k) ∈ Y , (7)
πj + pk = ajk , ∀(j, k) ∈ X , (8)
pk ≤ min

l∈S′
+,∃(j,l)∈X

pl , ∀k ∈ S ′+,@(j, k) ∈ X , (9)

Note that the ε-CS condition above is expressed in terms of
the dual problem through the Lagrangian function in Eq. (5).
Such a condition allows to characterize the optimality of a
solution to the multiple assignment problem as follows.

Proposition 1 (Proposition 7.7 in [25]). Let X be a feasible
assignment for the problem together with a dual variable pair
(π,p) satisfying ε-CS conditions. Then X is within mε of the
optimal solution to Problem 2.

B. A Distributed Algorithm for the Multiple Assignment Problem

The previous discussion has introduced a theoretical frame-
work to characterize a solution for the multiple assignment in
Problem 2. Next, a distributed algorithm to find a near-optimal
solution is devised accordingly. The main idea is to consider
the assignment problem as in an economic system: finding
an optimal assignment corresponds to reaching an economic6

equilibrium. In this context, the pair (π,p) offers an economic
interpretation: π are profits associated with layers, as an
incentive for servers to run them; whereas p is the price of
a server, as the cost to run layers. These two quantities are

6A similar analogy is employed in [25], which presents auction algorithms
to solve different types of assignment problems. This section uses the same
terminology only for clarity, whereas an analysis of economic properties of
the proposed algorithm is beyond the scope of this work.

Algorithm 1: DAMA executed at end device i for each layer
j in a DNN inference task

1 Initialize πj = ∅, kj = ∅, and pj

2 if kj = ∅
3 k′j ← argmaxk∈S{ajk − pjk}
4 uj ← maxk∈S{ajk − pjk}
5 ωj ← maxk∈S\{k′

j}
{ajk − pjk}

6 bj ← pj
k′
j
+ uj − ωj + ε

7 place bid bj for server k′j
8 listen for response, ACK / NACK and pk′

j
, pj

k′
j
← pk′

j

9 if ACK
10 offload layer to server k′j , πj ← ajk′

j
− pk′

j
,

kj ← k′j

11 if receive request from server k with bid bk
12 if bk − πj ≥ ε
13 πj ← bk, send ACK and πj to server k
14 send NACK and πj to server kj
15 offload layer to server k, kj ← k

16 else send NACK and πj to server k

then leveraged to design an auction mechanism that enforces
the ε-CS condition in Proposition 1 to obtain a near-optimal
solution to Problem 2.

The proposed algorithm involves two distinct phases: a
forward auction, wherein devices place bids for edge servers
to run their layers; and a reverse auction, wherein edge servers
place bids for layers. Such an algorithm – called distributed
auction for multiple assignment (DAMA) – is fully distributed,
as it runs at both end devices and edge servers. It also operates
online, since prices are updated asynchronously as bids arrive.
Moreover, the algorithm only leverages local information, as
servers (end devices) have their own evaluation of profits
(prices). These local values, not necessarily corresponding to
the correct ones, are indicated as the vectors pj = {pk} for
server {k = 1, . . . ,m} at end device i for each layer j as well
as πk = {πj} for layer {j = 1, . . . , n} from user i at server
k. All entities running the algorithm share the same value of
ε, decided beforehand.

Algorithm 1 describes the operations of DAMA as executed
at end device i for each layer j of a DNN inference task. The
algorithm runs each time a new DNN inference task arrives at
the device, and concerns all the DNN layers therein. Initially,
the device obtains the benefit ajk and the price pk of each
edge server k. At first, no server is assigned to the layer, so
the device makes a bid for the the server offering the highest
gain (lines 3–6). Specifically, the device identifies the server k′i
that provides the largest difference between the layer’s benefit
and the server price (line 3). It also obtains the actual value uj
corresponding to such a gain (line 4) as well as the second-best
value ωj (line 5). These values are then employed to derive
the bid bj (line 6), which is sent to server k′j (line 7). Upon
receiving a response from the server, the device updates the
local price with the up-to-date value (line 8). If the response
also contains a positive acknowledgment (ACK), layer j is
associated with server k′j (lines 9–10). Afterwards, the device
listens for bids sent by the edge servers (line 11). If a new bid
bk arrives from server k, it is accepted only if the difference

6

Algorithm 2: DAMA executed at server k

1 Initialize pk = 0, jk = ∅, πk = 0
2 if receive request for layer j in user i with bid bj
3 if the cardinality |jk| < n+

k

4 πk
j ← ajk − bj , jk ← jk ∪ {j}

5 if |jk| = n+
k

6 pk ← minl∈jk alk − [πk]l

7 send ACK and pk to device i accepting layer j
8 else if bj ≥ pk + ε
9 j′k ← argminl∈jk alk − π

k
l

10 jk ← jk \ {j′k} ∪ {j}
11 πk

j ← ajk − bj
12 pk ← minl∈jk alk − π

k
l

13 send ACK and pk to device i accepting layer j
14 send NACK and pk to device that requested layer j′k

15 if the cardinality |jk| < n−k and all layers are assigned
16 jk ← argmaxj∈L{ajk − πk

j }
17 uk ← maxj∈L{ajk − πk

j }
18 ωk ← maxj∈L\{jk}{ajk − π

k
j }

19 bk ← πk
jk

+ uk − ωk + ε
20 place bid bj for layer jk at user i
21 listen for response with ACK / NACK and πjk , πk

jk
← πjk

22 if ACK
23 accept layer jk, jk ← jk ∪ {jk}

between the bid and the profit is at least equal to ε (line 12). In
that case, the device updates the layer’s profit, sends it to server
k with an ACK, and to the previously-selected server kj with
a negative acknowledgment (NACK, lines 13–15). Otherwise,
it sends the profit to server k with a NACK (line 16).

Algorithm 2 describes the operations of DAMA as executed
at each server k. After initializing prices and profits to zero,
the server listens for bids from devices (lines 1–14). When a
bid arrives, the server accepts the n+k best layers, i.e., those
with the highest bids. In such a case, the server updates the
profit of each layer and its own price; then, it sends the updated
price to the device with an ACK (lines 3–7). If the server has
already taken n+k layers for execution, it still accepts layers
but only if the difference between the bid and the price is at
least equal to ε (line 8). If so, the server updates its price,
sends it to the device requesting to offload j with an ACK,
and to the device of the previously-selected layer j′k with a
NACK (lines 9–13). Otherwise, it still sends the price to device
i but with a NACK (line 14). Bids are then to devices if all
layers are assigned and the server has accepted less than n−k
layers (lines 15–23) similar to the first part of Algorithm 1.
First, the server identifies the layer jk that provides the largest
gain, obtains the value for that and for the second-best gain,
then derives the bid (lines 16–19). It finally places the bid,
updates the local profit with the up-to-date value and possibly
the association if the response contains an ACK (lines 20–23).

The following characterizes the time complexity of DAMA.

Proposition 2. Assume that a feasible assignment Y exists for
Problem 2, with Y = |Y|, and that ε > 0 is given. The time
complexity of DAMA is O(mY d∆/εe), where m = |L| and
∆ = max(j,k)∈Y ajk −min(j,k)∈Y ajk.

Proof. DAMA is shown to terminate with a feasible assign-

ment first, since such an assignment exists by hypothesis.
Recall that DAMA consists of a forward and a reverse auction,
executed sequentially. Both types of auctions work similarly,
with roles and profits / prices exchanged; therefore, it is enough
to show that the forward action terminates. This can be proven
by contradiction as follows. Assume that DAMA does not
terminate; this implies that some end device placed infinite
bids for a certain layer. Since each bid increases the price of
a server by at least ε, the price of these servers would go
to infinity, while the difference between the benefits and the
prices would reach minus infinity. As a consequence, at least
one layer remained unassigned in a finite amount of time,
which contradicts the existence of a feasible assignment.

Given that DAMA terminates, its time complexity can be
described based on two factors: the maximum number of
price increments and the maximum number of requests in
between them. First, the maximum number of price increments
occurs when end devices place bids with the minimum allowed
increase of ε. In particular, such a number of increments is
equal to d∆/εe, where ∆ denotes the maximum variation
in price corresponding to the updates at any end device and
server. Since a feasible assignment exists as proven earlier, all
m layers are eventually offloaded to servers, thereby leading
to a total of md∆/εe increments. Second, the maximum
number of requests between price increments corresponds
to the number of iterations for price updates, which are at
most Y ≤ mn. The considerations above apply to both the
forward and reverse auction, resulting in a time complexity of
O(mY d∆/εe).

C. Load Balancing

The multiple assignment problem investigated so far has
a weighted sum as the objective function, thereby resulting
in a linear programming problem. This section extends the
previously-obtained results to the case of load balancing,
expressed in terms of the widely-used proportional fairness,
namely, the sum of the logarithms of utilities (i.e., bene-
fits) [32].

Problem 3 (Multiple Assignment with Proportional Fairness).
The multiple assignment problem with proportional fairness
has the following form:

max
x,y

∑
(i,j)∈Y

log(ajkyjk)xjk (10a)

s.t.
∑

j∈S(j)

xjk = 1, ∀i ∈ L , (10b)

∑
j∈L(k)

yjk ≤ 1, ∀j ∈ S (10c)

xjk ∈ {0, 1}, ∀(j, k) ∈ Y (10d)
yjk ≥ 0, ∀(j, k) ∈ Y , (10e)

Where 0 , 0 · log 0 by definition. The non-negative variable
yjk is the resource sharing fraction for layer j at server k,
with

∑
j∈L(k) yjk ≤ 1 for all servers.

Note that the multiple assignment problem with proportional
fairness is a mixed optimization problem, as y is a vector

7

of real variables. The following establishes a correspondence
between Problem 3 and Problem 2, so that DAMA can be
applied for load balancing too.

The main idea is that the optimal solution to Problem 3
in the vector y is the one that gives a uniform resource
allocation [33]. Accordingly, y∗jk = 1/nk where nk is the
number of users assigned to server j. As a consequence,
Problem 3 can be transformed into the following one:

max
x,n

∑
(j,k)∈Y

xjk log ajk −
∑
k∈S

nk log nk (11a)

s.t.
∑

j∈L(k)

xjk = nk, ∀k ∈ S , (11b)

∑
k∈S(j)

xjk = 1, ∀j ∈ L , (11c)

xjk ∈ {0, 1}, ∀(j, k) ∈ Y , (11d)

which is a non-linear integer optimization problem – thus, also
NP hard [31] – where n is a new vector of integer variables.

However, the following observation allows to find an ap-
proximate solution to the problem. The optimal assignment
in the optimization problem above ensures the proportional
fairness among the utilities of the layers. In other words,
the corresponding solution also balances the assignments
(i.e., loads) among the servers. Accordingly, Problem 2 can
be leveraged to approximate the optimization problem with
proportional fairness, where the upper and the lower bounds
of nk can be estimated based on the characteristics of DAMA.
The rest of the analysis relies on the following notation:

u(x,n) =
∑

(j,k)∈Y

xjk log ajk−
∑
k∈S

nk log nk = ux(x) +un(n)

Proposition 3. Let u(x̃∗, ñ∗) be the value of the objective
function for the assignment obtained by DAMA and u(x∗,n∗)
the value of the objective function for the optimal solution to
the optimization problem in Eqs. (11a)–(11d). If n−k ≤ n∗k ≤
n+k for all servers k, then the following holds:

u(x∗,n∗)− u(x̃∗, ñ∗) ≤ m(log n+ ε) .

Proof. The proof first shows that the assignment obtained by
DAMA is within mε of the optimal solution then derives the
bound for the reformulated version of Problem 3 accordingly.

DAMA terminates due to Proposition 2. It is then enough
to show that the ε-CS conditions in Definition 1 hold upon
termination, as the optimality bound trivially follows from
Proposition 1. Consider the ε-CS conditions in Eqs. (7) and (8).
The following shows that, if they are satisfied at the beginning
of an iteration, they are also satisfied at the end of that
iteration. Specifically, let (πj , pk) be the pair denoting the
benefit associated with layer j and the price of server k at the
beginning of an iteration for the forward auction. Assume that
server k receives a bid for layer j, previously associated with
jk, during the iteration, leading to the updated pair (π′j , p

′
k).

Then, π′+p′jk = ajk holds due to line 10 of Algorithm 1. For
every other layer l ∈ L with l 6= i, π′ + p′jk ≥ ajk − ε holds
since π′l = πl and p′jk ≥ pjk for each server jk. A similar
reasoning applies to the reverse auction. It now remains to

VGG16

Input

Convolution

Max

Fully-connected

Activation

Output
AlexNet

NiN

Fig. 2: Architectures of the DNN benchmarks considered in the
evaluation: AlexNet, NiN and VGG16.

verify that the condition in Eq. (9) holds as well. Recall that
only servers with less than n−k clients participate in the reverse
auction. As a consequence, upon termination there are some
unassigned virtual servers in S+ with a zero price, which is
at most the price of assigned virtual servers in the same set.
Therefore, also the last ε-CS condition is satisfied and the
assignment obtained by DAMA is within mε of the optimal
solution.

As a result, ux(x∗)− ux(x̃∗) ≤ mε, since n−k ≤ n∗k ≤ n
+
k

by hypothesis. Consequently, it is:

u(x∗,n∗)− u(x̃∗, ñ∗) = ux(x∗)− ux(x̃∗) + un(n∗)− ux(ñ∗)

≤ mε+ un(n∗)− ux(ñ∗)

= mε+
∑
k∈S

n∗k log n∗k −
∑
k∈S

ñ∗k log ñ∗k

≤ mε+m logm−m log
m

n
= m(ε+ log n)

IV. EVALUATION

Experiments are carried out with a custom python net-
work simulator built on top of the PyTorch [34] framework.
Three different datasets are considered: Berkeley Deep Drive
(BDD100k), containing 120M images from 100K videos cap-
tured by cameras on self-driving cars [35]; Stanford Cars
(CARS), including 16,185 images for 196 classes of cars [36];
and Canadian Institute for Advanced Research-100 (CIFAR-
100), with 60K images divided into 100 classes [37]. DNN
tasks are assumed to be independent from each other; they are
generated by the devices according to a Poisson distribution
with a mean of λj . Three widely-used DNN models for image
classification are employed as benchmarks: NiN, VGG16, and
AlexNet (Fig. 2); the thresholds τijk for local execution are
derived accordingly.

The deployment area of the network is a square region of
500 m2. The number of devices is three times the number of
edge servers, according to [17, 30, 38]. Edge servers and
devices are static and randomly placed in the deployment
area according to a uniform distribution; all edge servers have
the same computing power. Table II reports the parameters
employed in the simulation.

In addition to DAMA, the following offloading schemes for
DNN inference are considered for comparison purposes.

8

0 20 40 60 80 100

50

100

150

Number of DNN inference tasks

In
fe

re
nc

e
tim

e
pe

rD
N

N
(m

s)
CoEdge MM
DAMA DINA
DADS

(a)

0 20 40 60 80 100

400

600

800

1,000

1,200

1,400

Number of DNN inference tasks

In
fe

re
nc

e
tim

e
pe

rD
N

N
(m

s)

CoEdge MM
DAMA DINA
DADS

(b)

0 20 40 60 80 100

150

200

250

300

350

Number of DNN inference tasks

In
fe

re
nc

e
tim

e
pe

rD
N

N
(m

s)

CoEdge MM
DAMA DINA
DADS

(c)

Fig. 3: Total inference time of the different schemes as a function of the DNN tasks for (a) NiN, (b) VGG16, and (c) AlexNet.

TABLE II
SIMULATION PARAMETERS

Parameter Value
Deployment area 500× 500 m
Transmission range 30 m [40]
Bandwidth (B) 22.75 Mbps [16]
Number of edge servers (n) 30 [17, 30, 38]
Number of end devices (D) 90 [17, 30, 38]
Mean task arrival rate (λj) 8 tasks / s [17]
Processing density (c) 8 double-precision FLOPS / cycle [41]
Edge compute power (ν) 1010 cycle / s [30]
Task delay threshold (τijk) [5, 110] ms [17]

• Minmax (MM), a modified version of Problem 1 that
minimizes the maximum execution time of all the tasks in
the network.

• DADS, the partitioning scheme under light workload
in [16], based on the minimum weighted s-t cut of a DNN.

• DINA, the layer-wise decomposition in [17], based on swap
matching under two-sided stability.

• CoEdge, the horizontal partitioning scheme in [18], which
minimizes the energy cost of offloading subject to latency
constraints.

It is worth noting that all the schemes above excluding DADS
are distributed.

Offloading all DNN tasks is determined upon their arrival at
end devices for all schemes and intermediate data are transmit-
ted directly between edge servers. Furthermore, the following
parameters are employed for both DAMA and MM, similar
to [39]: ε = 0.01, n+k = d3m/ne, and n−k = d0.75m/ne.

A. Simulation Results

The evaluation considers the following performance metrics:
inference time, the improvement over the state of the art,
load balancing as well as fairness, and convergence7. Unless
otherwise stated, results refer to the BDD100k dataset and
individual data points are the average of twenty replications
for each experiment, with error bars representing the corre-
sponding standard deviations.

Inference Time. Fig. 3 shows the average inference time (i.e.,
the total execution time Tijk) as a function of the number of

7Convergence as considered here refers to the time needed to find an of-
floading assignment. The related process does not affect model convergence
because it employs a pre-trained DNN as it is, without the need for re-training.

tasks for all the considered schemes (i.e., CoEdge, DAMA,
DINA, DADS, MM) and architectures (NiN, AlexNet, and
VGG16). DAMA obtains the lowest inference time in all
cases, followed by CoEdge and MM. The total inference
time of DAMA, CoEdge, and MM clearly grows with the
number of inference tasks, even though it never doubles across
consecutive values of the considered parameters. In contrast,
the inference time of both DADS and DINA increases more
significantly. This clearly demonstrates the scalability of the
proposed schemes for all the three DNN benchmarks. Clearly,
NiN obtains the lowest inference time, always below 150 ms
(Fig. 3a), as it has the least number of layers and substan-
tially smaller intermediate outputs than the other benchmarks.
Instead, the total inference time for VGG16 is significantly
higher than both NiN and AlexNet, exceeding even one second
(Fig. 3b), due to the higher number of layers and larger
convolutions.

Improvement. Figs. 4-6 show the improvement of the pro-
posed solution as the ratio between the time obtained with a
certain scheme and that of DAMA, as a function of the consid-
ered DNN benchmarks and for the considered datasets. In par-
ticular, Fig. 4 focuses on the total inference time for BDD100K
(Fig. 4a), CARS (Fig. 4b), and CIFAR (Fig. 4c). It is clear
how DAMA performs much better than the other solutions,
with improvements between 1.14 and 2.62 for BDD100K, 1.16
to 2.42 for CARS, 1.45 to 2.68 for CIFAR. This proves that
DAMA is effective independent from the considered dataset,
while the actual performance varies more significantly based
on the specific DNN benchmark, as already shown in Fig. 3.
Fig. 5 illustrates the transmission time for the three considered
datasets. Also in this case DAMA significantly improves on the
other schemes in all cases, even though the difference between
the minimum and maximum gains are smaller than for the
total inference time. This happens as intermediate data are
directly transferred between edge servers for offloaded tasks
in all the schemes. CoEdge performs better than the other
approaches as it partitions layers horizontally, therefore, it only
requires exchanging data at the very beginning and at the end
of the offloading process to combine the output. Moreover,
DADS performs similar to MM as it splits the DNN into
two partitions only, thereby limiting the amount of data to
be transferred. The improvements for CARS (Fig. 5b) and
CIFAR100 (Fig. 5c) are slightly better than for BDD100K

9

AlexNet NiN VGG16
0

1

2

3
Im

pr
ov

em
en

t(
tim

es
)

CoEdge
MM
DADS
DINA

(a)

AlexNet NiN VGG
0

1

2

3

Im
pr

ov
em

en
t(

tim
es

)

CoEdge
MM
DADS
DINA

(b)

AlexNet NiN VGG
0

1

2

3

Im
pr

ov
em

en
t(

tim
es

)

CoEdge
MM
DADS
DINA

(c)

Fig. 4: Improvement of DAMA against the other schemes in terms of the total inference time for the considered DNN benchmarks with the
(a) BDD100K, (b) CARS, and (c) CIFAR100 datasets.

AlexNet NiN VGG16
0

1

2

3

Im
pr

ov
em

en
t(

tim
es

)

CoEdge
MM
DADS
DINA

(a)

AlexNet NiN VGG
0

1

2

3

Im
pr

ov
em

en
t(

tim
es

)

CoEdge
MM
DADS
DINA

(b)

AlexNet NiN VGG
0

1

2

3

Im
pr

ov
em

en
t(

tim
es

)

CoEdge
MM
DADS
DINA

(c)

Fig. 5: Improvement of DAMA against the other schemes in terms of transmission time for the considered DNN benchmarks with the (a)
BDD100K, (b) CARS, and (c) CIFAR100 datasets.

AlexNet NiN VGG16
0

1

2

3

Im
pr

ov
em

en
t(

tim
es

)

CoEdge MM
DADS DINA

(a)

AlexNet NiN VGG
0

1

2

3

Im
pr

ov
em

en
t(

tim
es

)

CoEdge MM
DADS DINA

(b)

AlexNet NiN VGG
0

1

2

3

Im
pr

ov
em

en
t(

tim
es

)

CoEdge MM
DADS DINA

(c)

Fig. 6: Improvement of DAMA against the other schemes in terms of queuing time for the considered DNN benchmarks with the (a)
BDD100K, (b) CARS, and (c) datasets.

(Fig. 5a) as the input /output data are smaller. Finally, Fig. 6
characterizes the queuing time for the different datasets. Again,
DAMA outperforms the other schemes irrespective of the
considered dataset. In particular, the gain over MM is higher
than that over both DADS and DINA. This can be explained on
the basis of the objective function of MM, which reduces the
variance in the computation time by increasing the chance that
a task is queued. The difference in the actual results between
BDD100K (Fig. 6a), CARS (Fig. 6b) and CIFAR-100 (Fig. 6c)
is very small for all the considered schemes.

Load balancing and fairness. Fig. 7 illustrates the load
distribution on the individual edge nodes in a network with six
servers when using the (most demanding) VGG16 benchmark
for all the considered schemes. Due to the different nature
of such schemes, Fig. 7a reports load as number of layers
for MM, DAMA, DINA and DADS; whereas Fig. 7a shows
it as number of partitions for CoEdge, as these are formed
across layers. The figure shows an uneven distribution of the
layers for MM, DINA, and DADS. In particular, some edge
servers receive significantly more DNN layers (even more
than 1,000) than others (less than 100). Such a disparity

10

MM DAMA DINA DADS
0

200

400

600

800

1,000

1,200

N
um

be
ro

fD
N

N
la

ye
rs

k=1 k=2 k=3 k=4 k=5 k=6

(a)

CoEdge
0

20

40

60

80

100

120

N
um

be
ro

fD
N

N
pa

rt
iti

on
s

(b)

Fig. 7: Load distribution for the considered schemes in a network with six edge
servers as the number of (a) DNN layers and (b) partitions offloaded to each server.

Scheme AlexNet NiN VGG16
CoEdge 0.8149 0.8478 0.8523
DAMA 0.9061 0.8934 0.9120
DADS 0.7412 0.7281 0.7312
DINA 0.5291 0.5188 0.5312
MM 0.7363 0.7121 0.7148

TABLE III
ASSOCIATION FAIRNESS OF THE CONSIDERED SCHEMES AS

A FUNCTION OF THE DIFFERENT DNN BENCHMARKS.

TABLE IV
CONVERGENCE TIME OF THE DIFFERENT SCHEMES

FOR THE CONSIDERED DNN BENCHMARKS.

Scheme AlexNet NiN VGG16
CoEdge 10.56 11.22 13.49
DAMA 9.65 11.78 14.25
MM 10.94 12.18 16.05
DINA 78.49 67.56 88.43
Consensus-based 85.23 101.59 120.39

results in a high inference time, as network resources are not
fully utilized. In contrast, DAMA achieves the most balanced
utilization, with layers almost uniformly distributed across
all edge servers. This indeed maximizes the network-wide
proportional fairness, implying that all DNN layers are fairly
offloaded almost irrespective of how many devices are close
to the edge servers. The distribution of partitions in CoEdge is
also uneven, as two edge servers (i.e., k = 4 and k = 6) have
much lower load than the others. However, such a distribution
is better than that obtained by MM, DINA and DADS – even
though it does not reach the level of load balancing in DAMA.

Table III reports the average of Jain’s fairness index [32]
(between zero and one, the higher the better) calculated for
edge server k as Ξk =

(
∑|D|

i=1 lik)
2

|D|(
∑|D|

i=1(lik)
2)

, where lik is the total
number of layers from user i associated with server k. Such
an index is derived for the three DNN benchmarks in all
considered scenarios with respect to the related association
of devices. In line with the previous findings, DAMA obtains
the highest fairness index of about 0.9, therefore, the most
fair allocation. Also here CoEdge performs better than DADS,
MM, and DINA due to the horizontal partitioning across the
layers. DADS improves over MM and DINA as its partitioning
technique results in a lower number of layers to be offloaded
per DNN. Notably, the fairness of all schemes does not
significantly vary over the different DNN benchmarks.

Convergence. Table IV shows the average convergence time
as the average number of iterations needed by the different
schemes to terminate. In particular, CoEdge, DAMA, DINA
and MM are compared to a consensus-based algorithm [42]
for the considered DNN benchmarks. CoEdge is a recursive
technique; accordingly, the number of iterations here indicates
the recursion depth reached. DAMA and MM require a similar
number of iterations (at most sixteen) as MM employs a
modified version of the iterative algorithm in DAMA, which
has a polynomial time complexity (recall Proposition 2).

DAMA obtains the fastest convergence time for AlexNet,
while CoEdge the best results for NiN and VGG16; however,
the difference is not significant. The number of iterations of
both DINA and the consensus-based scheme are almost one
order of magnitude higher than the other approaches. This
happens as DINA relies on swap matching; as a consequence,
each iteration involves a pair of nodes, thereby resulting in
a longer time to converge. Similarly, reaching distributed
consensus also entails a significant overhead.

B. Summary and Discussion

The obtained results have demonstrated that DAMA signif-
icantly improves over the state of the art in terms of inference
latency, irrespective of the considered DNN benchmark. It also
effectively balances the load across edge servers and converges
fast to a near-optimal assignment. These results derive from
the expressive and detailed model of the offloading process,
combined with its formulation as an assignment problem.

The theoretical premises of this work laid out a solid
foundation for load balancing in offloading DDN inference at
the edge. However, they also have some limitations. Among
them, the communication model considered a shared wireless
channel with a certain bandwidth equally divided among end
devices /edge servers, similar to [16]. Such an assumption
could be easily relaxed by considering a different bandwidth
between each pair of nodes, as in [18]. The communication
model could also be replaced with one based on rate, as that
used in [17].

Handling time-varying changes in the system parameters is
more challenging. In fact, an accurate characterization of both
communication and computation is necessary to efficiently
offload inference due to precedence constraints. Parameters
could be continuously estimated and dynamically updated over
time at the cost of additional overhead for possibly updating
offloading decisions. Varying channel conditions could be
more easily accounted for by taking a conservative approach
that considers a guaranteed (i.e., minimum) bandwidth. More
complex channel models that explicitly incorporate uncer-
tainty, as the one in [43], might be employed as well.

V. RELATED WORK

Several works in the literature have considered DNN in-
ference acceleration through the edge and (or) the cloud.
DDNN [44] employs an early-exit strategy – to stop processing

11

early, as long as a certain accuracy is received – to reduce
inference time in a tiered network consisting of end devices,
the edge, and the cloud. ADDA [45] and Edgent [46] jointly
apply an early-exit strategy and DNN segmentation to perform
coordinated device-edge inference. SPINN [47] also combines
an early-exit strategy with DNN partitioning but especially
targets dynamic conditions under user-defined service agree-
ments. All the works above tradeoff accuracy for inference
time and may require special training. In contrast, the approach
considered in this article targets pre-trained DNNs and allows
distributed inference with no loss in accuracy.

Different works have addressed exact inference with pre-
trained DNNs too. Among them, Neurosurgeon [19] partitions
and offloads DNN computation between mobile devices and
the cloud. Specifically, it offloads layers in a linear DNN
to the cloud by minimizing both latency and energy con-
sumption, based on real-time monitoring of network traffic.
IONN [24] divides a DNN layer-wise into multiple partitions
and incrementally offload them to edge nodes to reduce both
transmission and computation time through parallel execution.
In doing so, it applies the shortest path algorithm on the graph-
based characterization of the DNN. Shin et al. [48] extend the
IONN partition technique to obtain a fine-grained partitioning
scheme based on an efficiency metric, defined as the ratio
between the latency reduction and the transmission overhead.
DADS [16] leverages a graph-theoretic approach and splits a
DNN into two partitions, one offloaded to the cloud and the
other to the edge. In particular, DADS determines two types
of graph cuts: one to minimize latency for light workloads
and another to maximize throughput for heavy workloads. The
solutions mentioned above leverage centralized algorithms;
instead, the solution developed here is distributed.

Finally, a few works have explicitly targeted exact dis-
tributed DNN inference. MoDNN [49] considers mobile de-
vices connected through high-rate WiFi links forming a local
cluster. Specifically, MoDNN aims at reducing the synchro-
nization overhead of the devices as they collectively carry out
inference tasks through different DNN partitioning schemes.
DINA [17] introduces an adaptive partitioning algorithm to
split a DNN with sub-layer granularity. It also includes a
distributed offloading technique based on matching theory,
namely, a swap-matching algorithm that targets reducing the
total inference time. DeepThings [50] devises a partitioning
technique that fuses the feature maps in convolutional layers
to enable their synchronized execution at multiple edge nodes
through a work-stealing algorithm. Similarly, CoEdge [18]
applies an adaptive technique that partitions convolutional
layers horizontally and offloads them to edge nodes. Moreover,
it carries out cooperative inference by minimizing the energy
cost for both computation and communication, subject to dead-
line constraints. CoopAI [51] employs dynamic programming
for partitioning multiple layers, which are grouped into a block
and processed in a round. Edge devices work together on the
blocks and the intermediate results are obtained by prefetching
extra data. EDGE-LD [52] leverages a MapReduce paradigm
to divide a DNN workload among heterogeneous edge devices
based on a profiling model that considers both execution time
and used bandwidth. A layer fusion scheme is also proposed to

reduce the communication overhead. Despite being distributed,
all these solutions either leverage heuristics or frameworks that
do not provide strong optimality guarantees. In contrast, the
theoretical framework developed in this work achieves near-
optimal DNN inference offloading at the edge.

Distributed assignment problems have been extensively in-
vestigated in other scenarios, including wireless networking
and distributed computing [39, 53, 54]. Xu et al. [39] propose
a distributed auction algorithm to decide how to associate
clients to access points in mm-wave communication. Lee et
al. [53] develop a framework based on deep learning to solve
constrained optimization problems in a distributed fashion,
then apply it to resource allocation in wireless networks.
Castellano et al. [54] introduce a distributed algorithm based
on max-consensus to assign resources to applications in an
edge infrastructure. In contrast, this article is the first to model
and optimally solve the problem of offloading inference with
pre-trained DNNs in the context of edge computing.

VI. CONCLUSION

This article presented a model and an optimization problem
to offload DNN inference in edge networks with load balanc-
ing. In particular, a detailed model of the offloading process
was devised and the corresponding problem was formulated
as a multiple assignment that maximizes proportional fairness.
A distributed auction algorithm (DAMA) was introduced ac-
cordingly; its optimality as well as time complexity were also
analytically characterized. Results from extensive simulations
in realistic settings demonstrated that DAMA is more efficient
than the state of the art, achieving near-optimal performance
according to the analytically-derived bounds. In particular,
DAMA obtains the lowest total inference time for widely-used
DNN benchmarks, as well as the highest fairness with a Jain’s
index of 0.9. Moreover, DAMA requires only a very limited
number of iterations to offload DNN layers to edge servers.
A promising future work is represented by evaluating DAMA
in an edge testbed with heterogeneous resource-constrained
devices and by considering sub-layer partitioning of DNNs.
Ensuring security and privacy of offloading through distributed
ledger technologies is also another interesting research direc-
tion.

REFERENCES

[1] W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, and F. E. Alsaadi,
“A survey of deep neural network architectures and their appli-
cations,” Neurocomputing, vol. 234, pp. 11–26, 2017.

[2] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet
of Things (IoT): A vision, architectural elements, and future
directions,” Future Generation Computer Systems, vol. 29,
no. 7, pp. 1645–1660, 2013.

[3] H. Yang, A. Alphones, Z. Xiong, D. Niyato, J. Zhao, and K. Wu,
“Artificial-intelligence-enabled intelligent 6G networks,” IEEE
Network, vol. 34, no. 6, pp. 272–280, 2020.

[4] A. Gholami, S. Kim, Z. Dong, Z. Yao, M. W. Mahoney, and
K. Keutzer, “A survey of quantization methods for efficient
neural network inference,” in Low-Power Computer Vision.
Chapman and Hall/CRC, 2022, pp. 291–326.

[5] T. Hoefler, D. Alistarh, T. Ben-Nun, N. Dryden, and A. Peste,
“Sparsity in deep learning: Pruning and growth for efficient

12

inference and training in neural networks,” Journal of Machine
Learning Research, vol. 22, no. 241, pp. 1–124, 2021.

[6] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated
learning: Challenges, methods, and future directions,” IEEE
Signal Processing Magazine, vol. 37, no. 3, pp. 50–60, 2020.

[7] Z. Lian, W. Wang, and C. Su, “COFEL: Communication-
efficient and optimized federated learning with local differential
privacy,” in ICC 2021 - IEEE International Conference on
Communications. IEEE, 2021.

[8] Y. Liu, Y. Zhu, and J. J. Yu, “Resource-constrained federated
learning with heterogeneous data: Formulation and analysis,”
IEEE Transactions on Network Science and Engineering, pp.
1–1, 2021.

[9] H. Yang, J. Zhao, Z. Xiong, K. Lam, S. Sun, and L. Xiao,
“Privacy-preserving federated learning for UAV-enabled net-
works: Learning-based joint scheduling and resource manage-
ment,” IEEE Journal on Selected Areas in Communications,
vol. 39, no. 10, pp. 3144–3159, 2021.

[10] F. Samie, L. Bauer, and J. Henkel, “From cloud down to things:
An overview of machine learning in internet of things,” IEEE
Internet of Things Journal, vol. 6, no. 3, pp. 4921–4934, 2019.

[11] M. Asad, A. Moustafa, T. Ito, and M. Aslam, “Evaluating
the communication efficiency in federated learning algorithms,”
2020.

[12] F. Sattler, S. Wiedemann, K.-R. Muller, and W. Samek, “Robust
and communication-efficient federated learning from non-i.i.d.
data,” IEEE Transactions on Neural Networks Learning Sys.,
vol. 31, no. 9, pp. 3400–3413, 2020.

[13] W. Wang, M. H. Fida, Z. Lian, Z. Yin, Q.-V. Pham, T. R.
Gadekallu, K. Dev, and C. Su, “Secure-enhanced federated
learning for AI-empowered electric vehicle energy prediction,”
IEEE Consumer Electronics Magazine, 2021.

[14] P. Mach and Z. Becvar, “Mobile edge computing: A survey
on architecture and computation offloading,” IEEE Communi-
cations Surveys & Tutorials, vol. 19, no. 3, pp. 1628–1656,
2017.

[15] Q.-H. Nguyen and F. Dressler, “A smartphone perspective on
computation offloading – a survey,” Computer Communications,
vol. 159, pp. 133–154, 2020.

[16] C. Hu, W. Bao, D. Wang, and F. Liu, “Dynamic adaptive DNN
surgery for inference acceleration on the edge,” in IEEE INFO-
COM 2019 - IEEE Conference on Computer Communications,
April 2019, pp. 1423–1431.

[17] T. Mohammed, C. Joe-Wong, R. Babbar, and M. Di Francesco,
“Distributed inference acceleration with adaptive dnn partition-
ing and offloading,” in The 39th IEEE International Conference
on Computer Communications (INFOCOM 2020), Jul. 2020,
pp. 854––863.

[18] L. Zeng, X. Chen, Z. Zhou, L. Yang, and J. Zhang, “CoEdge:
Cooperative DNN inference with adaptive workload partitioning
over heterogeneous edge devices,” IEEE/ACM Transactions on
Networking, vol. 29, no. 2, pp. 595–608, 2021.

[19] Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars,
and L. Tang, “Neurosurgeon: Collaborative intelligence between
the cloud and mobile edge,” in ACM ASPLOS ’17. New York,
NY, USA: ACM, 2017, pp. 615–629.

[20] K. Kumar, J. Liu, Y.-H. Lu, and B. Bhargava, “A survey of
computation offloading for mobile systems,” Mobile networks
and Applications, vol. 18, no. 1, pp. 129–140, 2013.

[21] Z. Xiong, S. Feng, D. Niyato, P. Wang, and Z. Han, “Optimal
pricing-based edge computing resource management in mobile
blockchain,” in 2018 IEEE International Conference on Com-
munications (ICC). IEEE, 2018.

[22] Y. Zhang, T. Scargill, A. Vaishnav, G. Premsankar,
M. Di Francesco, and M. Gorlatova, “InDepth: Real-time
depth inpainting for mobile augmented reality,” Proceedings
of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies, vol. 6, no. 1, pp. 1–25, March 2022.

[23] G. Premsankar, M. Di Francesco, and T. Taleb, “Edge comput-

ing for the internet of things: A case study,” IEEE Internet of
Things Journal, vol. 5, no. 2, pp. 1275–1284, April 2018.

[24] H. Jeong, H. Lee, C. H. Shin, and S. Moon, “IONN: Incremental
offloading of neural network computations from mobile devices
to edge servers,” in Proceedings of the ACM Symposium on
Cloud Computing. ACM, 2018.

[25] D. P. Bertsekas, Network Optimization: Continuous and Dis-
crete Models. Belmont, Massachusetts: Athena Scientific,
1998.

[26] F. P. Kelly, A. K. Maulloo, and D. K. H. Tan, “Rate control for
communication networks: shadow prices, proportional fairness
and stability,” Journal of the Operational Research Society,
vol. 49, no. 3, pp. 237–252, 1998.

[27] L. Massoulié and J. Roberts, “Bandwidth sharing: objectives
and algorithms,” in Proc. IEEE International Conference on
Computer Communications (INFOCOM ‘99), vol. 3, 1999, pp.
1395–1403.

[28] “IEEE standard for adoption of OpenFog Reference archi-
tecture for fog computing,” https://ieeexplore.ieee.org/servlet/
opac?punumber=8423798, pp. 1–176, Aug 2018, IEEE Std
1934-2018.

[29] S. Ko, K. Huang, S. Kim, and H. Chae, “Live prefetching for
mobile computation offloading,” IEEE Transactions on Wireless
Communications, vol. 16, no. 5, pp. 3057–3071, May 2017.

[30] Y. Yu, J. Zhang, and K. B. Letaief, “Joint subcarrier and CPU
time allocation for mobile edge computing,” in 2016 IEEE
Global Communications Conference (GLOBECOM), Dec 2016,
pp. 1–6.

[31] S. Boyd and L. Vandenberghe, Convex Optimization. Cam-
bridge, UK: Cambridge University Press, 2004.

[32] R. Jain, D. Chiu, and W. Hawe, “A quantitative measure of
fairness and discrimination for resource allocation in shared
computer systems,” Digital Equipment Corp., Tech. Rep., 1998.

[33] Q. Ye, B. Rong, Y. Chen, M. Al-Shalash, C. Caramanis, and
J. G. Andrews, “User association for load balancing in het-
erogeneous cellular networks,” IEEE Trans. Wireless Commun.,
vol. 12, no. 6, pp. 2706–2716, Jun. 2013.

[34] A. Paszke et al., “PyTorch: An imperative
style, high-performance deep learning library,” in
Advances in Neural Information Processing Systems
32. Curran Associates, Inc., 2019, pp. 8024–
8035. [Online]. Available: http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf

[35] F. Yu, W. Xian, Y. Chen, F. Liu, M. Liao, V. Madhavan, and
T. Darrell, “BDD100K: A diverse driving video database with
scalable annotation tooling,” arXiv preprint arXiv:1805.04687,
2018.

[36] J. Krause, M. Stark, J. Deng, and L. Fei-Fei, “3d object repre-
sentations for fine-grained categorization,” in 4th International
IEEE Workshop on 3D Representation and Recognition (3dRR-
13), Sydney, Australia, 2013.

[37] A. Krizhevsky, “Learning multiple layers of features from tiny
images,” Tech. Rep., 2009.

[38] M. S. Elbamby, M. Bennis, W. Saad, M. Latva-aho, and C. S.
Hong, “Proactive edge computing in fog networks with latency
and reliability guarantees,” EURASIP Journal on Wireless Com-
munications and Networking, vol. 2018, no. 1, p. 209, Aug
2018.

[39] Y. Xu, H. S. Ghadikolaei, and C. Fischione, “Adaptive dis-
tributed association in time-variant millimeter wave networks,”
IEEE Transactions on Wireless Communications, vol. 18, no. 1,
pp. 459–472, Jan 2019.

[40] B. Jedari and M. Di Francesco, “Delay analysis of layered video
caching in crowdsourced heterogeneous wireless networks,”
in 2018 IEEE Global Communications Conference (GLOBE-
COM), 2018, pp. 1–6.

[41] R. Dolbeau, “Theoretical peak flops per instruction set: a
tutorial,” The Journal of Supercomputing, vol. 74, no. 3, pp.

https://ieeexplore.ieee.org/servlet/opac?punumber=8423798
https://ieeexplore.ieee.org/servlet/opac?punumber=8423798
http://papers.neurips.cc/paper/9015-pytorch-an-imperative- style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative- style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative- style-high-performance-deep-learning-library.pdf

13

1341–1377, Mar 2018.
[42] L. B. Johnson, H. L. Choi, and J. P. How, “The role of

information assumptions in decentralized task allocation: A
tutorial,” IEEE Control Systems, vol. 36, no. 4, pp. 45–58, Aug
2016.

[43] H. Yang, Z. Xiong, J. Zhao, D. Niyato, L. Xiao, and Q. Wu,
“Deep reinforcement learning-based intelligent reflecting sur-
face for secure wireless communications,” IEEE Transactions
on Wireless Communications, vol. 20, no. 1, pp. 375–388, 2021.

[44] S. Teerapittayanon, B. McDanel, and H. T. Kung, “Distributed
deep neural networks over the cloud, the edge and end devices,”
in The 37th IEEE International Conference on Distributed
Computing Systems (ICDCS 2017), June 2017, pp. 328–339.

[45] H. Wang, G. Cai, Z. Huang, and F. Dong, “ADDA: Adaptive
distributed DNN inference acceleration in edge computing en-
vironment,” in 2019 IEEE 25th International Conference on
Parallel and Distributed Systems (ICPADS). IEEE, 2019.

[46] E. Li, L. Zeng, Z. Zhou, and X. Chen, “Edge AI: On-demand
accelerating deep neural network inference via edge comput-
ing,” IEEE Transactions on Wireless Commun., vol. 19, no. 1,
pp. 447–457, 2020.

[47] S. Laskaridis, S. I. Venieris, M. Almeida, I. Leontiadis, and
N. D. Lane, “SPINN,” in Proceedings of the 26th Annual In-
ternational Conference on Mobile Computing and Networking.
ACM, 2020.

[48] K. Y. Shin, H. Jeong, and S. Moon, “Enhanced partitioning of
DNN layers for uploading from mobile devices to edge servers,”
in The 3rd International Workshop on Deep Learning for Mobile
Systems and Applications - EMDL '19. ACM Press, 2019.

[49] J. Mao, X. Chen, K. W. Nixon, C. Krieger, and Y. Chen,
“MoDNN: Local distributed mobile computing system for Deep
Neural Network,” in Design, Automation Test in Europe Con-
ference Exhibition (DATE), 2017, March 2017, pp. 1396–1401.

[50] Z. Zhao, K. M. Barijough, and A. Gerstlauer, “DeepThings:
Distributed adaptive deep learning inference on resource-
constrained IoT edge clusters,” IEEE Transactions on
Computer-Aided Design Integrated Circuits Sys., vol. 37, no. 11,
pp. 2348–2359, 2018.

[51] C. Yang, J. Kuo, J. Sheu, and K. Zheng, “Cooperative dis-
tributed deep neural network deployment with edge computing,”
in ICC 2021 - IEEE International Conference on Communica-
tions. IEEE, 2021.

[52] F. Xue, W. Fang, W. Xu, Q. Wang, X. Ma, and Y. Ding,
“EdgeLD: Locally distributed deep learning inference on edge
device clusters,” in 2020 IEEE 22nd International Conference
on High Performance Computing and Communications;IEEE
18th International Conference on Smart City;IEEE 6th Interna-
tional Conference on Data Science and Systems. IEEE, 2020.

[53] H. Lee, S. H. Lee, and T. Q. Quek, “Deep learning for
distributed optimization: Applications to wireless resource man-
agement,” IEEE Journal on Selected Areas in Communications,
vol. 37, no. 10, pp. 2251–2266, 2019.

[54] G. Castellano, F. Esposito, and F. Risso, “A distributed orches-
tration algorithm for edge computing resources with guaran-
tees,” in IEEE INFOCOM 2019-IEEE Conference on Computer
Communications. IEEE, 2019, pp. 2548–2556.

