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Neural network for multi-exponential sound energy decay
analysis
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Aalto Acoustics Lab, Department of Signal Processing and Acoustics, Aalto University, P.O. Box 13100, 00076 Aalto, Finland

ABSTRACT:
An established model for sound energy decay functions (EDFs) is the superposition of multiple exponentials and a

noise term. This work proposes a neural-network-based approach for estimating the model parameters from EDFs.

The network is trained on synthetic EDFs and evaluated on two large datasets of over 20 000 EDF measurements

conducted in various acoustic environments. The evaluation shows that the proposed neural network architecture

robustly estimates the model parameters from large datasets of measured EDFs while being lightweight and

computationally efficient. An implementation of the proposed neural network is publicly available.
VC 2022 Acoustical Society of America. https://doi.org/10.1121/10.0013416
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I. INTRODUCTION

Room impulse responses (RIRs) are signals that

describe the sound recorded by a receiver in a room in

response to an impulsive excitation. They characterize how

room, source, and receiver affect sound on the investigated

transmission path, implicitly assuming a linear time-

invariant system. The RIR decays gradually, thus, causing

the well-known acoustic phenomenon called reverberation.1

Due to pronounced fluctuations in the RIR, the energy-

time curve may be hard to interpret and difficult to use in

further analyses. Schroeder proposed a backward integration

procedure for obtaining smooth steady-state energy decay

functions (EDFs),2 which are also called Schroeder decay

functions. Schroeder decay functions are frequently used in

architectural acoustics to calculate the reverberation time,

which is the time until the sound energy in an enclosure has

decreased by 60 dB. The reverberation time is commonly

determined for multiple frequency bands by fitting a straight

line to the band-limited logarithmic EDF.3,4

Measured RIRs are usually contaminated with noise, for

instance, resulting from the measurement equipment, ambi-

ent sound, or quantization. The noise inevitably affects the

EDF5 and causes errors when estimating the reverberation

time based on a straight-line fit.6 Several approaches were

proposed to counter the effect of noise on the reverberation

time estimation.3,5,7,8 Alternatively, Xiang9 and Karjalainen

et al.10 proposed to include an additional noise term in the

model and perform a nonlinear regression.

In coupled rooms or rooms with a considerably nonuni-

form absorption material distribution, sound energy can

decay with multiple decay rates.1,11–13 For this reason,

Xiang and Goggans model EDFs with multiple exponential

decays and a noise term.14

This paper presents a neural-network-based approach

for fitting multiple exponential decays and a noise term to

an EDF. Despite being trained on a fully synthetic dataset,

we show that such a neural network structure can robustly

analyze real-world measurements. Fully synthetic training

datasets can be easily generated and subsequently extended

to different scenarios. Previous methods for multi-

exponential sound energy decay analysis rely on iterative

algorithms. Our approach has the advantage of being fully

deterministic at inference time and requiring no user tuning

while being robust and computationally efficient. Therefore,

the neural network structure is especially appealing for

room acoustic analysis and modeling with machine-

learning-based approaches, for which it is essential to

achieve robust performance on large datasets without man-

ual intervention. The proposed network is lightweight,

allowing it to be implemented on mobile devices.

Furthermore, the neural-network-based structure allows effi-

cient up-scaling and parallelization on modern hardware

with dedicated graphics processing units (GPUs).

Our contribution is threefold. First, we present a light-

weight and computationally efficient neural-network-based

structure for sound energy decay analysis that achieves a

comparable fitting performance as those of state-of-the-art

methods. Second, we evaluate the proposed network and

previous decay analysis approaches on two large datasets of

more than 20 000 EDFs. Third, we provide an open-source

decay analysis toolbox for MATLAB and PYTHON, comprising

the neural network structure and our implementation of the

other evaluated multi-slope decay analysis method.

The remainder of this paper is organized as follows.

Section II states the problem formulation, and Sec. III pro-

vides an overview of prior work. Section IV describes the

proposed neural network and its training in detail. Section V
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presents an evaluation of the proposed network on two large

datasets of real-world measurements and compares its per-

formance to other state-of-the-art approaches. Section VI

discusses the results. Section VII details the publicly avail-

able decay analysis toolbox, and Sec. VIII concludes the

paper.

II. PROBLEM FORMULATION

Smooth EDFs can be obtained from RIRs via the back-

ward integration procedure proposed by Schroeder.2 The

EDF d(t) of a RIR h(t) is calculated by

dðtÞ ¼ 1

E

XL

s¼t

h2ðsÞ with E ¼
XL

s¼1

h2ðsÞ; (1)

where t is the sample index and L is the number of samples

in the EDF, which is also called the upper limit of integra-

tion (ULI).

EDFs can be modeled as a sum of multiple exponential

decays and a noise term.14 The model dKðt; hÞ of the EDF

d(t) is then given as14,15

dKðt;hÞ¼N0ðL� tÞþ
XK

i¼1

Ai e�13:8t=ðfsTiÞ � e�13:8L=ðfsTiÞ½ �; (2)

where h ¼ ½T1; T2;…; TK ;A1;A2;…;AK;N0� summarizes all

of the decay parameters, Ti and Ai are the decay time and

amplitude of the ith exponential decay, respectively, N0

is the amplitude of the noise term, the constant �13:8
¼ lnð10�6Þ ensures that the sound energy has decayed to

�60 dB after Ti seconds, lnð�Þ denotes the natural logarithm,

fs is the sampling frequency of the RIR, and K is the model

order, i.e., the number of exponential decays in the model.

The constant second term in the square brackets accounts

for the finite ULI and can be neglected for large L.15 In the

following, we usually refer to the decay model as dKðtÞ,
thus, dropping the decay parameters, h, from the notation to

improve readability.

Estimating the parameters, h, is a crucial task for vari-

ous problems in room acoustics. For example, the reverbera-

tion time can be determined by estimating the parameter T1

for an EDF model with K¼ 1. Decay models of higher order

have successfully been used to measure the absorption coef-

ficients of materials16 or characterize the sound decay of

coupled spaces.17,18

III. PRIOR WORK

A. Sound energy decay analysis

Previous approaches for estimating the parameters, h,

differ mainly regarding the underlying model order. For

model order K¼ 1, linear regression is commonly used to

determine the reverberation time as a straight-line fit to the

band-limited logarithmic EDF.3,4 In this case, the noise term

of the model is neglected, i.e., N0 ¼ 0. To get accurate esti-

mates for T1, the effect of the noise has to be countered by

noise subtraction5 or truncation of the RIR before backward

integration.3,7,8 The noise term, N0, can be included in the

model by using nonlinear regression.9,10

The sound decay of coupled rooms or rooms with con-

siderably nonuniform absorption material distribution can

usually not be modeled with a single decay rate.1,11–13 In

such cases, model orders K> 1 need to be considered.

Xiang and Goggans proposed a Bayesian framework to

determine the model parameters, Ti, Ai, and N0, for K � 1.14

The Bayesian formulation can also determine the most prob-

able model order K given the measured EDF.19 Numerous

works have advanced the approach by investigating more

accurate and efficient algorithms for estimating the parame-

ters or determining the model order.16,19,20

Previous studies have evaluated the performance of

single-slope EDF fitting software.21–23 Katz23 used a single

measured lecture theater RIR, which was also used in a later

study by Cabrera et al.,21 together with artificial single-

slope responses. �Alvarez-Morales et al.22 studied the soft-

ware behavior on a slightly larger set of RIRs (15 receiver

positions� 2 source positions, measured in a single audito-

rium). While Katz23 still reported considerable differences

among reverberation time estimation software in 2004, the

later studies21,22 found that reverberation time is consis-

tently estimated within perceptual limits by the more recent

software implementations in most cases. In all of the studies,

the most inconsistent reverberation time estimates were

obtained for low-frequency bands.21–23

B. Convolutional neural networks (CNN) in acoustics

The recent advances in machine learning and artificial

intelligence have pushed the state-of-the-art in many differ-

ent fields. Machine learning has traditionally been of interest

in speech recognition,24 natural language processing,25 and

music information retrieval.26 More recent applications in

acoustics include source localization and tracking,27 blind

room acoustic parameter estimation,28 sound field scattering

from three-dimensional (3D) objects,29,30 and the inverse

problem of object geometry regression from the scattered

sound field.31 For more details, the reader is referred to the

thorough review by Bianco et al.32 Although the applica-

tions, models, and task definitions vary considerably, most

of the previously mentioned works share a common

approach: a machine learning model, typically a neural net-

work, extracts features and predicts the parameters of a

parametric model.

Most of these applications can be divided into either

classification or regression tasks, where the main difference

is the output domain.33 For classification, the goal is to

select one or several categories, given a specific input. For

regression, the goal is to predict one or several continuous

values. The study by Fern�andez-Delgado et al.34 includes a

detailed analysis of many regression methods and applica-

tions. Depending on the network architecture and training

procedure, some tasks can be formulated as regression or

classification tasks. In this paper, the decay parameter
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prediction is treated as a regression task, where we estimate

the decay parameters as continuous values. On the other

hand, the model order prediction is treated as a classification

task with the categories “1 active decay slope,” “2 active

decay slopes,” and so forth.

IV. PROPOSED METHOD

In this paper, we propose a neural network structure for

estimating the parameters, h, of the model in Eq. (2). We

show that such a network can be trained on a fully synthetic

training dataset to make predictions on real-world measure-

ments. In Sec. IV A, we will first describe an example of

such a network architecture. Subsequently, we provide

details on the synthetic training dataset, the utilized loss

functions, and the hyperparameters that can be used to train

the network.

A. Network architecture

An example of the proposed neural network structure

for estimating the sound decay parameters of the model in

Eq. (2) is depicted in Fig. 1. We refer to this particular archi-

tecture as DecayFitNet in the remainder of this paper. The

network takes EDFs as its input and returns preliminary esti-

mates eTi, eAi, and eN0 for the decay times, decay amplitudes,

and noise term, respectively. Furthermore, it outputs the val-

ues PK¼i, which quantify the model order prediction. For

example, by applying the logistic function

f ðxÞ ¼ 1

1þ e�x
; (3)

we could get the probabilities f ðPK¼iÞ ¼ ½0:75; 0:15; 0:10�,
which are bound between 0 and 1, and indicate that the net-

work predicts the model order bK to be 1; 2, or 3 with the

probabilities 0.75, 0.15, and 0.10, respectively. In the cur-

rent implementation, we restrict the maximum model order

to bKmax ¼ 3, although higher model orders could also be

supported in the future.

The network consists of a common base and individual

output branches for the different estimated parameters. The

base contains a sequence of three one-dimensional convolu-

tional layers with intermediate max-pooling layers35 along

the time-axis and three fully connected layers. The output

branches consist of two fully connected layers each.

Rectified linear units (ReLU)36 are used as activation func-

tions after each network layer, excluding the output layers.

This type of network architecture is ubiquitous for

many different applications and tasks. In theory, a network

that only consists of fully connected layers and nonlinear-

ities can be seen as a universal approximator.37 Such net-

works are also called multilayer perceptron (MLP). In

practice, the flexibility of MLPs is limited by the amount of

training data, size of the network, and training procedure.

Most recent deep learning approaches favor convolutional

layers to reduce the number of weights needed.33

Furthermore, models with subsequent blocks of convolu-

tional layers, nonlinearities, and pooling layers are biologi-

cally inspired by the visual processing system found in

many living beings.38 The convolutional layers act as fea-

ture extractors by learning filters that process the input sig-

nal in such a way as to maximize the information required

FIG. 1. An example of the proposed neural network structure for the parameter estimation of the sound decay model in Eq. (2). Throughout this paper, we

refer to this particular architecture as DecayFitNet. The network outputs are preliminary values for the decay times, eT i, decay amplitudes, eAi, and noise

term, eN0. Additionally, the network returns the values PK¼i, which quantify the EDF model order prediction. The input length and maximum model order

for the current implementation are M¼ 100 samples and bKmax ¼ 3, respectively.
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for the task. The max-pooling layers behave like a down-

sampling operation that focuses on the most active features,

thus, reducing dimensionality and redundancies.

Consecutive blocks represent progressively higher-level fea-

tures of the input signal. The shared fully connected layers

recombine the extracted features in a nonlinear way.

Finally, the task-specific fully connected layers act as inde-

pendent regressors.

Using a shared common core for all of the tasks has

several advantages over using independent networks for

each task. First, this reduces the system complexity for train-

ing and inference as the number of computations is reduced.

More importantly, the shared core will tend to learn useful

features across all of the tasks and not overfit any of them.39

This property can improve generalization and robustness to

noisy data.

B. Preprocessing

A neural-network-based structure for decay analysis

requires some preprocessing steps. In the following, we

detail the preprocessing steps for our example implementa-

tion DecayFitNet.

As the network requires a fixed-length input, we pro-

pose three preprocessing steps on the EDF d(t) to be

analyzed:

(i) The last 5% of the EDFs are excluded, i.e., the sam-

ples dðt > 0:95LÞ are discarded. This step is moti-

vated by the statistical uncertainty of the last EDF

samples. This uncertainty is inherent to the Schroeder

backward integration method because at the end of

the EDF, only a few RIR samples are integrated.

(ii) The result is resampled to a fixed length, M. In our

example implementation DecayFitNet, we set M ¼ 100

samples. We apply fractional resampling. In fractional

resampling, a sample rate conversion by a factor a=b is

achieved by first upsampling by a factor a, followed by

downsampling by a factor b.40 In our implementation,

a ¼ M and b ¼ L.

(iii) The EDF is converted into logarithmic scale (in dB)

and normalized with the biggest absolute EDF sam-

ple value of the entire training dataset. The normali-

zation ensures that every EDF sample of the training

dataset lies in the interval ½�1; 1�. The required nor-

malization factor must be saved to a normalization

file after the training procedure is completed. This

way, the normalization can also be applied during

inference.

C. Postprocessing. of estimates

The preliminary parameter estimates are processed with

the following output transformations to yield the final

parameter estimates bTi, bAi, and bN0:bK ¼ argmaxiðPK¼iÞ; (4a)

bTi ¼
eT2

i þ 1

M

L

fs

; (4b)

bAi ¼
eA2

i for i � bK ;
0 for i > bK ;

(
(4c)

bN0 ¼
M

L
10�
eN 0 : (4d)

We use these transformations to ensure that the final pre-

dictions bTi > 0 s; bAi � 0, and achieve better numerical stabil-

ity during the training while covering a large dynamic range of

background noise levels bN0. Whereas bTi is the estimated decay

time in seconds, the preliminary estimate eTi is the decay time

in samples. Therefore, the value ðeT2
i þ 1Þ=M is the decay time

relative to the neural network input length, M, where squaring

and adding one results in bTi > 0, thus, avoiding division by

zero in the exponential terms [cf. Eq. (2)]. Due to the resam-

pling in the preprocessing stage, the decay time estimates must

be readjusted to the original timescale by multiplying with

L=fs. For the same reason, the noise value predictions are

scaled by M=L. The amplitudes of all of the exponential terms

that have a higher order than the predicted model order bK are

set to zero, hence, effectively removing their contribution to

the predicted EDF fit. Although the amplitude values, Ai, can

cover a large dynamic range, our preliminary experiments

found that the training converges to better results when we pre-

dict bAi on a linear scale as opposed to the logarithmic scale

that we use to predict the noise values bN0.

The estimated fit, bdbK ðtÞ, is obtained by inserting the

network predictions, bTi; bAi, and bN0, into Eq. (2).

D. Synthetic training dataset

A large quantity of EDFs with various combinations of

the decay parameters, h [cf. Eq. (2)], is required to train the

proposed neural network structure. Synthetic EDFs are an

efficient way of collecting many different EDFs that cover

the variety of real-world measurements. In the following, we

want to detail how such a training dataset can be synthesized.

A large fully synthetic dataset of 300 000 EDFs was

generated to train the DecayFitNet. It can be split into three

equally sized subsets, consisting of EDFs with model orders

of 1, 2, and 3. The data generation included three steps.

First, we randomly assigned values for the decay parame-

ters, h. Second, for model orders larger than 1, we checked

if the drawn values were different enough to produce a

proper multi-slope EDF and redraw values if necessary.

Last, Gaussian noise was octave-band filtered, shaped, and

backward-integrated to obtain a synthetic EDF with the pre-

viously drawn h values. Details about these steps are elabo-

rated in the following.

Values for the decay times, Ti, were drawn from the

uniform distribution,

Ti 2 Uð0:1TEDF; 1:5TEDFÞ; (5)

where TEDF ¼ L=fs. In other words, the drawn Ti values

are between 10% and 150% of the input EDF length, TEDF.
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For our training dataset, we set TEDF ¼ 10 s and fs ¼ 48 kHz.

Due to the resampling of arbitrary length EDFs during infer-

ence, our dataset allows predicting different Ti value ranges

for different input EDF lengths. For instance, for a 2.5 s long

input EDF, the network can predict Ti values with lower and

upper limits corresponding to 0:1� 2:5 s ¼ 0:25 s and 1:5
� 2:5 s ¼ 3:75 s, respectively. In other words, the resampling

allows our network to operate on various reverberation time

ranges, depending on the length of the input EDF. A brief dis-

cussion on the generalization of network predictions to EDFs

with decay times outside of the range specified in Eq. (5) can

be found in Appendix A 1. After drawing the values, they

were ordered such that Tiþ1 � Ti.

In our training dataset, we wanted to cover an extensive

dynamic range. Therefore, we assigned

N0 ¼ 10anoise with anoise 2 Uð�14;�2Þ; (6)

corresponding to noise values between �140 and �20 dB.

As the decay amplitudes, Ai, typically cover a large

dynamic range as well, we assigned the values as

Ai ¼ 10a with a 2 Uð�4:5; 0Þ; (7)

corresponding to amplitude values between �45 and 0 dB.

The Ai values were normalized such that they sum up to

unity, i.e.,
PK

i¼1 Ai ¼ 1. Finally, they were ordered such that

Ai � Aiþ1.

If the desired model order, K, was larger than 1, the ini-

tial Ti and Ai values were checked for a sufficient multi-

slope characteristic. This step was crucial because the ran-

dom assignment could result in almost identical Ti and Ai

values for the different slopes, thus, generating a single-

slope EDF, although a multi-slope EDF was desired.

Therefore, we introduced the constraints

Tiþ1 � 1:5 Ti; (8a)

Ai

Aiþ1

� 10: (8b)

The constraint of Eq. (8a) ensured that the different slopes

have considerably different decay rates. By applying the

constraint of Eq. (8b), we aimed to distribute the amplitude

values, Ai, over the entire range from �45 to 0 dB, thus, pre-

venting very similar values. New values for Ti and Ai were

randomly drawn from the above distributions until both con-

straints were fulfilled. A visual inspection of some resulting

EDFs showed that both constraints together ensured a dis-

tinct multi-slope character. Both constraints are supposed to

improve the neural network training because the resulting

EDFs should teach the neural network what multi-slope

EDFs look like. A discussion on the generalization of net-

work predictions to EDFs that do not satisfy these con-

straints can be found in Appendix A 2.

Instead of directly inserting the resulting h values into

Eq. (2), the final synthetic EDF was generated by applying

the backward integration [cf. Eq. (1)] on decaying

Gaussian noise. This additional step introduced small ran-

dom fluctuations into the synthetic EDFs to improve gener-

alization after training the neural network. Four steps were

necessary to obtain the final synthetic EDF. First, the Ai

and N0 values had to be scaled to account for the backward

integration,

Ai;synth ¼ 13:8 � TEDF

Ai

Ti
; (9a)

N0;synth ¼ MN0: (9b)

Second, a synthetic energy response was generated as

h2
synthðtÞ ¼ N0;synth � ðfs � TEDF � tÞ � g2

0ðtÞ

þ
XK

i¼1

Ai;synth � g2
i ðtÞ � e�13:8t=ðfsTiÞ; (10)

where g0ðtÞ; g1ðtÞ;…; gKðtÞ is Gaussian noise that is filtered

with a random octave-band filter and re-normalized to zero

mean and unit variance. For the data generation, we

assumed that fs ¼ 48 kHz and TEDF ¼ 10 s. Third, the

response, hsynthðtÞ, was backward-integrated according to

Eq. (1). Last, just as described in Sec. IV B, the last 5% of

the EDF samples was discarded, and the result was

resampled to a length of M¼ 100 samples.

E. Loss function

We propose to use a loss function consisting of three

parts for training the proposed neural network structure.

The first part is the EDF loss, defined as the mean abso-

lute error (MAE) between the analyzed EDF, ddBðtÞ, and the

estimated fit, bdbK;dB
ðtÞ,

LEDF ¼
1

M

XM�1

t¼0

jddBðtÞ � bdbK;dB
ðtÞj; (11)

where the last 5% of EDC samples is excluded for both

EDFs (cf. Sec. IV B), both EDFs are converted to a logarith-

mic scale (in dB), and j � j denotes the absolute value.

The second part of the loss is the noise loss, defined as

the absolute error between the ground truth and the esti-

mated noise exponent,

Lnoise ¼ j log10ðN0Þ � log10ðbN0Þj: (12)

The third part of the loss is the model order loss, defined as

the cross-entropy loss

Lorder ¼ �P
K¼bK þ ln

XbKmax

i¼1

ePK¼i

0@ 1A: (13)

In Eq. (13), PK¼i quantifies which probability the network

assigns to the model order, i, where K is the true model

order. We include the model order loss to teach the network
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to predict the correct number of slopes in an EDF. This mea-

sure should prevent the network from outputting multiple

similar slopes in cases where a single slope would fit the

EDF sufficiently well.

Finally, the total loss, L, for training the proposed neu-

ral network is

L ¼ LEDF þ Lnoise þ Lorder: (14)

F. Training

We train the DecayFitNet for 200 epochs using the

Adam optimizer41 with an initial learning rate of 2� 10�3

and a weight decay42 of 6� 10�5. Additionally, we apply

cosine annealing with warm restarts43 using a schedule of

40 epochs between the restarts.

V. EVALUATION

In our evaluation, we use the DecayFitNet on two large

datasets and compare its EDF fitting performance with a

publicly available toolbox and our own implementation of

the Bayesian decay analysis framework. This section

describes the details of our evaluation.

A. Baseline methods

We compare the DecayFitNet with two other decay anal-

ysis approaches. The first baseline method is based on a non-

linear regression model of a single exponential and a noise

term.10 The second baseline method is based on slice sam-

pling for Bayesian decay analysis.20 Details about the imple-

mentation of both methods are presented in the following.

1. Nonlinear regression

This baseline method uses the publicly available tool-

box implemented by Karjalainen et al.10 In initial experi-

ments, we found that the performance of the toolbox

depends considerably on the choice of the fitting scale. This

issue was already observed by Karjalainen et al., which is

why they proposed to fit the EDF, d(t), on a power scale.10

This means that the nonlinear regression is carried out on

the scaled EDF, dscaleðtÞ ¼ dsðtÞ, thus, adding the adjustable

hyperparameter, s, to the method. In our evaluation, we use

s¼ 0.5 as suggested by the developers of the toolbox.10

Additionally, we use an improved variant, where a grid

search is carried out over the interval s 2 ½0:2; 0:8� to find

the best fit regarding the mean squared error (MSE). In both

of the variants, we only use the EDF below �5 dB, which is

common practice for reverberation time estimation.

2. Bayesian decay analysis

For the second baseline method of our evaluation, we

implemented a slice-sampling-based Bayesian decay analy-

sis20 in MATLAB and PYTHON. The code is contained in our

decay analysis toolbox (cf. Sec. VII). Our implementation is

based on the fully parameterized Bayesian formulation

using the likelihood, ‘KðhÞ, defined as20

‘KðhÞ ¼ C
L

2

� �
2pEKðhÞ½ ��L=2

2
; (15)

where Cð�Þ is the gamma function, L is the number of EDF

samples, and EKðhÞ quantifies the error between the measured

EDF, d(t), and the model, dKðt; hÞ, as defined in Eq. (2),

EKðhÞ ¼
1

2

XL�1

t¼0

dðtÞ � dKðt; hÞ½ �2: (16)

No prior information about the parameter values, h, is avail-

able before the decay analysis. Therefore, we assign a

uniform prior and estimate the model parameters by

maximizing the likelihood, ‘KðhÞ, over the parameter

space.

For this purpose, we apply the slice sampling algo-

rithm20 because a grid search over all of the parameter com-

binations would be computationally infeasible. In our

analysis, we let the slice sampling algorithm run for at most

1000 iterations or until the first and second moment of the

decay parameters have converged. More precisely, we deter-

mine convergence as proposed by Jasa and Xiang, i.e., as

the iteration when the first and second moment of the decay

parameters change less than 0.1% compared to the previous

iteration.20 We restrict the search space analogously to the

training dataset of the DecayFitNet, i.e., as

Ti 2 Uð0:15 s; 3:75 sÞ; (17a)

Ai ¼ 10a with a 2 Uð�4:5; 0Þ; (17b)

N0 ¼ 10anoise with anoise 2 Uð�14;�2Þ; (17c)

where each dimension is discretized into 200 points (equally

spaced in Ti, logarithmically spaced in Ai and N0). In the first

iteration, the decay parameters are initialized with random

values from the search space. The algorithm proceeds by

repeatedly sampling each decay parameter in turn.

In our evaluation, we use this framework to fit models

of orders K¼ 1, 2, 3 to the measured EDFs. As suggested in

previous work,19,44 we determine the lowest possible model

order that fits the data well by evaluating the Bayesian evi-

dence, ZK , for different model orders,

ZK ¼
ð

h

‘KðhÞPðhÞ dh; (18)

where the likelihood is integrated over the entire parameter

space, and we assume a uniform prior PðhÞ. This formula-

tion leverages the full potential of the slice-sampling

algorithm because a large number of parameter-likelihood-

combinations are determined during the search process,

which can be used to calculate the evidence. By choosing

the model with the largest evidence, the Bayesian frame-

work balances the degree of fit and a potential over-

parameterization.19,44
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B. Datasets

We use two large RIR datasets for our evaluation. The

first dataset is the Motus dataset,45,46 which contains 3320

RIRs measured in various acoustic conditions. More precisely,

the RIRs were measured in a single room (approximate vol-

ume of 60 m3), where the furniture amount and placement

were varied between measurements to generate 830 unique

furniture combinations. The dataset features reverberation

times between 0.5 and 2 s at 1 kHz. Due to the complex geom-

etries, the dataset also features acoustic wave phenomena such

as scattering. While most of its RIRs have a single-slope char-

acteristic, only approximately 40 RIRs have pronounced

multi-slope EDFs due to nonuniform absorption material

distributions.

The second dataset is the Room Transition dataset.47,48

It contains measurements of four room transitions with a

spatial resolution of 5 cm, including positions with occluded

line-of-sight between source and receiver. Due to the room

coupling, a large number of EDFs in the dataset exhibit a

multi-slope characteristic, where the amplitudes of the

slopes vary considerably with the receiver position between

the rooms. Furthermore, it was shown that the Room

Transition dataset features complex acoustic phenomena of

coupled room transitions, such as the portaling effect and

distinctive direct-to-reverberant ratio transitions.47 Our eval-

uation excluded the transition “office to anechoic chamber,”

thus, using only 1212 RIRs of the dataset. The remaining

room transitions are “meeting room to hallway,” “office to

kitchen,” and “office to stairwell.” We cut away the last

0.1 s of all of the RIRs because they include a Hanning fade-

out window that disturbs the fitting process.49

Both datasets contain higher-order Ambisonic RIRs.

The following analyses are based on the omnidirectional

channel and the six octave bands from 125 to 4000 Hz. A

preliminary analysis of the estimated bN0 values showed that

both datasets have similar average signal-to-noise ratios of

approximately 65 dB.

C. Results

We evaluated the DecayFitNet and Baseline methods

with respect to their fitting performance. The results are pre-

sented in this section.

1. Example fits

Figure 2 shows example fits obtained with the proposed

DecayFitNet for two measured EDFs and also includes the

corresponding fits obtained with the previously described

grid-search variant of the Karjalainen toolbox and our imple-

mentation of the slice-sampling-based Bayesian decay anal-

ysis. All of the approaches fit the single-slope EDF of

Fig. 2(a) equally well. Figure 2(b) depicts the resulting fits

for a multi-slope EDF. The fits obtained with the proposed

DecayFitNet architecture and Bayesian decay analysis show

good agreement with the measured EDF. In contrast, the

Karjalainen toolbox is based on a single exponential plus

noise model, thus, being unable to fit EDFs with more than

one slope. In the depicted scenario, the Karjalainen toolbox

returns a slope between the two distinct slopes. Additionally,

it overestimates the noise floor.

2. Error analysis

Table I summarizes the fitting results on the entire data-

sets and shows medians and 99% quantile values of the

decibel-based mean squared error (dB-MSE) between mea-

sured octave-band filtered EDFs, ddBðtÞ, and obtained fits,bdbK;dB
ðtÞ. In this paper, we define the dB-MSE as

dB-MSE ¼ 1

L

XL�1

t¼0

ddBðtÞ � bdbK;dB
ðtÞ

h i2
; (19)

where both EDFs are converted to a logarithmic scale (in dB)

for calculating the dB-MSE. A dB-MSE value of 0 dB corre-

sponds to a perfect fit between modeled and analyzed EDF.

FIG. 2. Examples of fitting (a) a single-slope (from Motus dataset, measurement No. 500, loudspeaker 1, 1 kHz octave-band) and (b) a multi-slope EDF

(from Room Transition dataset, meeting room to hallway, source in room, no line-of-sight, 25 cm position, 1 kHz octave-band). The measured EDFs are fit-

ted with the proposed DecayFitNet, the grid-search variant of the Karjalainen toolbox (Ref. 10), and our implementation of the slice-sampling-based

Bayesian decay analysis (Ref. 20). Analogously to the rest of our evaluation, the last 5% of EDF samples are excluded from the plot.
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The last 5% of EDF samples is excluded from the dB-MSE

calculation, following the reasoning described in Sec. IV B.

Furthermore, 11 RIRs of the Motus dataset were excluded

from the analysis because they featured transient noise arti-

facts. Such artifacts introduce large discontinuities into the

corresponding EDFs, which violate the model of Eq. (2).

Consequently, all of the tested fitting approaches had large

dB-MSEs for EDFs with such artifacts, allowing us to detect

and exclude these measurements.

Table I indicates that the Karjalainen toolbox, its grid-

search variant, the slice-sampling-based Bayesian analysis,

and proposed DecayFitNet accurately fit the Motus dataset

EDFs with median dB-MSEs of 0.68 dB or lower. However,

the 99% quantile values indicate that the spread of achieved

dB-MSE values is higher for the Karjalainen toolbox than

for the proposed DecayFitNet and Bayesian analysis. This

suggests that the proposed DecayFitNet achieves slightly

more robust fitting on a dataset with mostly single-slope

EDFs than a well-established single-slope fitting toolbox.

Furthermore, its performance, in terms of median errors, is

comparable to an existing multi-slope fitting approach.

The results for the Room Transition dataset show a sim-

ilar trend. While median values do not differ considerably

between the four approaches, the standard Karjalainen tool-

box and its grid-search variant exhibit increased 99% quan-

tile values of 45.56 and 22.53 dB, respectively. This

considerable variability in fitting performance can be attrib-

uted to the insufficient model order for fitting multi-slope

EDFs. In contrast, the 99% quantile value for fitting the

Room Transition dataset with the proposed DecayFitNet is

1.63 dB and, therefore, only slightly higher than for the

Motus dataset. The Bayesian analysis achieves a similar per-

formance. This result suggests that the DecayFitNet can

robustly fit large quantities of multi-slope EDFs.

Figure 3 supports these findings. It shows violin plots of

the dB-MSE values that were the basis for the calculations

of Table I. Figure 3(a) shows that all of the approaches

achieve low dB-MSE values for the Motus dataset across all

of the frequency bands. Most dB-MSE values lie below

10 dB, and the spread of values below 10 dB is slightly big-

ger for the Karjalainen toolbox than for the DecayFitNet

and Bayesian analysis. Figure 3(b) shows the results for the

Room Transition dataset. The plots exhibit larger dB-MSE

values for the two Karjalainen toolbox approaches with

many data points well above 10 dB. A more thorough analy-

sis of the high dB-MSE values revealed that they can be

attributed to multi-slope EDFs, for which the model order of

the Karjalainen toolbox is too low. In contrast, the proposed

DecayFitNet and Bayesian analysis achieve similarly low

fitting errors for the Room Transition dataset with all of the

dB-MSE values below 10 dB.

VI. DISCUSSION

The results presented in Sec. V C indicate that the pro-

posed neural network structure can robustly fit single-slope

and multi-slope EDFs on large datasets without prior param-

eter tuning or supervision.

Our evaluation was based on two large datasets of more

than 1000 RIRs each, corresponding to more than 20 000

EDFs across six octave bands in total. They feature various

acoustic conditions such as varying amounts and placements

of absorptive materials, diffraction and scattering from the

room geometry, and room coupling. On both evaluated

datasets, the DecayFitNet and Bayesian decay analysis out-

perform the toolbox by Karjalainen et al.,10 which is a well-

established toolbox for fitting EDFs with a single slope and

a noise term. It is important to note that the Karjalainen tool-

box cannot fit multi-exponential decays, thus, explaining

the degraded performance on the Room Transition dataset,

which contains many multi-slope EDFs. In contrast, the

Karjalainen toolbox performed well on the Motus dataset,

which primarily contains single-slope decays. Nevertheless,

it exhibited a considerably larger spread of errors than the

DecayFitNet and Bayesian decay analysis. The latter two

approaches performed similarly well on both datasets.

To the best of the authors’ knowledge, at this point, there

is no study examining the performance of state-of-the-art

decay analysis algorithms on large amounts of data. We

found that the slice-sampling-based Bayesian analysis per-

forms well on large-scale datasets, despite the iterative nature

of the approach. As a fully deterministic alternative

approach, we have proposed a neural network structure.

With the presented DecayFitNet, potential numerical difficul-

ties have moved from the application (and the user) to the

network training stage. The network training has to be per-

formed only once, and the pre-trained network can subse-

quently be used by users without any additional effort. This

shift decreases the required user tuning and also reduces the

computational complexity at inference time. The efficiency

and low user tuning of the neural network structure are bal-

anced by the decreased possibilities of adjusting an incor-

rectly fitted EDF. Whereas other approaches have adjustable

TABLE I. The median and 99% quantiles of the dB-MSE [cf. Eq. (19)] between analyzed EDF and estimated fits. A dB-MSE value of 0 dB corresponds to a

perfect fit between modeled and analyzed EDF. We compare the proposed DecayFitNet with the publicly available toolbox by Karjalainen et al. (Ref. 10)

and our own implementation of the slice-sampling-based Bayesian decay analysis (Ref. 20). The different fitting approaches are evaluated on two large, pub-

licly available datasets.

Karjalainen (standard) Karjalainen (grid) Bayesian (slice sampling) DecayFitNet

Dataset median 99% q. median 99% q. median 99% q. median 99% q.

Motus 0.68 dB 6.43 dB 0.56 dB 5.12 dB 0.20 dB 1.13 dB 0.15 dB 1.02 dB

Room Transition 0.89 dB 45.56 dB 0.73 dB 22.53 dB 0.37 dB 2.08 dB 0.23 dB 1.63 dB
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parameters to fix a wrong EDF fit, the output of the neural

network cannot be changed unless it is trained with new data.

Last, it is interesting to note that the DecayFitNet can

analyze the entire Motus dataset with almost 20 000 EDFs

in less than 30 s. The evaluation was carried out on a modern

laptop computer (model year 2019) without a dedicated

GPU. We obtained this result by averaging the elapsed time

of 100 runs over the entire dataset to account for temporary

drops of processing power that could bias the result.

However, it is important to note that the presented number

should only be understood as an orientation for the reader. It

is obvious that optimized implementations are an interesting

engineering task for future work, which could reduce the

computation times even further.

For example, due to the CNN-based architecture, our

approach can easily be scaled up and parallelized to effi-

ciently process large amounts of data with modern GPUs.

The execution time of the DecayFitNet depends largely on

the number of model parameters, i.e., the learned weights and

biases of the different layers. With approximately 677 000

parameters, the DecayFitNet is rather lightweight. The high

computational efficiency is an important step toward bringing

decay analysis algorithms to mobile devices. Furthermore, it

benefits the processing of large datasets, where GPU-

accelerated machines can leverage the full potential of our

CNN-based architecture. Additionally, the DecayFitNet is

completely deterministic at inference time because it always

applies the same set of parameters to its inputs. This property

limits the number of executed operations to a fixed value and

ensures that the same results are obtained for repeated runs.

VII. DECAY ANALYSIS TOOLBOX

As part of this work, we provide an open-source toolbox

for PYTHON and MATLAB. The toolbox includes a pretrained

FIG. 3. Violin plots of the dB-MSE [cf. Eq. (19)] between measured octave-band-filtered EDFs and the corresponding fits obtained with different

approaches. The evaluation is based on the (a) Motus dataset and the (b) Room Transition dataset. Light gray circles indicate individual data points, and

white circles indicate the median. dB-MSE values greater than 15 dB have been excluded from the plot for clarity. A dB-MSE value of 0 dB corresponds to

a perfect fit between modeled and analyzed EDFs.
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neural network model, a code interface to interact with the

model, our implementation of the slice-sampling-based

Bayesian decay analysis, as well as some utility functions.

The main goal of the toolbox is to present a simple package

to estimate multi-slope EDFs that can be used with minimal

code. Although a pretrained model is provided, the toolbox

also includes the ability to train and export a model using a

custom dataset. This could be useful in scenarios where the

generalization of the pretrained model is not accurate

enough. The source code and documentation for the toolbox

are available online.51

The structure and workflow of the toolbox are presented

in Fig. 4. The main functionality includes

• impulse responses preprocessing for the neural-network-

based decay analysis (as described in Sec. IV B);
• estimation of parameters, h, from Eq. (2) by doing a

forward pass of the pre-trained model or by applying the

slice-sampling-based Bayesian decay analysis;
• generation of the fitted EDF using the estimated parame-

ters; and
• training and export of the DecayFitNet neural network

model.

The toolbox exports the neural network model and

operates using the Open Neural Network Exchange format

(ONNX).50 ONNX is an open and common format that

allows for fully trained machine learning models to be dis-

tributed and utilized by a variety of frameworks and plat-

forms. Although the toolbox only includes interfaces for

PYTHON and MATLAB, a trained model exported to the ONNX

format can be supported by many applications, requiring

only the porting of the preprocessing and EDF generation

code. The provided model was trained using the synthetic

dataset described in Sec. IV D.

VIII. CONCLUSIONS

This paper proposed a neural network structure for fit-

ting multi-exponential EDFs. It was shown that such a net-

work can be trained on a dataset of synthetically generated

EDFs. We presented the DecayFitNet as an example

architecture of the proposed approach. A large-scale evalua-

tion applied the DecayFitNet and two comparable state-of-

the-art methods on two large datasets of real-world measure-

ments with more than 1000 RIRs each, corresponding to

over 20 000 EDFs across six octave bands. The analyzed

datasets featured various acoustic conditions, such as vary-

ing amounts of absorptive material, diffraction and scatter-

ing from the room geometry, and room coupling.

The results of our evaluation indicate that the proposed

neural network structure can robustly fit single-slope and

multi-slope EDFs without prior parameter tuning or supervi-

sion by the user. Additionally, the presented DecayFitNet is

fully deterministic during inference time and computation-

ally efficient and capable of analyzing almost 20 000 EDFs

in less than 30 s on a modern laptop computer (2019) with-

out a dedicated GPU. Our evaluation indicates that the

DecayFitNet robustly estimates the model parameters from

large datasets of measured EDFs while achieving a compa-

rable fitting performance compared to state-of-the-art multi-

slope decay analysis algorithms. A decay analysis toolbox

has been made publicly available for the audio community.

The DecayFitNet and its corresponding toolbox may

benefit future research on room acoustic analysis and model-

ing. Data-heavy machine-learning-based approaches may

leverage its full potential regarding computational efficiency

and robustness.
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APPENDIX A: NEURAL NETWORK GENERALIZATION

The DecayFitNet is trained with 300 000 different

EDFs, split equally into EDFs with one, two, or three slopes.

Among this large number of EDFs, there are EDFs with a

variety of different decay parameters as outlined in Sec.

IV D. The neural network training procedure teaches the

FIG. 4. Workflow and structure of the decay analysis toolbox to estimate the EDF parameters from a RIR.
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network to deal with all of the possible decay parameter com-

binations within the specified ranges, thus, making it capable

of generalizing to unseen data during inference time.

However, the neural network performance may degrade for

unseen data with decay parameters far outside of the parame-

ter ranges of the training dataset. In such cases, generalization

cannot be guaranteed, but the training data can be easily

adapted to make the analyzable parameter ranges larger if

required. In these cases, the neural network training has to be

performed again.

The generalization to extremely out-of-distribution

samples is an interesting and common discussion topic in

the machine learning literature. Thoroughly exploring the

capabilities of the proposed model for this task is out of

the scope of this work. Nevertheless, This appendix gives

the reader some intuition about how the network performs

on EDFs with decay parameters outside of the training data

parameter ranges.

1. EDFs with decay parameters outside of the training
data parameter ranges

This section reports on an experiment that investigates

the neural network performance for EDFs with decay param-

eters outside of the training data parameter ranges specified

in Sec. IV D. To this end, 10 000 synthetic double-slope

EDFs were generated, the decay times of which were

randomly drawn from a uniform distribution between 4 and

7 s. The synthetic EDFs had a length of TEDF ¼ 2:5 s.

Consequently, the randomly drawn decay times could

become significantly larger than the largest decay times con-

tained in the training dataset. The other parameter ranges and

constraints remained identical to those specified in Sec. IV D.

Analogously to the other analyses in this paper, we

evaluate the fitting performance based on the dB-MSE [cf.

Eq. (19)] between the true and modeled EDFs. The median

and 99% quantile dB-MSE value over all 10 000 EDF fits

amount to 0.07 and 0.50 dB, respectively. This result indi-

cates that the neural network still performs robustly for

unseen EDFs that do not exactly fall inside of the parameter

range of the training dataset. However, although many

EDFs were evaluated in this experiment, it is important to

note that the presented analysis should not be understood as

a guarantee for successful generalization to such cases. This

can also be seen when drawing decay times from parameter

ranges even further outside of the training dataset. For

example, in a follow-up experiment, we uniformly drew

decay times between 7 and 13 s while keeping all of the

other experimental parameters identical. In this case, the fit-

ting performances slowly starts to deteriorate as indicated

by median and 99% quantile dB-MSE values of 1.2 and

2.1 dB, respectively.

2. EDFs with decay parameters that do not satisfy
the constraints of Eqs. (8a) and (8b)

This section reports on an experiment that investigates

the neural network performance for EDFs with decay

parameters that do not satisfy the constraints in Eqs. (8a)

and (8b). To this end, 10 000 synthetic double-slope EDFs

were generated, the decay parameters of which were ran-

domly drawn from the parameter ranges specified in Sec.

IV D. However, in contrast to the generation of the training

dataset, the synthetic EDFs in this experiment were drawn

such that they do not satisfy the constraints in Eqs. (8a) and

(8b). This should provide some orientation on how the neu-

ral network reacts to EDFs that violate these constraints.

Analogously to the other analyses in this paper, we

evaluate the fitting performance based on the dB-MSE [cf.

Eq. (19)] between the true and modeled EDFs. The median

and 99% quantile dB-MSE value over all of the 10 000 EDF

fits amount to 0.04 and 0.29 dB, respectively. This result

indicates that constraining the parameter value ranges of the

training dataset does not significantly affect the neural net-

work performance for unseen EDFs that do not satisfy the

constraints of Eqs. (8a) and (8b). However, although many

EDFs were evaluated in this experiment, it is important to

note that the presented analysis should not be understood as

a guarantee for successful generalization to such cases.
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