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Abstract
The Donate Speech campaign has so far succeeded in gathering approximately 3600 h 
of ordinary, colloquial Finnish speech into the Lahjoita puhetta (Donate Speech) 
corpus. The corpus includes over twenty thousand speakers from all the regions of 
Finland and from all age brackets. The primary goals of the collection were to cre-
ate a representative, large-scale resource to study spontaneous spoken Finnish and 
to accelerate the development of language technology and speech-based services. 
In this paper, we present the collection process and the collected corpus, and show-
case its versatility through multiple use cases. The evaluated use cases include: auto-
matic speech recognition of spontaneous speech, detection of age, gender, dialect 
and topic and metadata analysis. We provide benchmarks for the use cases, as well 
downloadable, trained baseline systems with open-source code for reproducibility. 
One further use case is to verify the metadata and transcripts given in this corpus 
itself, and to suggest artificial metadata and transcripts for the part of the corpus 
where it is missing.

Keywords Spoken colloquial language · Speech collection · Automatic speech 
recognition · Gender, age, dialect and topic recognition

1 Introduction

The preservation of spoken colloquial language is an important task, which requires 
the collection of relevant materials and their careful curation. The Donate Speech 
(Lahjoita puhetta) campaign embarked on the quest of preserving the current state 
of the spoken Finnish language and boosting the development of AI that understands 
spoken Finnish. To this end, a large collection campaign was initiated that resulted 
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in the creation of a large-scale colloquial Finnish speech corpus. In this paper, we 
explain how the collection and curation of the data were performed to maximise the 
amount participants while still ensuring a high quality of the dataset. Furthermore, 
we will demonstrate with pilot projects and their results how the materials can be 
used to study and develop new technology and services in the Finnish language.

Currently, there is only one large freely available transcribed Finnish speech cor-
pus, the Finnish Parliament ASR Corpus.1 It contains over 3000 h of professionally 
transcribed speech which is rather formal in style and often read from the speak-
er’s notes. However, colloquial, spontaneous Finnish differs significantly from for-
mal Finnish in multiple aspects. Considering phonological features, for instance, 
durations of phones are longer in read speech than in spontaneous speech (Lennes, 
2009). From the morphological and lexical point of view, it is common to truncate 
or combine words, and to use incorrect word inflections in addition to words not 
used in written text. Finnish has a near-phonemic orthography: there is usually a 
one-to-one mapping from letters to phonemes, except for some rare cases such as 
certain loan words and the “ng” letter pair which is not pronounced as /n/ followed 
by /g/ (which are the normal phonemes for the letters “n” and “g”, respectively) 
but instead has its own phoneme, /ŋ/. Because of the near-phonemic ortography, the 
phonological variations can be transcribed mostly unambiguously into text. Since 
there is no standard transcription style for colloquial speech, the spelling variations 
of a single word can be numerous [for example, the word “minä” (“I”, first person 
singular) can be written as “mä”, “mie” or “mää”], which further increases the dis-
tance between the domains of formal and colloquial Finnish.

There are a few smaller corpora that include carefully transcribed spontaneous, 
colloquial Finnish speech. The SPEECON (Iskra et  al., 2002) corpus is a collec-
tion of speech for multiple languages, recorded in varying environments. It includes 
both read and spontaneous speech from 550 speakers. The spontaneous Finnish part 
includes ten sentences from each speaker, in total about 18.8 h. The FinDialogue2 
part of the FinINTAS (Lennes, 2009) corpus contains 6338 utterances by 22 speak-
ers. The speech is from spontaneous and unmonitored conversations between par-
ticipants, and includes about 10.4 h of speech in total. The DSPCON3 corpus con-
sists of free-form conversations between students, recorded at the Aalto University 
between 2013 and 2016. It includes 5281 spontaneous sentences from 218 differ-
ent male students and 24 female students, totalling 9.8 h (Enarvi, 2018). Combining 
these three corpora, there are about 40 h of transcribed spontaneous Finnish speech 
currently available for research (non-commercial) use,4 to the best of our knowledge. 
We note that substantial amounts of Finnish colloquial speech has been collected in 
the 1960s and 1970s by the National Institute for the languages of Finland as well as 
some cultural foundations, but that data is not yet available for commercial develop-
ment use according to the European data protection legislation.

1 https:// urn. fi/ urn: nbn: fi: lb- 20210 51903.
2 https:// urn. fi/ urn: nbn: fi: lb- 20160 41421.
3 https:// urn. fi/ urn: nbn: fi: lb- 20170 8251.
4 While SPEECON is quite expensive, the other two corpora are free.

https://urn.fi/urn:nbn:fi:lb-2021051903
https://urn.fi/urn:nbn:fi:lb-2016041421
https://urn.fi/urn:nbn:fi:lb-201708251
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For major languages like English, large spontaneous and colloquial speech cor-
pora are available for research and commercial use. The Switchboard corpus (God-
frey et al., 1992) consists of about 260 h of telephone conversations among 302 male 
and 241 female speakers. The Fisher corpus (Cieri et  al., 2004) includes approxi-
mately 2000 h of colloquial telephone conversations. These two corpora, for exam-
ple, have been actively used in speech research for many years now, and technolo-
gies built for spontaneous English have greatly benefited from the datasets. Even 
though Finnish has far fewer speakers than the major languages (not even in the 
top 100), the new Lahjoita puhetta corpus covers many more speakers per language 
(over 20k) than probably any other publicly available spontaneous speech cor-
pus. The Lahjoita puhetta 2021 release consists of 3600 h of speech out of which 
about 1600 h have been transcribed. The data covers all regions of Finland and has 
both male and female, mostly native, speakers in all age brackets. In this work we 
describe this dataset, how it was curated, and demonstrate its use-cases. Specifically, 
the contributions of this work are the following: 

1. Presenting an open large colloquial speech corpus for Finnish.
2. Describing a successful concept for large-scale speech data curation.
3. Demonstrating the utility of the corpus in speech. recognition and metadata (gen-

der, age, dialect and topic) classification.
4. Defining relevant benchmarks for speech recognition and metadata classification.
5. Providing trained, downloadable baseline systems for the benchmarks, and open-

source code for reproducing the systems.

All of the tools and resources described in this work can be accessed online.5

2  Data collection

The speech material donated during the campaign is shared by the Language Bank 
of Finland (Kielipankki),6 coordinated by the University of Helsinki. Since speech 
samples may contain personal data, they are protected by European and national 
data protection legislation, most notably by the General Data Protection Regulation 
(GDPR).7 The speech material has been collected based on the legitimate interest 
of individual researchers, universities, research organisations and private companies 
to study language or artificial intelligence, to develop AI solutions and to provide 
higher education in the aforementioned areas. To use legitimate interest as the legal 
basis for the processing of personal data, it was necessary to accomplish a balance 
test to ensure that the legitimate interests are not overridden by the interests or fun-
damental rights and freedoms of the data subjects.

5 https:// github. com/ aalto- speech/ lahjo ita- puhet ta- resou rces.
6 https:// kieli pankki. fi.
7 Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016.

https://github.com/aalto-speech/lahjoita-puhetta-resources
https://kielipankki.fi
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To inform the individuals who donated their speech to the campaign, two essen-
tial documents were drafted: a short information page including simple conditions 
of participation, and a more comprehensive data protection policy. The donors had 
to acknowledge that they were informed of the conditions of participation before 
they could start donating.

An ethical review for the data collection was not needed as such a review applies 
only to the research configurations8 specified by the Finnish National Board for 
Research Integrity (TENK). It was also considered that the risks to the rights and 
freedoms of natural persons were rather low, but to be sure, a data protection impact 
assessment (DPIA) was made. For a more detailed description of the campaign and 
its legal background documents, see Lindén et al. (2022).

The goal of the campaign was not merely to collect a vast amount of any kind of 
speech, but to reach out to as many different groups of Finnish speakers and to as 
many individuals as possible. In marketing the campaign to citizens, it was empha-
sised that all variants of spoken Finnish are welcome, including speech from sec-
ond language Finnish learners. However, in order to understand the privacy notice 
and the instructions, a certain level of language proficiency was required from the 
speech donors.

Key issues and challenges for the design of the user interface were in determin-
ing elicitation methods that entice a person to speak freely, gaining the trust of the 
speaker, making him feel comfortable while also satisfying legal constraints for 
presenting enough required information in an easy to understand format, as well as 
more technical choices of supported platforms, presentation forms, visual and audi-
tory feedback of the on-going recording or its quality. After some ideas for themes 
had been formulated and tested, Yle (the Finnish Broadcasting Company) settled on 
the fail-safe recurring functions of showing a video, a picture or some textual con-
tent enticing a person to speak with an easy-to-use one-button starting and stopping 
of the recording.

Cooperating with Yle was crucial for the marketing of the campaign and for 
attracting the attention of the Citizens of Finland for the campaign. In the end, Yle 
developed around 40 straightforward topics, within ten different themes, for stimu-
lating the collecting of speech data. As part of the campaign, Yle made comical 
infomercials with requests to the general public to donate speech. These were broad-
cast during programme breaks in national radio and TV channels during the sum-
mer and autumn of the Covid-19 pandemic in 2020 with some trailing reruns during 
spring 2021. In 2021 the data collection campaign was awarded the best European 
Digital Audio Project prize by PRIX EUROPA, which was founded by the Euro-
pean Parliament, the European Commission and the European Cultural Foundation 
in 1987.

To illustrate the campaign results with regard to collection speed, the number of 
recordings received each month during the campaign is shown in Fig. 1. The peaks 
in the beginning and at the end of 2020 reflect the effects of the increased public 
advertising activity.

8 https:// tenk. fi/ en/ ethic al- review/ ethic al- review- human- scien ces.

https://tenk.fi/en/ethical-review/ethical-review-human-sciences
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2.1  Metadata complementing the speech corpus

Identities of speakers were not collected explicitly, but we assume that one appli-
cation client identity (of the browser or smart phone application used for record-
ing) corresponds to one speaker. This assumption is not watertight since one per-
son may use multiple application clients, or multiple persons may use one client, 
but the correspondence generally holds. Assuming this, the number of speakers is 
well over 20k, which means quite a good sample of all Finnish speakers, which 
are fewer than six million in total.

Opening the Lahjoita puhetta website or phone app, the user is offered a few 
different themes to choose from. To focus the campaign, all of the themes are not 
always available on the website. The complete list of themes, and their English 
translations and abbreviations used in this text, is the following:

– “Eläinystävät” (“Animal friends”, A)
– “Urheiluhetket” (“Sports moments”, SP)
– “K-18” (“Rated R”, R)
– “Luonto, sää ja mää” (“Nature”, N)
– “Lähelläni juuri nyt” (“My surroundings”, M)
– “Mediataidot 4–6 lk.” (“Media skills—grade 4–6”, MS4)
– “Mediataidot 8–9 lk.” (“Media skills—grade 8–9”, MS8)
– “Mediataidot lukio” (“Media skills—high school”, MSH)
– “Kirottu korona” (“The cursed covid”, C)
– “Sukella kesään” (“Summer”, S)

Fig. 1  The number of recordings received in each month during the campaign



 A. Moisio et al.

1 3

Each theme includes up to eight different topics that ask a question or in some other 
way invites the user to speak about the topic. Each recording therefore pertains to 
some general theme, as well as to a certain topic within that theme. The theme and 
topic are metadata which can be used to categorise the recordings.

Between the recording prompts, the participant is asked multiple questions about 
his or her background. These metadata questions include dialect background, gen-
der, native language, age, place of residence, birthplace, occupation and education. 
In this paper, we focus on the first four of these metadata types.

The dialect background question offers 20 options to choose from. In order to 
have fewer classes, we clustered these dialect regions into eight larger dialect 
groups, based on the information provided by The Institute for the Languages of 
Finland.9 The dialect groups and their abbreviations used in this paper are: 

1. The Southwestern dialects (SW)

– Varsinais-Suomi
– Ahvenanmaa

2. The transitional dialects between the Southwestern and Häme dialects (TRAN)

– Uusimaa
– Satakunta

3. The Häme (Tavastian) dialects (HÄME)

– Pirkanmaa
– Häme

4. The dialects of South Ostrobothnia (Pohjanmaa) (SO)

– Etelä-Pohjanmaa
– Pohjanmaa

5. The dialects of Central and North Ostrobothnia (Pohjanmaa) (CNO)

– Keski-Pohjanmaa
– Pohjois-Pohjanmaa

6. The dialects of Peräpohjola (the Far North) (FN)

– Lappi

7. The Savo dialects (SAVO)

– Pohjois-Savo
– Etelä-Savo
– Kainuu
– Keski-Suomi
– Pohjois-Karjala

9 https:// kotus. fi/ en/ on_ langu age/ diale cts/ finni sh_ diale cts_ 7541.

https://kotus.fi/en/on_language/dialects/finnish_dialects_7541
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– Kymenlaakso
– Päijät-Häme

8. The Southeastern dialects and a few transitional dialects bordering on them (SE)

– Etelä-Karjala

9. Non-native Finnish speakers (NN)

2.2  Corpus statistics

In the Lahjoita puhetta 2021 release, there are about 3600 h of recordings in total, 
and over 20k different speakers. The median speaker donated eight recordings, while 
the top donor donated 1039 recordings. The median duration of a recording is about 
40 s and the longest are about 10 min.

Silent parts were trimmed from the beginnings and endings of the recordings 
using the silence effect of SoX,10 with a threshold of 0.5% and duration of 0.05 s. 
After trimming, 3270 h remained, and the randomly selected recordings were sent 
to human transcribers. When we received the transcribed subset, there were 512 
recordings that had empty transcriptions. Some of these were silent audio and some 
were left empty by mistake by the transcribers, but all 512 were discarded at this 
point. To verify the quality of the human transcriptions, we generated ASR tran-
scriptions with a hybrid HMM/DNN (hidden Markov model/deep neural network) 
system trained on the previously existing colloquial Finnish speech data: DSPCON, 
FinDialogue, SPEECON (see Sect.  1). The average WER (word error rate) was 
around 38% and CER (character error rate) about 15%. We then filtered out record-
ings for which both the WER and the CER were over 94% in order to mitigate the 
chance of having low-quality samples in the ASR training corpus. From the set of 
about 100k transcribed recordings, 392 had WER and CER over the threshold and 

Table 1  The sizes of the corpus and its subsets

Subset # of speakers # of recordings # of hours

Total original 20,890 218,146 3604.8
Total usable 20,269 205,962 3229.8
Train transcribed 17,821 98,606 1601.5
Train untranscribed 18,825 105,380 1597.1
Train transcribed 100 h 1129 6229 103.5
Dev 103 703 10.5
Test 103 690 10.4
Test multi-transcriber 57 58 1.0
Test multi-transcriber speakers 57 583 10.2

10 https:// sox. sourc eforge. net.

https://sox.sourceforge.net


 A. Moisio et al.

1 3

were excluded. Combined with the 512 empty-transcript recordings, these excluded 
904 recordings were about 9.1 h in duration.

We sampled a 10-h test set and 10-h development set from the transcribed speech 
data, each including at least 10 min of speech for each metadata class in each of the 
five metadata domains. We also modified the speaker gender ratio of the test and 
dev sets, so that they have over 40% male speakers although the training set has just 
over 20%. As a second test dataset, we used a 1-h set that was transcribed by four 
different transcribers, which includes 58 recordings from 57 speakers. If we add all 

Fig. 2  The distribution of the speaker metadata in the corpus. The “training set” includes both the “train 
transcribed” and “train untranscribed” described in Table 1. “N/A” means the user has not answered to 
the question about his or her background, or has given multiple contradicting answers
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recordings by those 57 speakers to this subset, we get a 10-h test set, that we call 
“test multi-transcriber speakers” in Table  1. The rest of the transcribed speech is 
used as training data. The train, dev and test sets have no overlap of speakers. There 
are still recordings that are by the speakers of the dev or test sets but which are not 
transcribed. These are left unused, leaving about 3230 h in the complete dataset that 
we use. Table 1 lists the sizes of the corpus subsets.

Figure 2 presents the amount of speech for each metadata type as a portion of 
the whole training set (both transcribed and untranscribed pooled together) and the 
10-h main test set. As the transcribed training set is a 1600-h random sample of 
the whole dataset, which has about 3199 h out of the complete 3230 h, the training 
data accurately represents the overall distribution of the whole dataset. We can note 
that the corpus has varying amounts of speech from the different metadata classes. 
Younger than 11-year old children have donated some but a relatively small amount, 
as have older than 80-year-old people. Of the dialects, Savo and Tran have most 
data, roughly a quarter each. Women have donated significantly more than men: 
over three times as much. Investigating the reason for this male-female imbalance 
is beyond the scope of the present work, but we may speculate, for example, that 
the campaign might have been advertised between TV/radio shows whose audience 
is predominantly female, although unfortunately we do not know the demographics 
of the TV or radio audience to which the campaign was advertised. Another factor 
could be that women might be more likely to answer to surveys in general (Smith, 
2008); although speech donation is not exactly a survey, it is similar enough that 

Fig. 3  The recording length distribution. The recording durations are pooled to 1-s bins to generate this 
figure
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the trends found in survey response rate could give some clues to why our dataset 
is imbalanced. Four themes seem to have a low amount of speech: Rated R and the 
three Media skills themes, as they were added only when the official marketing cam-
paign had already ended. In all metadata domains, the test set was smoothed to have 
at least 10 min of speech from each metadata class, visible in the figure.

Figure 3 displays the distribution of the recording lengths. The majority of the 
recordings are less than 2 min, but longer recordings are not uncommon. There are 
spikes at the 2-min mark and the 10-min mark. The spike at 10 min was effected by 
the limit of the duration of recordings: those that would have spoken for longer were 
cut at 10 min. The other spike, at 2 min, corresponds to the duration of a video clip 
that was played for the user in one topic. The theme was “Summer”, and in this topic 
the user was asked to describe what is happening in the video clip to an alien while 
the video displayed sceneries of Finnish summer pastime activities.

3  Annotation procedure

Because a high-quality manual transcription of 1600 h of spontaneous speech is a 
significant investment, we made an effort to develop a careful process described in 
detail in this section. The aim was exact transcription, which included not only the 
verbal content of the speech but also full words, repetitions, hesitations, partially 
pronounced or only partially audible words, and non-verbal communication such as 
laughs, growls, and coughs. The guidelines that were given to the transcribers are 
reproduced in Appendix.

3.1  First phase: annotator selection

To choose the best transcriber companies, we ran a pilot transcription competition, 
where we shared a 20-h subset of the data with all candidates along with the care-
fully constructed annotation instructions. The datasets consisted of 19 h of randomly 
selected data per participant mixed with a common 1-h evaluation set (the composi-
tion of the data was not disclosed to the companies). After the competitors submitted 
their transcripts, we evaluated them automatically and manually using the overlap-
ping 1-h set to determine the quality of their work as well as an hour of random sam-
ples from the non-overlapping parts to verify the automated comparisons manually. 
During the evaluation process, we had no information about individual annotators, 
so we treated each company as a single transcriber. Our primary goal was to validate 
that they could produce high-quality transcripts for the collected data.

The automatic evaluation focused on comparing the transcripts of different anno-
tators with each other and with multiple ASR systems. Our goal was to select com-
panies who can produce high quality transcripts that met the standards of the Lan-
guage bank (Kielipankki). First, standard ASR metrics like word error rate (WER) 
and character error rate (CER) were used to estimate the inter-annotator agreement. 
Specifically, one annotators transcript was used to calculate edit distances from the 
others, treating them as speech recognition systems. This allowed us to create a 
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preference order from the perspective of one of the annotators. Repeating this pro-
cess for all transcriber companies gave us multiple rankings, and we tried to identify 
outliers by aggregating these preference rankings. In case of an outlier, we could 
verify that its transcription is of lower quality than the others by manually check-
ing the transcripts with the most differences to the other transcribers. During these 
analyses, we ignored the non-word symbols, as they were annotated with consider-
able discrepancies by different annotators.

The inter-annotator disagreements in terms of WER and CER were generally 
high due to the nature of the data, see Table 2. Still, we can observe considerable 
differences. These metrics allowed us to create rankings per annotator. Fortunately, 
we only wanted to ensure the high quality of the transliteration, so we did not have 
to use complex methods (like the Borda count etc.) to produce a complete order. In 
the end, we opted for a straightforward scheme to aggregate the individual prefer-
ence orders by simply eliminating the worst in each round until we get the desired 
number of annotators.

Looking at the values in Table 2, we can see that T1 had the highest disagree-
ment with the others, both in terms of WER and CER. The transcription quality 
was also substantiated by manually inspecting 1-h random samples from each can-
didate. Thus T1 was the first to be eliminated. Of the remaining annotators, T2 and 
T3 disagree most with T4. Nevertheless, the differences between these three annota-
tors were relatively small, so in the end, we opted to accept all three in this round of 
selection.

Next, we repeated the experiments, but this time, we compared the transcripts 
with ASR outputs. Two models were selected for this purpose, a hybrid HMM/
DNN, and a Wav2Vec2-based (Baevski et al., 2020) end-to-end network. The hybrid 
HMM/DNN system was trained on the existing spontaneous colloquial Finnish 

Table 2  Pairwise comparison 
between transcribers (T) using 
the word and character level edit 
distances

Transcriber Word level comparisons Character level com-
parisons

T2 T3 T4 T2 T3 T4

T1 19.5% 19.8% 20.5% 6.3% 5.8% 6.1%
T2 – 13.6% 15.6% – 4.7% 5.4%
T3 – – 16.0% – – 4.9%

Table 3  Pairwise comparison 
between transcribers (T) 
and ASR systems using the 
word and character level edit 
distances

Transcriber Word level comparisons Character level com-
parisons

Hybrid (%) E2E (%) Hybrid (%) E2E (%)

T1 33.56 33.65 11.95 10.12
T2 28.02 27.33 10.14 8.59
T3 29.04 28.83 10.69 8.89
T4 29.87 29.87 10.93 9.15



 A. Moisio et al.

1 3

speech datasets: DSPCON, FINDialogue and SPEECON (spontaneous part), total-
ling about 37 h. The 1st pass n-gram LM and 2nd pass RNN LM are trained on the 
WEBCON (Enarvi, 2018) corpus and the speech transcripts, in total about 76 mil-
lion words. For the end-to-end model, we decided to utilise the publicly available 
multilingual Wav2Vec2 Large model pre-trained on 100K h of the VoxPopuli dataset 
(Wang et al., 2021). The model was fine-tuned on the same 37-h colloquial Finnish 
corpus used to train the hybrid system.

Comparing with ASR models reaffirmed our previous findings (Table 3). We can 
see that comparing the ASR models with T1 leads to the highest error rates. An 
interesting observation is that both models seem to favour T2, yielding the lowest 
error rates, followed by T3 and T4.

Lastly, we also validated the conclusions of all automatic experiments by manu-
ally checking the utterances with the largest differences (revealed by the previous 
examinations). The manual inspection revealed that T4 had transcribed files mostly 
correctly, but they often used the formally correct spelling instead of writing the 
verbatim spoken version. This resulted in slightly higher error rates compared with 
T2 and T3. Comparing T2 and T3 we saw that the latter skipped the extremely noisy 
part of an utterance, resulting in T2 being selected as the most diligent annotator.

Combining all observations, we concluded that companies T2, T3, and T4 are 
all capable of creating sufficiently high-quality transcripts, so we continued to work 
with them to transliterate a large portion of the collected corpus.

3.2  Second phase: quality control

After the initial selection phase, we continued to utilise our ASR models to perform 
automatic quality control checks. Our goal was to highlight recordings with unusual 
error rates (WER ≥ 94% ) for manual inspection. In practice, once we received the 
transcriptions from the companies, we applied the same ASR models as in the phase 
one to get the WER and CER for each utterance. To avoid unnecessary checks, we 
only selected files with a high WER and CER compared with both models.

Our manual examinations revealed several problems that we could address during 
the annotation process. One of the primary issues that we managed to identify was 
a mismatch between the transcription and the audio files (approx. 20 transcripts had 
been assigned to the wrong recording). Naturally, with the help of the annotators, we 
could fix this problem quickly. The second source of the high ASR error rates was 
the presence of extreme noises, which made it hard for the ASR systems to recog-
nise the speech. We kept these noisy recordings in the corpus to enable the building 
of noise-robust models.

Figure  4 depicts the error rates of the hybrid ASR model for each transcriber 
company. Note that due to legal constraints, we were unable to match the transcrib-
ing organizations’ ids used here to those in the first phase. Thus we could not ana-
lyse how their performance changed on the large dataset. Overall, we can see that 
the distributions are quite similar, meaning that from the ASR model’s viewpoint, 
they were equally good at providing the gold standard texts. We can see that there 
is a considerable amount of utterances with more than 100% WER, but overall, the 
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vast majority of recordings are recognisable with less than 50% error. The CER sta-
tistics further reassured us that the transcription is high quality; more than 75% of 
the utterances had a CER below 20%. The high errors could be explained by the dis-
covered problems (noise, low volume, speaking far from the microphone).

4  ASR experiments and results

In this section several ASR experiments with various architectures are presented. 
The goal of the ASR experiments is first to establish that the transcribed Lahjoita 
puhetta data is useful for creating ASR systems, and then to provide baseline results 

Fig. 4  The distribution of word-level (top) and character-level (bottom) error rates per annotators on the 
transcribed dataset. Note Utterances with more than 100% errors were pooled together for this visualisa-
tion. Note also that the transcribers’ ids of the second phase do not match to the first phase
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and recipe starting points for a few different ASR techniques. The trained ASR sys-
tems are also used to provide both time alignments of the manually transcribed part, 
as well as ASR decoding outputs for the untranscribed part, which can later be used 
for indexing, searching, or statistical studies on the data, as attested by for example 
Carrive et al. (2021).

One initial difficulty in using the transcribed Lahjoita puhetta data for ASR is that 
many of the recordings are longer in duration than is ideal for many speech recogni-
tion methods. Bootstrapping alignments for long recordings is more difficult. Long 
recordings exacerbate the vanishing gradient problem and they also present practi-
cal issues related to memory consumption (Narayanan et al., 2019). In these experi-
ments, we are able to bootstrap alignments and create shorter segmentations for dif-
ferent systems by starting from simple monophone HMM/GMM (Gaussian mixture 
model) systems trained on the shortest utterances.

It is good to note that as Finnish is an agglutinative language, the WER results are 
not directly comparable to those of, say, English. Hirsimäki et al. (2006) found that 
as one long Finnish word corresponds to several English words the WER becomes 
multiplied. For this reason, we report also the CER results, which do not have this 
problem. Furthermore, some previous works (Enarvi et al., 2017) have used normal-
isation of colloquial Finnish words in order to mitigate the effect of various spelling 
variations on the WER results. However, this method is partly manual and thus not 
easily scalable to large corpora, and we did not use such normalisation. Additionally, 
the transcripts contain special markers (e.g. for noise and pauses) and some deci-
sions should be made about them in speech recognition: either to predict them, or to 
simply discard them. We opted for the latter. Before calculating the WER and CER, 
we removed all the special tokens, such as “.laugh” as well as the dash symbols 
“-” that indicate dysfluencies in speech, for example false starts (“predi- presidentti” 
was changed to “predi presidentti”).

4.1  Hybrid HMM/DNN ASR systems

The HMM/GMM approach and, later, the hybrid HMM/DNN approach have been 
popular in speech recognition for the last couple of decades. Although they are now 
outperformed by newer approaches (mainly end-to-end systems; see the next two 
Subsects. 4.2 and 4.3), they are still useful since they require relatively small train-
ing corpora, and versatile toolkits have been built around these approaches. Namely, 
the Kaldi (Povey et al., 2011) toolkit provides optimised “recipes” to train and apply 
ASR systems, which we used to train baseline systems with our data. We then use 
the best baseline system to align the text and audio and segment the speech. Since 
large end-to-end systems cannot handle long segments of speech (see Sect.  4.2), 
segmentation was necessary before we could train the end-to-end models.

In the first phase, we trained two models using mostly standard Kaldi recipes 
without hyperparameter tuning, one with a 100-h subset (denoted as initial-100 
h-TDNN) and another with the complete transcribed training corpus (initial-1600 
h-TDNN). To train the HMM/GMM system for monophones and triphones, we used 
the Kaldi WSJ recipe. This recipe trains the initial monophone model on the shortest 
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utterances in the data, which helps in bootstrapping the alignments. As a devia-
tion from the standard WSJ recipe, we trained the final triphone system using the 
discriminative, MMI (Bahl et al., 1986) training criterion, which is available as an 
optional addition in the WSJ recipe. The time-delay neural network (TDNN) (Ped-
dinti et al., 2015; Waibel et al., 1989) models were trained using the HMM/GMM 
alignments. The TDNN architecture and other hyperparameters were adopted from 
the Switchboard recipe, since this trains a larger neural network, more suitable for 
the large training corpus. The TDNN has 15 layers with a dimension of 1536 and a 
bottleneck dimension of 160. In total the TDNN has about 17M parameters.

Using the SRILM (Stolcke, 2002) toolkit, we trained 4-gram language models 
(LMs) on the Lahjoita puhetta (LP) 100-h training corpus transcripts, the whole 
1600 h training corpus transcriptions, as well as on a corpus of the LP transcripts 

Table 4  Sizes of the language models and their training corpora

The number of n-grams refers to the numbers of unigrams, bigrams, trigrams and 4-grams summed 
together

Corpus # of tokens # of types # of n-grams

LP 100 h transcriptions 898,700 20,700 400,700
LP 1600 h transcriptions 14,216,500 36,200 4,267,400
WEBCON + DSPCON + LP100 h 126,078,900 42,700 26,005,100
WEBCON + DSPCON + LP1600 h 138,991,000 45,600 28,853,000

Table 5  Error rates of various ASR systems

Larger LMs were trained on external LM data, namely the WEBCON corpus and the DSPCON tran-
scriptions, in addition to the AM training set (either 100 h or 1600 h) transcriptions. All HMM/DNN sys-
tem LMs are subword-based 4-gram models. The Wav2Vec2 + CTC system uses a word-based 4-gram 
language model trained on the 1600 h LP transcripts and the external data

Training set System details Dev set Test set

WER (%) CER (%) WER (%) CER 
(%)

100 h Initial-GMM 44.80 18.43 48.94 20.94
Initial-TDNN 29.16 9.01 32.58 11.04

      + ext. LM data 26.88 8.46 30.48 10.49
Semisup-TDNN + ext. LM data 25.37 7.89 28.16 9.78
Wav2Vec2 + CTC (no LM) 22.50 6.08 24.03 7.02
Wav2Vec2 + CTC + ext. LM data 20.34 5.83 21.75 6.80

1600 h Initial-GMM 37.08 15.61 40.87 17.19
Large-GMM 35.36 14.34 38.99 16.33
Initial-TDNN 22.09 6.52 24.00 7.64
TDNN (large-GMM alignments) 21.98 6.47 23.88 7.59

      + ext. LM data 21.77 6.40 23.82 7.52
AED 28.80 12.15 34.87 17.04
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pooled with other available colloquial Finnish text corpora, namely the WEBCON 
corpus and the DSPCON transcriptions. The systems that utilised the external lan-
guage modelling data are marked with “ext. LM data” in Table 5. We used the Mor-
fessor (Creutz & Lagus, 2002, 2007) toolkit to segment words into subword units. 
We trained the morfessor model using the same LP transcripts appended with the 
WEBCON and DSPCON corpora as for the large LMs, with a corpus weight of 
0.05. The resulting sizes of the LMs and their training corpora are listed in Table 4. 
We also trained LMs with a word vocabulary, but subword units yielded better 
results. For example, the word-based initial-1600 h-TDNN system got a WER of 
25.12% on the test set, compared with 24.00% using subword units, so we opted to 
use subword units in the remaining experiments. The sizes of the training corpora 
are listed in Table 4. For more details about the language models, see the published 
recipes.

We used the initial-1600 h-TDNN to segment the training data, so the data could 
be used for training the E2E ASR systems. The initial-100 h-TDNN with large LM 
was used to generate transcriptions for the rest of the training corpus, which we then 
used for training the topic and dialect classification systems (see Sect. 5).

After training the initial ASR systems, we made some simple hyperparameter 
tuning for the HMM/GMM system to get an idea of how much room for improve-
ment there is, compared with the Kaldi WSJ recipe. The tuning experiments focused 
mainly on increasing the number of parameters of the GMMs. By increasing the 
number of Gaussians from 4200 (in the WSJ recipe) to 14,000, and the number 
of leaves per Gaussian from 40,000 to 200,000, the penultimate, speaker-adaptive 
triphone system WER on the development set decreased from 42.86% to 39.71%. 
Training the MMI triphone system on top of the alignments from these systems, 
the WERs decreased to 37.08% and 35.36%, respectively for the smaller and larger 
GMM/HMM system. Finally, training the TDNN system on top of these MMI tri-
phone models, the word error rates dropped to 22.09% (smaller GMM/HMM) and 
21.98% (larger GMM/HMM) for the dev set and 24.00%/23.88% for the test set.

Decoding with a large language model trained on external data brings additional 
improvement compared with the LM trained on 100 h transcriptions (see the second 
and third row in Table 5). However, the 1600 h transcriptions seem to be enough 
to train a decent language model, and adding external data only brings a small 
improvement in WER and CER results (see the last two rows in Table 5). It is good 
to note, however, that the external text data is not exactly in the same domain as the 
test corpus, although it is colloquial in style.

Additionally, we wanted to demonstrate that the sizeable untranscribed por-
tion of the corpus can be leveraged via semi-supervised training. For this experi-
ment, we choose the approach presented in (Manohar et al., 2018). To demon-
strate that the recordings without annotations could be used for improving the 
ASR systems, we started the semi-supervised training by generating transcrip-
tions of the additional data with the initial-100 h-TDNN. Afterwards, we pooled 
the self-supervised portion (approx. 1587 h) and the 100 h set for the model 
training. The resulting model (semisup-100 h-model) had the same architecture 
as the initial-100 h-TDNN to ensure a fair comparison. From the achieved results 
(see Table 5), we can conclude that the additional unsupervised data is indeed 
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valuable, the error rates dropped significantly. On the other hand, we can also 
see that having more, accurately transcribed data is far more beneficial. The ini-
tial-1600 h-TDNN outperforms the semi-supervised system by a large margin, 
and the hyperparameter tuning offers some additional improvements.

4.2  AED ASR systems

Various end-to-end ASR approaches, such as Connectionist Temporal Classifi-
cation (CTC) (Graves et  al., 2006), the Recurrent Neural Network Transducer 
(RNN-T) (Graves et  al., 2013), and Attention-based Encoder–Decoder (AED) 
(Bahdanau et al., 2016; Chan et al., 2016) models became popular in the 2010s, 
both in research as well as industrial applications. We train AED models on the 
transcribed data to serve as end-to-end baselines. Our AED models are trained 
with the SpeechBrain toolkit (Ravanelli et al., 2021). They consist of a stack of 
convolution, recurrent, and feed-forward layers in the encoder, a location-and-
content aware attention mechanism, and recurrent layers in the decoder with 
altogether ≈ 28 M parameters. The inputs are log-Mel-filterbank-energies and for 
each output step the network computes a distribution over a vocabulary of 1750 
SentencePiece subword units. We trained with dynamic batching, targeting 50 s 
of audio per batch altogether, for 100 nominal epochs of 10,000 updates each. 
For the first 20 nominal epochs the encoder learning was aided by using an addi-
tional multi-task CTC loss (Kim et al., 2017). We do not use any external lan-
guage with our AED system, making it fully end-to-end. For further details we 
refer to the published recipe.

End-to-end models seem to have difficulties with long-form speech, both in learn-
ing as well as in generalising (Chiu et al., 2019; Narayanan et al., 2019). Our pre-
liminary experiments with AED systems showed similar issues. Models would not 
converge with full length utterances. Via segmentations produced with the HMM-
based ASR systems, we split the data into shorter utterances. Training converges 
well on short (up to 10 s) segments and slightly slower on medium length (up to 50 
s) segments. Decoding an ad-hoc segmented version of the development set yields a 
WER of ≈ 22% on both models. However, on the official development set, which has 
longer utterances, both models have pathological behaviour on a minority of utter-
ances, which increased the error rate considerably. Similar to reports by Keung et al. 
(2020), our models produce echographic output, i.e. the model repeats a single token 
or in some cases a long sequence of tokens. The model trained on medium length 
segments suffers less, so we choose it as our final baseline. Additionally, we imple-
ment a simple post-processing filter where we allow repetitions to produce in total a 
maximum of five tokens. On the development set, this modifies 70 transcripts. This 
reduces the WER from 45.82 to 28.80%—echographic transcripts account for a sig-
nificant amount of errors. Listening to the utterances which produced echographic 
output reveals that these utterances are long, in some cases noisy, and in some cases 
contain long pauses. Despite the post-processing, our AED baselines fall behind 



 A. Moisio et al.

1 3

their HMM/DNN counterparts in performance in Table 5. Due to the initial difficul-
ties with long-form speech, we did not make a system for the 100 h subset.

4.3  Pre‑trained Wav2Vec2 fine‑tuned with CTC 

In recent years, large machine learning models [also called foundation models 
(Bommasani et al., 2021)] that are pre-trained on vast numbers of general-domain, 
unlabelled data and fine-tuned on downstream tasks with labelled data have achieved 
state-of-the-art results especially in language processing tasks [for example, Brown 
et al. (2020), Devlin et al. (2019)]. This transfer learning method has recently been 
shown to be useful in speech recognition as well: models such as Wav2Vec2 (Bae-
vski et al., 2020) and HuBERT (Hsu et al., 2021) are currently used in many systems 
that achieve SOTA accuracy in speech recognition benchmarks11. In this section, 
we describe how the new dataset can be used to fine-tune a pre-trained Wav2Vec2 
model to create an ASR system that outperforms our other systems.

Wav2Vec2 is a self-supervised framework which learns deep acoustic representa-
tions by leveraging large amounts of unlabelled acoustic data. After pre-training on 
untranscribed speech, the model can be fine-tuned on labelled acoustic data for a 
downstream task, such as ASR. Fine-tuning for the ASR starts with adding a ran-
domly initialised classification layer on top of the model with classes represent-
ing the characters of the target language alphabet and a word boundary token. The 
model is then optimised with a CTC loss.

In this work, we experimented with a Wav2Vec2 Large model (317M parameters) 
pre-trained on the multilingual VoxPopuli (Wang et al., 2021) corpus. The corpus is 
composed of 100K h of untranscribed European Parliament plenary session record-
ings in 23 languages, including 4.4K h of Finnish speech. We fine-tuned this model 
with CTC on the 100-h subset for 80 epochs with an effective batch size of 48 and a 
learning rate of 5e−4. We used full length utterances with durations up to 50 s and 
the segmented recordings for the rest of the training data. We also tried to fine-tune 
the model on the 1600h set, but it took too much time on our hardware, so we left 
fine-tuning on the full training set to future work.

The fine-tuned model [see Wav2Vec2+CTC (no LM) in Table 5] achieved WER 
of 22.50% and 24.03% and CER of 6.08% and 7.02% on the development and the 
test set, respectively. We also incorporated an external language model in order to 
further improve the model performance. The LM was trained on the 1600 h LP tran-
scriptions and external (WEBCON and DSPCON) data. The dataset included about 
84M word tokens and 2.6M word types, and the LM included 3.5M n-grams. With 
a word-level 4-gram LM (see Wav2Vec2+CTC + ext. LM data in Table 5), the word 
and the character error rates dropped to 20.34/5.83% on the development set and 
21.75/6.80% on the test set. In addition, we plan to incorporate the subword-based 
LM in future experiments, since it provided an improvement in WER compared to 
word-based LM for some HMM/DNN ASR systems.

11 For a collection of speech recognition benchmarks, see https:// paper swith code. com/ task/ speech- recog 
nition.

https://paperswithcode.com/task/speech-recognition
https://paperswithcode.com/task/speech-recognition
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4.4  Analysis of ASR accuracy w.r.t speaker metadata

The rich metadata of Lahjoita puhetta (see for example Fig. 2) allows us to examine 
differences in the ASR accuracy between speech from different groups of people, 
different recording devices and on different topics. In recent years, a new research 
area has emerged that investigates the discriminatory performance of AI systems and 
its causes (Garnerin et al., 2021; Hovy & Spruit, 2016). In the ASR field, traditional 
metrics like the aggregated WER and CER are used to measure the overall perfor-
mance of the models. As we will note in this section, these metrics can hide biases 
that a model develops during training. To build an excellent general ASR system, we 
ought to mitigate the risk of the system having a systematically worse recognition 
rate for any speaker category (for example, gender, age, or dialect). The results we 
analyse in this section can point us to the weaknesses of the (hybrid HMM/DNN) 
ASR system trained on the Lahjoita Puhetta dataset, and aid us in future de-biasing 
efforts.

Dividing the 10-h test corpus into each metadata class yields quite small subsets. 
To get a larger test corpus for each metadata class, we decoded the rest of the tran-
scribed dataset using the initial-100 h-TDNN ASR system with external LM data 
(see Sect. 4.1). In this case there is overlap between training and test corpus speak-
ers, although no overlap between the recordings. The average WER for this large 
set was 26.13% which is a little better than for the fully independent 10-h test set 
(30.48%, as listed in Table 5).

A basic assumption is that the more training data there are from a specific group 
the better the speech recognition results are for this group. This means the corre-
lation between the number of training data and WER result should be negative. 
Table 6 lists the Pearson product-moment correlation coefficients between the WER 
and the amount of training data, for each metadata type. All of the metadata types 
have quite a small number of data points (classes, N) to calculate the correlation, 
and only age and theme have p < 0.05 . In general, this low N values will not give us 
very reliable correlation results, but we provide these numbers for some rough indi-
cation of how much the metadata class affects speech recognition. Age, gender and 
theme have the expected results, with quite a strong negative correlation. Dialect 

Table 6  Pearson product-
moment correlation coefficients 
between the WER and the 
total duration of speech in the 
training corpus

The classes for age and gender are those specified in Fig. 2, includ-
ing the N/A classes. For the themes, the “Media Skills” classes were 
combined as one class. For the dialects, we used the 21 original 
classes for these calculations

Metadata type Correlation coef-
ficient

N p value

Age − 0.685 11 0.020
Gender − 0.618 4 0.382
Dialect − 0.267 21 0.255
Theme − 0.829 8 0.011
Device 1 2 –
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has a weak negative correlation, if any, and for the recording device (phone vs. PC), 
WER correlates positively with the amount of training data.

Figures 5 and 6 enable a more detailed analysis of the results for the metadata 
groups of gender, age and dialect. The difference between the number of males 

Fig. 5  The distribution of WERs in the test set w.r.t. the age and gender of the speaker

Fig. 6  The distribution of WERs in the test set w.r.t. the dialect and gender of the speaker
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and females in the training data is large, which presumably affects the ASR results, 
although the p-value for the correlation is high because of the low N. The average 
WER for females, 24.12%, is below the overall average (26.13%) while for males the 
average WER is well above: 31.78%. Similarly, the number of recordings on a theme 
in the training corpus correlates with the speech recognition accuracy.

The dialect does not seem to have much of an effect on the speech recognition 
results. The large dialect groups, Savo and Tran, do not have significantly better 
results than the average: the WERs are 25.99% and 25.13% respectively. This can 
be seen also from the correlation coefficient in Table 6, which is not significant. The 
exception is the group of non-native Finnish speakers, which has a high WER of 
30.97%.

From these experiments, the reasons for the differences in the WER results are 
not entirely clear, where differences exist at all. In general, a larger relative share in 
the training corpus results in better ASR performance, if there is systematic varia-
tion between groups, but other factors presumably affect the results too. For exam-
ple, there is fewer training data for the speech of young children which might be one 
reason for the relatively poor ASR performance, but children probably speak less 
clear Finnish than adults, which also makes speech recognition more difficult. This 
could apply also to other groups, such as non-native Finnish speakers. Furthermore, 
speech recorded on smart phones has better ASR accuracy (WER: 24.57%) than 
speech recorded on a computer (WER: 27.27%) even though there are fewer phone 
recordings than computer recordings. We speculate that the reason for this is that 
phones are better than computers, on average, at recording speech.

We should also question whether a user’s background is audible in the speech 
at all, and whether the users have answered the metadata questions accurately. For 
example, the variability of the speakers’ dialects may not be captured by the labels 
that we used. The users are asked “What dialectal region has affected the most the 
way you speak?”. Even if the dialectal background of a user is very varied (e.g. 
because they have lived in multiple dialect regions during their lives), they might 
answer just one region to this question, which can over-simplify this metadata. Simi-
larly, the age bracket of a speaker is not very easy to identify from the voice even for 
human listeners, at least for certain age groups around middle-age. Furthermore, the 
metadata classes, given to the user to select an answer from, do not necessarily rep-
resent variation in the speech styles of the speakers in the best possible way (a better 
categorisation might be found e.g. by using classes learned by a machine learning 
model), but we assume the categories do tell us something about the style, content or 
the acoustic properties of the speech. In the next section we test this assumption: if 
the metadata categories are audible in speech, we should be able to build automatic 
classifiers that recognise the metadata categories that a speech recording belongs to.

5  Gender, age, dialect, and topic classification

Using the metadata, we can build various metadata classifiers, which can later be 
used in different applications, such as: filling the missing metadata, verifying the 
correctness of the available metadata, enhancing the speech processing applications 
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with speaker information, and bias detection. For that purpose, we built and bench-
marked baseline models for gender, age, dialect, and topic classification.

The models are built using a 5-layer TDNN with dilated connections, followed 
by statistical pooling and two linear layers. This is similar to the x-vector mod-
els (Snyder et al., 2018). We will call this part audio encoder. For the dialect and 
topic classification tasks, besides the models trained on audio-only, we additionally 
trained models that utilise the available transcripts. We did that using an additional 
text encoder. In the text encoder, word embeddings are extracted using the FinBERT 
model (Virtanen et al., 2019) and processed through a bi-directional long short-term 
memory (BLSTM) network (Hochreiter & Schmidhuber, 1997). In the last stage, the 
outputs of the audio and text encoders are concatenated and passed through a soft-
max function which produces class probabilities.

As input features, we extracted logarithmic-Mel-filterbanks with 40 filters, using 
25 ms window with a stride of 10 ms. To improve the signal-to-noise ratio, we 
applied mean normalisation to each sample.

The hyperparameters for the audio encoder are given in Table 7. The text encoder 
is a 2-layer BLSTM with an input size of 768 and an output of 512. As optimiser, we 
used Adam (Kingma & Ba, 2014), with a learning rate of 1e−4 and a cross entropy 
loss.

5.1  Gender classification

Gender information plays an important role in many applications, from speech pro-
cessing (Abdulla et al., 2001) to bias detection (Park et al., 2018). Thus, having a 
good gender classifier can help us enhance the speech processing models, as well as 
aid us in detecting the biases related to gender, that those models may contain. For 
that purpose, we built two gender classifiers, using different segment lengths.

Table 7  Hyperparameters of the 
audio encoder

Layer Input size Output size Context Dilation

TDNN 1 40 512 5 1
TDNN 2 512 512 3 2
TDNN 3 512 512 3 3
TDNN 4 512 512 1 1
TDNN 5 512 1500 1 1
Statistical pooling 1500 3000 / /
Linear 3000 512 / /

Table 8  Accuracy of the models 
on the gender classification task

Model Test Multi-
transcriber 
test

3 s model 90.03 99.59
50 s model 92.65 99.59
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The audio samples used to train the first model are cut to 50 s. The reason for not 
using the whole audio samples is that some of them might be too long to process. 
Additionally, the 50 s limit of the audio should contain a sufficient amount of infor-
mation for the model to learn the task.

The gender classification models usually work with small (few seconds) audio 
segments, whereas the average length of the audio samples in our dataset is about 40 
s. To make our model more comparable to the others, we constructed another model 
that uses audio segments up to 3 s. This choice is expected to degrade the perfor-
mance of the model but will make it more reusable to other applications, where long 
segments are not available.

In Table 8, we can see how both models performed in terms of accuracy on the 
test sets (see Table 1 for set descriptions). From the results, we can observe that on 
the test set, the model using up to 50 s segments performs slightly better than the 
one using 3 s segments. This is expected, considering that longer segments contain 
more information. On the multi-transcriber test set, on the other hand, both mod-
els perform equally well, achieving almost perfect accuracy score. The significant 
difference in performance between both test sets could be attributed to the dispro-
portion between male and female speakers. The multi-transcriber test set has many 
more female speakers than male, and as we will see later, the system is better at 
detecting the female speakers.

5.2  Age classification

Like gender, age information can also be beneficial in many areas. The age of the 
speaker can have a large impact on the performance of the ASR system (Wilpon & 
Jacobsen, 1996). Having a good age classifier can help us find which age group the 
ASR system struggles with the most, allowing us to improve the model on that end. 
Additionally, the age information can provide us with clues related to age biases that 
the model might contain.

The age classification is a challenging task since there is no clear boundary that 
separates one age class from its neighbouring classes. For example, it is almost 
impossible to find a difference in speech between a 38-year-old person (age group 
31–40) and a 41-year-old person (age group 41–50). Due to that, besides the stand-
ard accuracy metric, we also used relaxed accuracy, where the neighbouring classes 
are also considered as correct predictions.

Table 9  Accuracy of the models 
on the age classification task

Model Accuracy Relaxed accuracy

Test Multi-tran-
scriber test

Test Multi-
transcriber 
test

3 s model 33.59 40.16 79.28 78.48
50 s model 42.39 52.66 86.34 89.55
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For this task, we also developed two models similarly as we did in the gender 
task. One operating on up to 3-s segments, and another operating on longer, up to 
50-s segments. This will give as a clue about what segment lengths are sufficient for 
learning the task.

In Table 9, we can see the performance of both models on the test sets, using the 
standard and the relaxed accuracy. From the results, we can see that the model using 
50 s segments performs significantly better, which indicates that more information is 
required for the model to learn this task. Additionally, by using the relaxed accuracy, 
we gained a large improvement, which suggests that most of the mistakes happen by 
confusing the actual class with one of the neighbouring classes.

5.3  Dialect classification

The participants in the Lahjoita puhetta campaign were encouraged to use their 
dialect and provide that information when recording the audio. Automatic dialect 
classification for Finnish is a challenging and underexplored task. The only previ-
ous attempt of combining audio and text modalities for Finnish dialect classification 
is a system combining FinBERT embeddings and a pre-trained Wav2Vec2 model, 
achieving good results (Hämäläinen et al., 2021).

Since traces of dialect do not occur in every word (or even sentence), we used 
longer segments for the dialect classification task. We limited the samples to up to 
50 s. The reason that we did not use the whole audio is that some samples can be 
multiple minutes long, which makes them hard to process.

Besides the acoustic information, for this task, we additionally experimented with 
enriching the input with morphological information by utilising the transcripts. To 
utilise both the audio and the transcript information, we used only the audio files 
that have corresponding transcripts. In this experiment, instead of cutting the audio 
to 50 s, we discarded the samples that are longer than that. We did so in order for the 
transcripts to match the audio.

To see if adding the transcripts has any benefit, we trained an audio-only model 
on the same samples as the model using audio and transcripts (we will refer to this 
as “audio subset”).

Lastly, instead of using the original transcripts, we experimented with the 
decoded transcripts from the initial-100 h TDNN model (see Sect. 4.1). This model 
is trained on the same data as the model utilising audio and transcripts, except 
the 100 h used for training the ASR model. This will give us an opportunity to 

Table 10  Accuracy of 
the models on the dialect 
classification task

Model Test Multi-
transcriber 
test

Whole audio 40.74 35.14
Audio + transcripts 32.66 29.20
Audio + ASR transcripts 29.19 30.97
Audio subset 39.73 38.83



1 3

Lahjoita puhetta: a large‑scale corpus of spoken Finnish with…

investigate how much the performance differs on ASR-generated transcripts and 
whether it is a good idea to decode the untranscribed part of the data and train the 
model on the whole audio and the ASR-generated transcripts.

The accuracy of the models is given in Table 10. Looking at the results, we can 
observe that the model trained on all the audio performs better than the one trained 
on the audio and the available transcripts. This could indicate that the dialect infor-
mation is predominant in the audio since the transcripts are not able to capture infor-
mation such as pronunciation and accent. Additionally, we can observe that using 
the ASR transcripts degrades the performance on the test set, but it improves it 
slightly on the multi-transcriber test set, in comparison to using the original tran-
scripts. This could mean that the words affected by the dialect are also difficult for 
the ASR model, resulting in incorrect transcriptions. Further, the audio subset model 
performs better than its counterpart that additionally uses the transcripts. This could 
indicate that instead of providing additional information, the transcripts introduce 
noise to the model.

Generally, the accuracy of the models is relatively low in comparison to the 
other metadata classification tasks. This indicates that the dialect classification in 
this dataset is a very difficult task and more advanced methods might be required in 
order to get optimal results. In general, the use of dialects in Lahjoita puhetta may be 
weaker and less frequent than in datasets where the particular focus on dialects may 
have affected the choice of participants and collection methods.

5.4  Topic classification

During the collection of Lahjoita puhetta, the participants were asked to choose a 
theme and then talk about topics within the theme. Due to the large number of top-
ics, we used the themes (listed in Sect. 2.1) as labels, with the only difference being 
that we combined the three “Media skills” themes into one.

Similar to the dialect classification, for this task we also cut the audio segments to 
50 s and trained an audio-only model on the whole data.

Topic classification is often done on text. For that purpose, we trained a text-only 
model on the samples that are 50 s or less. Additionally, we tried utilising the acous-
tic and the morphological information by processing the audio and the transcripts 
together, just like in the dialect classification task. Furthermore, we investigated the 

Table 11  Accuracy of 
the models on the topic 
classification task

Model Test Multi-
transcriber 
test

whole audio 65.65 73.93
transcripts 82.06 88.65
ASR transcripts 82.06 86.52
Audio + transcripts 81.34 87.94
Audio + ASR transcripts 80.14 86.52
Audio subset 57.10 69.47
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performance of the model, when provided with ASR decoded transcripts, instead 
of the gold-standard ones. The ASR transcripts are generated using the same ini-
tial-100 h TDNN model as the one in the dialect classification task.

Lastly, we investigated the effect of the audio on the topic classification task. For 
that purpose, we developed an audio-only model that is trained on the same data as 
the models using the original transcripts.

The results for the topic classification task are given in Table 11. From the table, 
we can observe that the model that uses the original transcripts achieves slightly 
better results than the one using the ASR-generated transcripts on the multi-tran-
scriber test set, whereas on the test set, they perform identically. Additionally, the 
models using only the transcripts achieve significantly better results than the model 
using the whole audio, even though the audio-only model was trained on far more 
data. When jointly using the audio and the transcript information, we can see that 
there is a small degradation in comparison to using only the transcripts. This could 
indicate that the audio does not provide any additional information that would help 
the model. Another thing to consider is that the audio encoder that we are using 
is quite small, so a bigger model might be necessary if we want to benefit more 
from the acoustic information. When we combined the audio and the ASR-generated 
transcripts, we observed only a small degradation in the performance, in compari-
son to using the audio with the original transcripts. This could indicate that cer-
tain keywords affect the topic classification and the ASR system is good at detecting 
them. Using this knowledge, in future experiments we can generate transcripts for 
the untranscribed part of the data and use them in addition to the audio, to train a 
big model that utilises audio and transcript information. From the results obtained 
on the model trained on the subset of the audio, we can see that there is a significant 
degradation in the results in comparison to the model that uses only the transcripts. 
This confirms that the textual information content is sufficiently dense for this task. 

Fig. 7  Metadata accuracy per class on the test set
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Generally, the models were able to learn the task relatively well, while still leaving 
some space for improvement, especially on the audio side.

5.5  Analysis of metadata classification errors

To further investigate which classes are challenging for the metadata classification 
models, we evaluated them on each class individually. The results of the analysis are 
given in Fig. 7. Additionally, in Fig. 8 we can observe the number of samples per 
class that were used during the evaluation.

In the gender classification case, we can see that the model performs significantly 
better on the female examples. The reason could be that there is a high disproportion 
between male and female samples in the training set.

On the age classification task, we can observe that the model performs better 
on the lower age groups and struggles with the elderly, especially the ones in the 
91–100 age group, where the model misclassified all the samples.

On the dialect classification plot, we can see that the model misclassified all the 
samples from several dialect groups. This is not surprising, considering that many of 
those dialect groups have only a couple of samples and the general accuracy of the 
model is low. To further investigate the mistakes that the model made on this task, 
we plotted a confusion matrix, presented in Fig. 9. From the matrix, we can see that 
the HÄME dialects are mostly confused with TRAN and SAVO, which are neigh-
bouring dialects in our dialect grouping. Similar observations can be made with the 
CNO dialect group, which is mostly confused with its neighbouring SAVO group.

On the topic classification plot, we can see that the model is performing well on 
almost all the classes. The weakest one seems to be the Rated R class, which gener-
ally has a low number of samples in the training and testing sets.

Fig. 8  Metadata class distribution for the test sets
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6  Possible future directions

Although we have demonstrated with multiple use-cases the usefulness of the col-
lected corpus in this article, there are still numerous possibilities to utilise the data-
set. Out of those possibilities, we plan to realise a few in the near future. Perhaps 
the most evident utilisation of the corpus is a speaker recognition system. The large 
number of speakers of various ages speaking different dialects would enable us to 
build a robust and accurate model for Finnish data. The carefully transcribed portion 
of the data would make an interesting resource for colloquial Finnish text to speech 
(TTS) systems. We hypothesise that the marked non-speech parts and disfluencies 
could be leveraged to create a more natural TTS that can hesitate, restart words, 
and make non-speech sounds at the appropriate places. The AED ASR experiments 
uncover clear difficulties with the long-form recordings in this dataset. The results 
on an ad-hoc segmented version of the development data portion were on par with 
the HMM/DNN systems’ results on the official data, which suggests that solving 
these technical difficulties would make AED systems viable approach for this data. 
The last future direction that we wish to mention concern the untranscribed part of 

Fig. 9  Confusion matrix for the dialect classification model on the test set
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the dataset. We have already demonstrated that it can be used for semi-supervised 
learning, and we plan to investigate its usefulness with other self-supervised and 
unsupervised methods. Specifically, we intend to build a truly Finnish Wav2Vec2 
model, which would be pre-trained on purely Finnish speech and fine-tuned with the 
large transcribed part of the corpus.

A similar effort for large-scale collection of donated speech for other languages 
such as the second national language of Finland, i.e. the variety of Swedish spoken 
in Finland is already on-going. Efforts for applying this collection concept and tools 
for collecting minority languages spoken in Finland are also planned.

7  Conclusions

In this paper, we presented a new, large-scale, conversational Finnish speech corpus. 
The 3600 h, out of which 1600 are transcribed, include over twenty thousand speak-
ers from all age groups and from all the regions of Finland. To ensure the high qual-
ity of the transcripts, the transcribers were evaluated using manual and automatic 
techniques. The techniques for data collection and annotation applied in this paper 
provide a resource for future similar attempts at collecting large-scale data.

To establish that the Lahjoita puhetta dataset is useful for training ASR systems, 
we built several hybrid HMM/DNN and end-to-end baseline models and made them 
publicly available. The varied ASR experiments, with the best system achieving 
21.75% WER, showed that the dataset is suitable for building such systems. This 
should also be compared with the initial word-level inter-annotator disagreement 
ranging between 13 and 20% on this data type. Furthermore, the large untranscribed 
part of the corpus can be utilised for unsupervised and semi-supervised training. 
The rich metadata provided by the participants allowed us to successfully train vari-
ous metadata classification models, demonstrating further use-cases for the dataset. 
The benchmark metadata classification models are publicly released together with 
the ASR models.

The large and diverse Lahjoita puhetta dataset will be freely available for research 
purposes, and for commercial use at a cost price. We hope this encourages research-
ers and companies to further develop language technologies and bridge the gap 
between research and commercial use.

Appendix

Transcriber instructions

The transcribers were given the following guidelines:
Speech produced continuously is written on the same line without line breaks. A 

line break is marked at each point where the speaker clearly pauses. In addition to 
line breaks, breaks or their durations are not marked or separated in any other way. 
The Finnish alphabet (a-zåäö) is used to record the verbal content of speech. Normal 
spelling punctuation, such as periods, commas, or question marks, is not included 
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in the transcription. Numbers are not used either. Words are written as accurately as 
possible in the exact form in which the speaker produced them, e.g., write “pitsaa”, 
not “pizzaa”. Do not attempt to correct any mistakes made by the speaker. Do not 
add any additional comments to the text. All words can be written in lower case. 
If the word is clearly a proper noun, a capital letter may be used. However, words 
beginning an utterance or a sentence are not capitalised.

Hyphens or periods are used for punctuation only in the following special cases: 
A hyphen indicates, for example, a missed or “incorrectly started” word, e.g. “predi- 
president” or a word from which only the remainder can be heard, or from which 
the speaker speaks only the remainder: “-sident.” In the case of a compound whose 
suffix ends in the same vowel in which the suffix begins, a hyphen may be used 
between the parts: “tila-autolla” (“with a minivan”).

When there is a point in the speech where the speaker makes vague fill-in or hesi-
tation sounds, pouts, coughs, laughs, yawns, or sighs so that the sound is clearly 
heard, and the speaker does not produce the speech at the same time, the sound can 
be marked with, for example: .fp (filled pause) can mark a complex or ambiguous fill 
or hesitation sound that is not sufficient to describe “mm”, “aa” or “öö”, .ct (clear 
throat), .cough (coughing), .laugh (laughing), .yawn (yawning), .sigh (sigh, loud 
inhalation and exhalation), .br (breath, single clearly audible in- or exhalation sound).

However, if the speaker, for example, laughs or yawns while speaking, do not 
try to include the laughter or yawn in the transliteration of the speech (for exam-
ple, using the letters h). In such situations, precisely transcribing is not useful for 
the purpose of the material. The aim is to transcribe only the verbal content of the 
speech and, if necessary, the sounds to be heard between the words.
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