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Surrogate models have been successfully used in likelihood-free inference to decrease the 
number of simulator evaluations. The current state-of-the-art performance for this task 
has been achieved by Bayesian Optimization with Gaussian Processes (GPs). While this 
combination works well for unimodal target distributions, it is restricting the flexibility 
and applicability of Bayesian Optimization for accelerating likelihood-free inference more 
generally. This problem is addressed by proposing a Deep Gaussian Process (DGP) surrogate 
model that can handle more irregularly behaved target distributions. The experiments show 
how DGPs can outperform GPs on objective functions with multimodal distributions and 
maintain a comparable performance in unimodal cases. At the same time, DGPs generally 
require much fewer data to achieve the same level of performance as neural density 
and kernel mean embedding alternatives. This confirms that DGPs as surrogate models 
can extend the applicability of Bayesian Optimization for likelihood-free inference (BOLFI), 
while only adding computational overhead that remains negligible for computationally 
intensive simulators.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Likelihood-free inference (LFI) for simulator-based models has been a topic of substantial interest during the past two 
decades for the computational modelling community (Hartig et al., 2011; Lintusaari et al., 2018). In LFI, we aim to infer 
the generative parameters θ of an observed dataset Xobs = {xobs}, whose likelihood p(xobs|θ) is intractable, which prevents 
the conventional statistical parameter estimation (Diggle and Gratton, 1984). Instead, we assume we can simulate new data 
{xθ } ∼ p(x|θ) using any feasible parameter values. We relate the probability of a parameter to how similar its simulated 
dataset Xθ is to the observed one (Hartig et al., 2011), measured via a discrepancy function. Different simulator-based 
LFI approaches have been proposed under the names of approximate Bayesian computation (ABC) (Beaumont et al., 2002, 
2009; Csilléry et al., 2010; Sunnåker et al., 2013), indirect inference (Genton and Ronchetti, 2003; Gouriéroux et al., 2010; 
Heggland and Frigessi, 2004) and synthetic likelihood (Ong et al., 2018; Price et al., 2018; Wood, 2010) in domains ranging 

✩ Additional experiments and implementation details of simulators can be found in the Supplement. All code is available through the link: https://
github .com /AaltoPML /LFI -with -DGPs.
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Fig. 1. (a) An example of a multimodal target distribution: the discrepancy �θ is bimodal for each value of the parameter θ . (b) Vanilla GP as a surrogate 
distribution is unable to fit the target (red: observed data; line and shading: GP prediction with uncertainty). (c) Deep GP surrogate is able to accurately 
model the bimodal target distribution. (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

from genetics (Beaumont et al., 2002; Boitard et al., 2016; Pritchard et al., 1999) to economics (Guvenen and Smith, 2010; 
Monfardini, 1998) and ecology (Beaumont, 2010; van der Vaart et al., 2015; Wood, 2010).

When the simulator call-time is long, the number of simulator queries has to be limited for computational reasons. 
Therefore, a popular trend in LFI literature combines traditional methods with active learning (Rubens et al., 2015; Set-
tles, 2009) to improve sample-efficiency. For instance, some neural-network-based density estimations (Alsing et al., 2019; 
Greenberg et al., 2019; Lueckmann et al., 2019; Papamakarios et al., 2019) and kernel mean embedding methods (Chowd-
hury et al., 2020; Hsu and Ramos, 2019) allow high-fidelity posterior inference with thousands of samples. A particularly 
suitable approach to LFI in this setting is to find a data-efficient surrogate to the discrepancy function, which can be used to 
derive a proxy for the unknown likelihood. Previous research by Gutmann and Corander (2016) has addressed this issue by 
using Gaussian Processes (GPs) as the discrepancy surrogates and applying Bayesian Optimization (BO) as an efficient search 
strategy. This approach drastically reduced the number of simulations required for accurate inference, to the order of only 
hundreds.

However, inferring simulator-based statistical models often requires approximating too complex distributions to be ad-
equately represented by GPs, especially in the high-dimensional case. In particular, multimodal distributions (Franck and 
Koutsourelakis, 2017; Li et al., 2021; Shaw et al., 2007) still are a serious problem for the current LFI methods (Fig. 1). 
Sequential neural density estimation methods, based on Masked Autoregressive Flows (MAFs) and Mixture Density Net-
works (MDNs) (Papamakarios et al., 2017, 2019), use powerful deep network models to address this issue. However, to our 
knowledge, no current method is flexible enough to handle multimodal target distributions, unless given numerous samples 
(beyond hundreds) which would, however, be infeasible for computationally costly simulators. Our research hypothesis is 
that by adopting highly flexible Deep Gaussian Processes (DGPs) as surrogates in BO, we can simultaneously model both 
uni- and multimodal target distributions, and further cover also non-stationarity and heteroscedasticity.

In this paper, we propose three main contributions. Firstly, we solve the LFI problem for multimodal target distributions, 
with a limited number of function evaluations, which is important for computationally heavy simulators. Secondly, we 
propose quantile-based modifications for acquisition functions and likelihood approximation that are required for adopting 
Latent-Variable (LV) DGPs in BO for LFI. We provide a full computational complexity analysis for using LV-DGPs with these 
modifications. Thirdly, we give empirical evidence in several tasks, showing that the new surrogate model is able to handle 
well both uni- and multimodal targets, as well as non-stationarity and heteroscedasticity. Consequently, the new DGP-
based surrogate has a greater application range than vanilla GPs for solving LFI problems. We also show that the method 
outperforms alternatives that are based on neural density estimation and kernel mean embedding.

In the following sections, we contextualize our work in LFI literature (Section 2), introduce elements of the proposed 
solution (Section 3), evaluate our method in simulated scenarios (Section 4) and finally discuss our findings (Section 5).

2. Likelihood-free inference

The general setting for LFI is illustrated in Fig. 2. In LFI, the target likelihood p(Xobs|θ) of the observed data Xobs given 
estimated parameters θ is implicitly modelled by a stochastic simulator, when its analytical form is unavailable. Our goal is 
to estimate the posterior distribution of θ while only having the ability to draw simulated samples {xθ } ∼ p(x|θ). This work 
follows the surrogate model approach (Gutmann and Corander, 2016) to LFI with BO (Shahriari et al., 2016).

2.1. Approximate Bayesian computation

Arguably the most popular approach which has been almost synonymous to LFI is ABC. In ABC, the inference of the 
unknown parameter value that generated Xobs, is based on quantifying the discrepancy d between the summarized observed 
and synthetic datasets,

�θ := d
[

s(Xobs)︸ ︷︷ ︸
sobs

, s(Xθ )︸ ︷︷ ︸
sθ

] ≥ 0. (1)

2
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Fig. 2. LFI estimates true parameters θobs of the observed dataset Xobs. (a) First, we assume a prior distribution over the parameter space. Parameter 
values, here θ1 and θ2, are selected to generate observations through a simulator that forms synthetic datasets Xθ1 , Xθ2 (not in the figure). (b) Second, we 
replace the likelihood with an expectation over a kernel density (3). We use optional summarizing functions to transform datasets back to a single point 
of summary statistics sθ1 , sθ2 . The discrepancies between datasets �θ1 and �θ2 are measured (left) and used in a uniform kernel φ(·) (4) to determine 
which parameters likely produced the observed dataset Xobs. The expectation over uniform kernel density samples smooths the density surface, resulting 
in a likelihood approximation (right). (c) Third, we combine the prior and the likelihood approximation to compute the posterior p(θ|sobs) ≈ p(θ |Xobs). 
In the context of computationally expensive simulators, considered in this paper, each θ produces only one observation, and summaries serve as compact 
representations of observation points.

Here, d(·, ·) is a metric scalar distance (e.g. Euclidean distance) and s(·) is a summarizing function of the synthetic and 
observed datasets. After applying s(·), the resulting summary statistics are used to obtain a low-dimensional approximation 
of the likelihood,

p(Xobs|θ) ≈ p(sobs|θ), (2)

which still inherits the intractability of the true likelihood. This summary likelihood is approximated by using the discrep-
ancies (1) with a kernel density estimate φ(�θ ) (Fig. 2b) (Sisson et al., 2018),

p(sobs|θ) ≈EXθ ∼p(X|θ)

[
φ(�θ )

]
. (3)

A common choice for the kernel function φ(·) is a uniform kernel (Sisson et al., 2018):

φ(�θ ) =
{

1
ε , �θ ∈ [0, ε),

0, otherwise,
(4)

where ε is the user-defined tolerance for the discrepancy. The kernel function φ(·) quantifies the variability tolerance for 
simulated datasets, making the approximate likelihood in (3) proportional to the empirical probability of the discrepancy 
being below the threshold ε . Once the likelihood has been approximated, the Bayesian posterior over the parameter θ can 
be inferred through (Fig. 2c)

p(θ |sobs) ∝ p(sobs|θ)p(θ). (5)

In this work, we use the approximate likelihood p(sobs|θ) in an importance-weighted sampling procedure to weight 
the posterior samples and calculate p(θ |sobs). For a more detailed review of ABC methods and their recent advances, see 
(Lintusaari et al., 2017; Sisson et al., 2018).

2.2. Surrogate models in likelihood-free inference

Among the first surrogate model based solutions for the LFI problem were the synthetic likelihood approaches, where the 
simulator output is approximated with a Gaussian distribution. Wood (2010) generated several xθ , or sθ , at the parameter 
value θ , and then used them to estimate the mean and covariance of the Gaussian. Synthetic likelihoods can be formulated 
in the Bayesian framework (Price et al., 2018), which allows incorporating prior beliefs and updating them when new data 
are observed. GPs also lend themselves well to surrogate-modelling in LFI in multiple ways. Meeds and Welling (2014)
used GPs as a surrogate for the proposal distribution in Markov Chain Monte Carlo ABC, and Gutmann and Corander (2016)
modelled the discrepancy function as a function of the unknown parameters with a GP.

Sequential neural density estimators and kernel mean embedding methods are recent surrogate model approaches to the 
LFI problem. For instance, MAFs (Papamakarios et al., 2017) and MDNs (Papamakarios et al., 2019) use deep network models, 
resulting in accurate density estimations that have been suggested to require only O (102) − O (103) samples for training. On 
the other hand, kernel mean embedding approaches tackle the problem of providing an embedding of the synthetic dataset 
to a reproducing kernel Hilbert space, removing the need of finding sufficient summary statistics (Nakagome et al., 2013) 
or automatically tuning the threshold ε parameter (Hsu and Ramos, 2019). These approaches are yet to be used in BO to 
improve sample-efficiency further, as suggested by Hsu and Ramos (2019); Nakagome et al. (2013); we provide the first 

3



A. Aushev, H. Pesonen, M. Heinonen et al. Computational Statistics and Data Analysis 174 (2022) 107529

Fig. 3. GP fit with the mean (black) and variance (grey) for 12 observations (red) collected through the BO procedure. The objective function will be sampled 
next at the minimum of the acquisition function (green), which is marked with an arrow.

comparisons in Section 4. Our results show that both sequential neural density and kernel mean embedding approaches do 
not match the best methods with O (102) sample sizes, and more research into their representativity versus training cost is 
still needed.

2.3. Bayesian optimization for likelihood-free inference

The task of approximating the likelihood p(sobs|θ) can be formulated as the problem of optimizing the expectation 
(3). Since the expectation (3) for the kernel (4) grows only when simulated datasets Xθ produce discrepancy below the 
threshold ε , we need to find such θ , which minimizes the discrepancy. To solve this problem with as few sampled datasets 
as possible, we turn to BO, which has earlier been applied to LFI in a model called BOLFI (Gutmann and Corander, 2016).

BO requires a surrogate model for the objective and an acquisition function to guide the optimization process. In BOLFI, 
the discrepancy (1) is the objective, and it is approximated with a Gaussian process (GP) (Williams and Rasmussen, 2006) 
surrogate

�θ ∼ G P (m(θ),k(θ , θ ′)), (6)

which defines the prior mean and covariance of the discrepancy surface:

E[�θ ] = m(θ), (7)

cov[�θ ,�
′
θ ] = k(θ , θ ′). (8)

The GP definition implies that any finite set of distances �1:N
θ = {�n

θ }N
n=1 at alternative parameter values θ1:N = {θn}N

n=1
is jointly Gaussian:

p(�1:N
θ ) = N(�1:N

θ |m,K), (9)

where m = {m(θn)}N
n=1 ∈ RN and the kernel K ∈ RN×N contains values Ki j = k(θ i, θ j). The commonly chosen RBF kernel 

induces smooth distance surfaces that allow efficient exploration.
BO chooses the point θ t+1 where to next evaluate the objective function by minimizing an acquisition function At (·), 

such as lower confidence bound (Cox and John, 1992), at time t

θ t+1 = arg minθ {At(θ)}, (10)

At(θ) = m(θ) −
√

η2
t · v(θ), (11)

where η2
t is a user-defined tuning parameter (Srinivas et al., 2012) and v(θ ) := k(θ , θ) is the GP variance. The acquisition 

function uses the mean and variance of the GP, and is usually chosen to make a trade-off between exploitation (mini-
mization based on what is already known) and exploration (sampling in the regions of high uncertainty). See Fig. 3 for a 
demonstration.

Conventional BO works well for objectives with Gaussian uncertainties, but can be used with other surrogates as well. 
Some examples include: deep neural networks (Snoek et al., 2015) for objectives that require many evaluations, DGPs (Heb-
bal et al., 2020) for non-stationary objectives, student-t processes (Shah et al., 2013) for modelling heavy-tailed distributions, 
and decision trees (Jenatton et al., 2017) for modelling known dependency structures.

In this work, we bring BO to solve a so-far unsolved problem: likelihood-free inference for commonly occurring irregular 
distributions, in particular multimodal but also skewed distributions. This is especially difficult for computationally heavy 
simulators, for which we can afford only few evaluations, and hence, need to adopt surrogate functions that combine 
flexibility with data-efficiency.

4
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Fig. 4. Overview of the proposed LFI with DGPs approach to estimating parameter posterior p(θ |sobs). Given an observed dataset and a simulator (green 
blocks), we follow the BO procedure with the introduced DGP surrogate changes (blue blocks). Each parameter proposed by the acquisition function is run 
through the simulator to obtain a single synthetic dataset Xθ . The discrepancy �θ is then computed using the summaries sobs and sθ for the observed and 
simulated datasets with (1), and coupled with the corresponding θ to form the evidence for training the surrogate. Finally, the likelihood approximation 
p(sobs|θ) is extracted and used along with the prior p(θ) to infer the posterior p(θ |sobs).

3. Bayesian optimization with deep Gaussian processes

BO uses a probabilistic surrogate to find the posterior distribution of the parameter θ . We propose to use DGP sur-
rogates that are capable of handling multimodal and non-stationary discrepancy distributions (Section 3.1), along with 
quantile-based modifications for an acquisition function (Section 3.2) and likelihood approximation (Section 3.3) required 
for modelling such distributions in BO for LFI. In Section 3.4, we evaluate the computational overhead from the new surro-
gate. The general overview of the proposed approach is illustrated in Fig. 4.

3.1. Multimodal deep Gaussian processes

A DGP composes multiple GPs together for more flexible and powerful function representations (Damianou and Lawrence, 
2013; Dunlop et al., 2018). These representations can have a non-Gaussian, multimodal distributional form. However, DGP 
posteriors do not have explicit analytical solutions as GPs, and require variational (Salimbeni and Deisenroth, 2017) or Monte 
Carlo (Havasi et al., 2018) approximations for inference.

The quality of the predictive posterior approximation largely depends on the chosen inference method, and most DGP 
models and inference methods are not able to yield multimodal marginals. Because typically in most DGPs the outputs 
are correlated, while multiple modes, which need to be approximated, are not. Such irregularly behaved distributions can 
be modelled only when DGP latent function values f do not correlate with each other for the same input (Salimbeni et 
al., 2019). In this work, we argue that it is important to use one of the possible solutions that guarantees this property. 
In the experiments, we have used Latent-Variable (LV) DGPs (Salimbeni et al., 2019), which augment the input vector x
with latent variables w ∼ N(0, 1) concatenated into [x, w] ∈RD+1, to be used as input for the next GP layer. By combining 
different LV and GP layer architectures with importance-weighted objectives, LV-DGPs provide more flexible DGP posterior 
approximations (Salimbeni et al., 2019).

The proposed method in this paper is not exclusive to the specific LV-DGP model, and can be used with any DGPs 
that are capable of approximating multimodal marginal distributions. Therefore, we refer to LV-DGPs when we discuss this 
specific architecture, and to DGPs, whenever the results apply to multimodal capable DGPs in general. The specific LV-DGP 
method we used in the experiments is as follows; here with a LV layer followed by two GPs and denoted by LV-2GP. The 
GP priors are

f (x) ∼ G P (m f (x),k f (x,x′)), (12)

g(x) ∼ G P (mg(x),kg(x,x′)), (13)

and with Gaussian likelihoods for modelling the discrepancy (1)

p(�θ | f , g, w) = N(�θ | f (g([θ , w])),σ 2), (14)

p(�θ | f , g) =Ep(w)N(�θ | f (g([θ , w])),σ 2). (15)

We use the Importance-Weighted Variational Inference (IWVI) of Salimbeni et al. (2019) to minimize KL-divergence 
KL[χ(f, g, w)||p(f, g, w|�θ )], where χ(f, g, w) are the variational posterior approximations to be learned. The lower bound 
can be formulated as

log p(�θ ) ≥Eχ(f,g,w)log p(�1:N
θ |f,g,w) − KL

(
χ(f,g,w)||p(f,g,w)

)
, (16)

where we assume factorized variational approximation and prior,

5
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χ(f,g,w) = χ(f)χ(g)χ(w), (17)

p(f,g,w) = p(f)p(g)p(w). (18)

The variational approach of the latent variable further factorizes as

χ(w) =
∏

n

N(wn|an,bn), (19)

with an , bn being variational parameters to be optimized. The variational approximations χ(f), χ(g) represent Gaussian 
process layers, for which we use the sparse inducing point approximation (Salimbeni et al., 2019). Later in the experiments, 
we use deeper architectures that use up to five GP layers. Similarly, as in the two-layer example, these additional layers 
require inference of corresponding KL terms to form a composite function in (14) and (15). Once we have a DGP predictive 
distribution, we can use it in BO.

3.2. Bayesian optimization with deep Gaussian processes

BO requires a surrogate model, an acquisition function At (θ) and the ability to evaluate the black-box objective function. 
Here, we minimize the discrepancy �θ as the objective and use the DGP probabilistic model in the acquisition function of 
the discrepancy �θ from (15) to choose where to sample next.

In BO for LFI, BO uses GP predictive mean and variance in the acquisition function, as shown in (10). By design, the 
acquisition function focuses on accurate representation of the low-valued discrepancy regions. However, when the discrep-
ancy is multimodal, the GP mean and variance tend to overestimate the expected discrepancy value and its uncertainty. As 
a result, multimodal and more promising regions can be overlooked by BO in favour of unimodal regions. The solution we 
propose to this problem is to accurately represent the low-valued regions of discrepancy, maintaining high signal-to-noise 
ratio.

We introduce quantile-conditioning on DGP predictive samples to estimate more accurately the lowest values of the 
discrepancies. The DGP is applied to the regression problem θ 	→ �θ , resulting in estimates of mean μq(θ) and variance 
νq(θ) in the lowest quantile through a quantile function Q (·)

μq(θ) = E{�n
θ : �n

θ ≤ Q (εq)}N
n=1, (20)

νq(θ) = var{�n
θ : �n

θ ≤ Q (εq)}N
n=1. (21)

By only considering discrepancies below a (user-defined) small quantile-threshold εq (called quantile-conditioning below), 
the estimator is able to focus on accurately representing the important low-valued regions of the discrepancy surface, as 
demonstrated in Fig. 5. We use these values in the acquisition function At(θ) to get a new proposal for simulation, resulting 
in a simple quantile-based modification of the lower confidence bound selection criterion (LCBSC) (Cox and John, 1992) for 
selecting a new parameter point θ t+1 at any current time t

At(θ) = μq(θ) −
√

η2
t · νq(θ). (22)

The proposed quantile-based acquisition maintains the advantages of the LCBSC, while also enabling BO with multimodal or 
skewed uncertainties.

3.3. Likelihood approximation

Lastly, we use the mean and the variance of DGP posterior samples below a quantile εq threshold to approximate the 
likelihood (3). Gutmann and Corander (2016) constructed the likelihood approximation from the GP model of the discrep-
ancy using normal cumulative distribution function (cdf) with the discrepancy tolerance ε . This approach works well for 
unimodal distributions, where the mean and variance of the GP characterize the mode well, but for multimodal distribu-
tions individual modes are concealed when represented with the mean and variance of the whole distribution. Moreover, 
only the modes that correspond to low-valued discrepancy regions are likely to produce the observed dataset and, hence, 
should be considered in the likelihood approximation. Here, we filter out all DGP predictive posterior samples that are above 
quantile-threshold to focus on samples from the low-valued discrepancy regions:

p(sobs|θ) ∝ F

⎛
⎜⎝ ε − μq(θ)√

νq(θ) + σ 2

⎞
⎟⎠ , (23)

where F (·) is the cdf of Gaussian with mean 0 and variance 1, μq and νq are the mean and the variance of DGP posterior 
sample below the quantile-threshold εq , ε is a tolerance from (4) and σ 2 is the Gaussian likelihood noise from (15). The 
quantile-threshold εq depends on the signal-to-ratio noise in the simulator. For instance, εq = 0.3 assumes that there is a 
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Fig. 5. Gaussian fit (red) before and after applying quantile-conditioning on GP and DGP predictive samples for the true density (green). GP predictive 
samples (blue) tend to overestimate the uncertainty of the true density (green) for the whole distribution (a) and for the lowest quantile (b) (with εq = 0.3). 
At the same time, DGP predictive samples (blue) exhibit similar behaviour on the whole distribution (c), but with quantile-conditioning (d) result in a more 
accurate and narrow approximation of the low-valued discrepancy �θ region, characterized as a Gaussian with the mean μq and variance νq . This can be 
seen by comparing how closely the Gaussian curve (red), built on top of samples below the quantile-threshold (blue), estimates the low-valued discrepancy 
region of the true density (green). Predictive samples that are above the quantile-threshold are marked with orange.

signal in the 0.3 quantile. Similarly, as in BOLFI, ε is set to the minimum value of the μq(·), so as the number of predictive 
samples grows, the approximation in (23) becomes more accurate.

In summary, we have introduced a way for DGP surrogates to handle irregularly-behaved marginal distributions in the 
context of BO, by proposing a quantile-based likelihood approximation and acquisition rule.

3.4. Computational overhead

The computational overhead of having a more complex surrogate is negligible if the simulator is computationally ex-
pensive. DGPs, as a more flexible model, require more time for training and prediction, compared to GPs. There are three 
major stages of the BOLFI Algorithm 1, where the surrogate plays a role: initialization, BO updates and posterior extraction. 
In this section, we analyse the increase in time complexity caused by switching to multimodal capable LV-DGPs instead of 
traditionally-used GPs at every stage. We consider a LV-DGP architecture with l GP layers, introduced in Section 3.1, and 
sparse approximations of GPs in our analysis.

Initialization. At this stage of the algorithm, the simulator creates initial observations and trains the surrogate model. Sparse 
GPs require O (m2ndθ ) cost for inference, and O (mdθ ) and O (m2dθ ) for predicting the mean and variance respectively. Here, 
m is the number of inducing points, n is the number of initial data, and dθ is the dimensionality of a parameter vector. 
LV-DGPs, on the other hand, are using sample average of k terms (importance-weight samples) to replace the latent variable 
layer, resulting in O (lkm2ndθ ) for training, and O (lkmdθ ) and O (lkm2dθ ) for the mean and variance prediction.

BO. Once the surrogate model has been trained, the BO procedure starts. It consists of minimization of the acquisition func-
tion, simulation of data, and optional surrogate model hyperparameter optimization or retraining (in our implementation, 
we do this last step at the final stage). Again, when the simulator is fast, the acquisition function minimization becomes 
the computational bottleneck of this stage. We used L-BFGS-B optimization (Zhu et al., 1997) for finding a minimum of the 
acquisition function (22) with the cost O (tdθ Ai), where t is the number of steps stored in memory by parameter declaration 
(the limited memory BFGS method does not store the full hessian but uses this many terms in an approximation to it), i is 
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Algorithm 1: BOLFI algorithm with DGPs.
Data: Datasets xobs , N initial simulation budget, S BO simulation budget
Result: Posterior p(θ |xobs)

sample N times from the prior θ1:N ∼ p(θ);

simulate synthetic datasets X1:N
θ = g(θ1:N );

compute discrepancies �1:N
θ , Eq (1);

initialize DGP as θ1:N 	→ �1:N
θ ;

train DGP with pairs {θ1:N , �1:N
θ };

starting BO procedure;
while current simulation budget < S do

acquire new θ ′ , Eq (22);
simulate new datasets x′

θ = g(θ ′);
compute discrepancy �′

θ , Eq (1) ;
augment DGP data with {θ ′, �′

θ };
end
retrain DGP;
extract result (find μq(·) minimum value);
extract posterior p(θ |xobs), Eq (23);

the number of initialization points and A is the cost of the acquisition function call. Further decomposition of the acquisi-
tion function complexity requires computation of DGP mean and variance, bounded by O (lkm2dθ ) cost, corresponding to the 
DGP predictive variance, or O (p2), corresponding to calculation of the quantile-conditioning based on p predictive samples. 
Finally, when the acquisition function minimum is found, the points in the batch are calculated by adding an acquisition 
noise to its value.

Posterior extraction. As the final stage, the posterior is extracted from the trained surrogate. This is performed by sampling 
the prior S times, setting the threshold ε (as the minimum of either μ(·) or μq(·)), and then reweighing the samples by 
using (23). The prior sampling and importance weighted resampling are less computationally intensive than finding the 
threshold and calculating the weights, where DGP prediction plays an important role. The threshold is found by minimizing 
the DGP mean function with L-BFGS-B minimization that requires O (tdθμi) cost, where μ is the cost of the DGP mean 
function O (lkmdθ ). And applying Equation (23) has complexity of O (lkm2dθ S) or O (p2), since it requires calculating DGP 
predictive mean and variance for S samples conditioned on the quantile-threshold εq .

In summary, the increase in complexity from switching GPs to LV-2GPs is O (lk) times for all three stages. In practice, 
k is a relatively small number ranging from 5 to 20 and l is from 2 to 5. Additionally, the cost of calculating the quantile-
threshold should rarely exceed the cost of calculating predictive mean and variance with predictive samples, ranging from 
10 to 100.

4. Experiments

We study the merits of DGP surrogates in BO, first in illustrative demonstrations and then in four case studies. Our 
main goal is to reduce the number of required simulator evaluations, which is important for computationally intensive 
simulators. Section 4.1 describes the experimental setup, simulators and comparison methods that were used. In Section 4.2, 
we consider the simplest deep LV-2GP architecture of the LV-DGP model and analyse its advantages against traditionally 
used GPs. In Section 4.3 we compare LV-DGP architectures with neural density estimation and kernel mean embedding 
approaches. The results of the experiments are summarized in Table 2 with details of the findings discussed in individual 
sections afterwards.

4.1. Experimental setup

In each simulation experiment, we select true parameter values, and use them to produce the observed data set with 
the simulator. Each experiment is repeated 100 times, the runs differing in the choice of random seeds that affect the 
observations used as initial evidence. We limit the number of total simulator calls to 200 with 100 initial evidence points 
drawn from the prior before the active learning procedure starts; when targeting computationally heavy simulators this 
is already plenty. In Section 4.2 we also study how the performance of the GP and DGP surrogates changes with fewer 
observations and initial evidence, where a half of all observations come from initial evidence points.

When evaluating goodness of the posterior approximations of θ , we estimate the ground-truth posterior numerically by 
the reference-table acceptance-rejection ABC (Cornuet et al., 2008) with 108 simulations, selecting 0.001% samples with 
the lowest discrepancy (ε is calculated to guarantee the exact amount of samples) to represent the posterior distribution. 
Closeness of the estimated posterior psur(θ |sobs) to this ground-truth reference posterior pref(θ |sobs) is measured with the 
empirical Wasserstein distance (Bernton et al., 2019; Genevay et al., 2016) that shows similarity of the estimated surrogate 
posterior to the ground-truth, defined as
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W D(y1:n, z1:n) = inf
σ∈Sn

1

n

n∑
i=1

||yi − zσ (i)||2, (24)

where Sn is the set of permutations of {1, ..., n}, yi ∼ pref(θ |sobs) and zi ∼ psur(θ |sobs). Along with the Wasserstein distance, 
we also report the computation time of all experiments in the Supplement.

4.1.1. Simulator descriptions
In our experiments, we used eight different simulators, four of which are toy examples (TEs) and four are case studies. 

The toy models were designed to demonstrate specific properties of the surrogate model: non-stationarity, multimodality 
and heteroscedasticity. The case studies represent more difficult problems that often occur in practice. They have multi-
dimensional parameters and cover both unimodal and multimodal cases. A more detailed description of each simulator is 
provided below.

Demonstrations: non-stationarity, multimodality and heteroscedasticity. The discrepancy function of the first demonstrator TE1 
is non-stationary with the ground-truth θobs = 50. The simulator function gTE1(θ) generates data from the sum of three 
Gaussian density functions with different means and variances,

gTE1(θ) = N(θ |30,15) + N(θ |60,5) + N(θ |100,4) + ω, ω ∼ N(0,0.005). (25)

The second example, TE2, has a multimodal discrepancy function with the ground-truth θobs = 20. The simulator function 
gTE2 randomly ‘chooses’ one of two logistic functions, and generates the observation according to

gTE2(θ
′) = ω1 · θ ′

1 + θ ′ + (1 − ω1) · 1

1 + θ ′ + ω2, (26)

where θ ′ = exp(−0.1(θ − 50)), ω1 ∼ Bernoulli(0.5) and ω2 ∼ N(0, 0.01). The simulator function creates several modes in the 
observation space, that later transfer to the discrepancy function.

The discrepancy function of the third demonstrator TE3 is heteroscedastic with the ground-truth θobs = 20. The output 
of the simulator is generated as a sum of samples from two different beta distributions that are defined through the input 
parameter θ . The sum of two random variables defined on the interval [0, 1] were used as a simulator:

gTE3(θ) = ω1 + ω2, ω1 ∼ Beta(θ + 1,5), ω2 ∼ Beta(5, θ + 1). (27)

Finally, the fourth demonstrator TE4 exhibits both multimodality and non-stationarity in its discrepancy function. In this 
example, the posterior of parameters has three modes with different peak levels. The simulator data comes from one of two 
functions with added uniform noise

gTE4(θ) = 100 · ω1 · N(θ | 0,50) + (1 − ω1) · N(θ | 60,55) + ω2, (28)

where ω1 ∼ Bernoulli(0.4), ω2 ∼ Unif(0, 10−4) and θobs = 60.
In all TEs, a uniform prior on the interval (0, 100) was used for simulator parameters, with the Euclidean distance 

calculated directly on observations, since they have a single dimension and summary statistics are not needed.

Birth-Death model. The Birth-Death model (BDM) describes tuberculosis transmission in the San Francisco Bay Area, as 
formulated by Tanaka et al. (2006). Given epidemiological parameters θR1 , θR2 , θβ, θt1 , the model simulates tuberculosis 
outbreak dynamics in a population and outputs cluster indexes of observed transmission cases. Our goal is to approximate 
the posterior distribution P (θR1 , θR2 , θβ, θt1 |xobs), where xobs was generated with the vector of ground-truth parameters 
(5.88, 0.09, 192, 6.74). These ground-truth values were inferred by Lintusaari et al. (2019) from the summaries of real data 
(Small et al., 1994).

We used the weighted Euclidean distance as the discrepancy measure with the summaries and the corresponding dis-
tance weights shown in Table 1. The same hierarchical priors as in Lintusaari et al. (2019) were used:

θburden ∼ N(200,30), θR1 ∼ Unif(1.01,20),

θR2 |θR1 ∼ Unif(1.01, (1 − 0.05 · θR1)/0.95),

θt1 ∼ Unif(0.01,30).

For detailed interpretation of simulator parameters and summaries, see Lintusaari et al. (2019). The implementation of the 
simulator model can be found in the Supplement.

Sound localization. In the sound localization (SL) model (Forbes et al., 2021), there are two different pairs of microphones, 
which are randomly chosen for detecting the sound source in a 2D scene. The positions of the microphones are set at 
locations (-0.5, 0), (0.5, 0) for the first pair, and (0, -0.5), (0, 0.5) for the second pair, while the position of the sound source 
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Table 1
Summaries for the BDM case and their weights in the discrepancy function (Lintusaari et al., 2019).

Summary statistics Weight

Number of observations 1
Number of clusters 1
Relative number of singleton clusters 100/0.60
Relative number of clusters of size 2 100/0.4
Size of the largest cluster 2
Mean of the successive differences in size among the four largest clusters 10
Number of months from the first observation to the last in the largest cluster 10
The number of months in which at least one observation was made from the largest cluster 10

θ = (θx, θy) is unknown. Our goal is to identify the location of the sound source by simulating the interaural time difference 
(ITD) (Wang and Brown, 2006) based on the randomly chosen pair of microphones (m1, m2)

ITD(θ) = | ||θ − m1||2 − ||θ − m2||2 |, (29)

fθ (y) = Sd(y; ITD(θ) · Id,σ
2 · Id, ν), (30)

where Sd is the d-variate Student t-distribution with a d-dimensional location all equal to ITD(θ ), the scale factor for 
the diagonal matrix σ 2 = 0.01 and degree-of-freedom ν = 3. We use Euclidean distance with the mean and the standard 
deviation of the y = (y1, ..., yd). The uniform priors were assumed on the interval [−2, 2] for both parameters.

Cosmological inflation. The Cosmological inflation (CI) model, as proposed by Sinha and Souradeep (2006), predicts the power 
of a cosmological spectrum P , based on its physical properties: the governing factor of exponential decay θα , the variance 
of the fluctuations θAs , the infrared cut-off θkc , the scalar spectral index θns , and the ratio of inflationary potential θR∗ . The 
simulation is defined through the transfer function T 2(y, θR∗), where y = θkc /k∗ and k∗ ∼ Unif(8 · 10−4, 85 · 10−5),

T 2(y, θR∗) = 1 − 3 · (θR∗ − 1) · 1

y
·
[(

1 − 1

y2

)
· sin2y + 2

y
· cos2y

]
+ 9

2
· θ2

R∗ ·
1

y2
·
(

1 + 1

y2

)
·
[

1 + 1

y2
+

(
1 − 1

y2

)
· cos2y − 2

y
· sin2y

]
, (31)

P = θAs · (1 − e(0.75y)θα ) · θθns −1
kc

· T 2(y, θR∗). (32)

In the experiments, we used the ground-truth values (0.96, 0.0003, 0.58, 0.75, 3.35), based on the analysis of the Wilkin-
son Microwave Anisotropy Probe data (Bennett et al., 2003) by Sinha and Souradeep (2006). The Euclidean distance with no 
summary statistics was used for inference, with the same priors as in (Shaw et al., 2007):

θα ∼ Unif(0,10), θAs ∼ Unif(2.7,1.3), θkc ∼ Unif(10−7,10−3),

θns ∼ Unif(0.5,1), θR∗ ∼ Unif(0,1).

Navigation World. The Navigation World (NW) model (Abel, 2019) is a simplified planning environment based on a grid 
world, where an agent needs to reach a target on a map (Fig. 6a). The agent moves in four directions (up, down, left and 
right) and receives a reward based on the colour of the tile it visits (e.g. +100 for reaching the goal, -500 for the black 
cell). We formulate our inference task as an inverse-reinforcement learning problem, where the goal is to approximate the 
multidimensional distribution over the parameters of the Q-learning agent’s (Littman, 1994) reward function operating on 
the NW map.

The NW agent learns in a stable environment, and then has to operate in a stochastic “real world”. The agent always 
starts at a fixed position and explores the environment with no step cost. It is first trained on the map, and after a certain 
number of training episodes, we ask it to sample a trajectory (e.g. green trajectory in Fig. 6a). However, this time, when we 
sample the trajectory, the agent can slip into an adjacent cell by accident (red trajectory in Fig. 6a). This may lead to multiple 
distinct trajectories with different rewards, causing multimodality in the reward space. Moreover, the agent’s policy may 
converge to multiple optimal solutions, depending on the training initialization, which also contributes to multimodality 
that causes multiple trajectories for the same parameter setting. In reinforcement learning, when an optimal policy or 
rewards have multiple modes (Barrett and Narayanan, 2008; Kormushev and Caldwell, 2012), the solution to the inverse 
problem becomes particularly challenging (Franck and Koutsourelakis, 2017; Li et al., 2021).

The experiments were conducted on a more complex map, with tiles of five different colours corresponding to different 
rewards, shown in Fig. 6b. The simulation starts after setting the reward parameters for each colour (θgreen, θpurple, θred, 
θwhite, θyellow), which are also simulator parameters we infer, and then proceeds to train the Q-agent for 8,000 episodes 
in a completely deterministic environment. Once the agent is trained, we sample 5 trajectories and learn their individual 
summaries: number of turns, number of steps and the reward. For example, a trajectory with summaries (9, 24, 51) is 
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Fig. 6. (a) In the NW environment the agent (blue circle) starts at a fixed location and can perform four actions: going up, down, left and right. Since 
the environment is stochastic, the agent may deviate from the optimal green trajectory and end up in a black cell that heavily penalizes the reward. The 
episode ends once the agent reaches the goal. (b) The NW map that we used in the experiments, with an example observed trajectory shown. Our model 
needs to infer the reward cell colour parameters, given the summary statistics of the trajectory: in this case 9 turns, 24 steps, and 51 reward.

illustrated in Fig. 6b. We used the Euclidean distance between the summaries of the sampled and observed trajectories 
to fit the surrogate model, as well as independent uniform priors on the interval [−20, 0] for the simulator parameters, 
whereas true parameter values were (0.0, -1.0, -1.0, -5.0, -10.0). The implementation details of the simulator can be found 
in the Supplement.

4.1.2. Comparison methods
In this section, we specify the implementation details for the proposed LV-DGP surrogate in BOLFI and three compar-

ison methods used in our experiments: GP-BOLFI, neural-density and kernel mean embedding. First, we describe LV-DGP 
surrogates, followed by GP surrogates that were traditionally used in BOLFI. Then, we introduce two variants of neural den-
sity estimators (MAF, MDN) that have performed the best in empirical LFI experiments earlier (Papamakarios et al., 2017, 
2019). We conclude with the implementation details for the Kernel Embedding for LFI (KELFI) method that outperformed 
other kernel mean embedding alternatives in Hsu and Ramos (2019). For all three comparison methods, we used the same 
hyperparameters as in their original papers.

LV-DGPs. Here, we specify implementation details of the LV-DGP model, defined in Section 3.1. Throughout the paper, for 
referring to multiple LV-DGP architectures, we use a naming convention where the name of the architecture specifies the 
exact sequence of layers. For example, ‘LV-3GP’ refers to a DGP with a LV layer followed by three GP layers. We also used the 
LV-GP (Dutordoir et al., 2018; Wang and Neal, 2012) model in the experiments, as it shares the same input augmentation 
mechanism as the LV-DGP and following implementation details, but consists of only one GP layer.

The following LV-DGP settings performed well across all experiments presented in the paper, and we recommend them 
as defaults parameters for the method. In all GPs, we used the squared exponential kernel. The initial value for the length-
scale before optimization was set to the square root of the dimension, and the variance was fixed to 1, since the data was 
standardized. Kernel parameters and the likelihood variance (initialized with 0.01) were optimized from their initial values: 
the final layer using natural gradients (initial step size of 0.01) and the inner layers with the Adam optimizer (initial step 
size of 0.005) (Kingma and Ba Adam, 2014). Scaled conjugate gradient optimization with the maximum number of function 
evaluations of 50 was used for GPs. The quantile-threshold εq set to 0.3, so we get 6 posterior predictive samples after ap-
plying quantile-conditioning. The full results of the sensitivity analysis on the choice of εq can be found in the Supplement. 
In all LV-DGP models, we used 50 inducing points, 5 importance-weighted samples and 20 samples for predictions and 
gradients. The LV-2GP’ model is the only exception, since it was configured to match the vanilla GP complexity; it used 10
inducing points per layer, and only 2 importance-weight samples. Lastly, we draw additional comparisons with Stochastic 
Gradient Hamiltonian Monte Carlo (Havasi et al., 2018) as an alternative method instead of IWVI in the Supplement. The 
LV-DGP model was implemented in Python with GPFlow (Matthews et al., 2017). Engine for Likelihood-Free Inference (ELFI) 
(Lintusaari et al., 2018) was used as the platform for the implementations, and the proposed model is available in ELFI for 
application and further development (elfi.ai).

GPs. The vanilla GP surrogate was initially introduced for BOLFI (Gutmann and Corander, 2016). The GP model had as 
hyperparameters the lengthscale of the squared-exponential kernel lengthscale, variance and added bias component. Gamma 
priors were used for all three of them, initialized by the expected value and variance chosen based on initial standardized 
data. We used LCBSC acquisition in BO. The model was implemented in Python with the GPy package (GPy, 2012).

MAF (Papamakarios et al., 2017) is an implementation of normalizing flow that uses Masked Autoencoder for Distribution 
Estimation (MADE) (Germain et al., 2015) as building blocks, where each conditional probability is modelled by a single 
Gaussian component. In the experiments, we used the architecture with 5 stacked MADEs in the flow and 2 hidden layers, 
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containing 50 hidden units (sequential strategy for assigning degrees to hidden nodes was used) with hyperbolic tangent as 
an activation function. The model was trained with Adam optimization, using a minibatch size of 100, and a learning rate 
of 10−4. L2 regularization with coefficient 10−6 was added. The training was performed with 300 epochs in 5 batches, with 
the number of populations equal to the total number of observations divided by the number of batches. We report results 
for 200 and 1000 total observations.

MDN (Papamakarios et al., 2019) is a feedforward neural network that takes the observation sθ as an input and outputs the 
parameters of a Gaussian mixture over θ . We use an ensemble of 5 MDNs in our experiments with the same architecture: 2 
hidden layers with 30 hidden units in each with the hyperbolic tangent activation function. The parameters for optimization 
and training procedures were the same as for the MAF. We report results for 200 and 1000 total observations.

KELFI (Hsu and Ramos, 2019) is a surrogate likelihood model that leverages smoothness properties of conditional mean 
embeddings. Different strategies for adjusting marginal kernel means likelihood (MKML) hyperparameters were used for the 
experiments. For TEs, hyperparameters (ε, β, γ ) were chosen by gradient optimization, denoted as ‘All-Opt’ in the original 
paper. The initial values of (0.06, 0.6, 10−6) were used for initialization. However, for the BDM and the NW cases, we were 
unable to train the hyperparameters using gradients due to a numerical error in the original KELFI software. Therefore, 
for these cases we chose the grid based optimization strategy, denoted as ‘Scale-Global-Opt’ and shown to be the second-
best strategy in the original paper. In this strategy only (ε, β) we optimized using 100 uniformly distributed samples on the 
intervals (0.5, 1.5) and (0.05, 0.15) respectively. As for all other models, we sample only one observation per parameter point. 
Unlike the rest of the comparison methods, KELFI has not been adapted yet to use active learning strategies. Therefore, we 
report results only for the 1000 total observations.

4.2. DGPs and GPs as surrogate models

In this section, we use the LV-2GP architecture as DGPs, and compare them with vanilla GPs, as surrogates for BOLFI. The 
LV-2GP is the simplest model that combines benefits of multiple GPs and an inclusion of a LV layer. We expected DGPs to 
have advantages over GPs for multimodal cases, and hoped for them to have similar performance and data-efficiency in the 
rest of the cases. This is not obvious, since DGP, as a more flexible model, is expected to have a larger variance. However, 
the difference turned out to be negligible in practice.

We use one-dimensional TEs to demonstrate the differences between GP and DGP surrogates on four types of objective 
functions: non-stationary (TE1), multimodal (TE2), heteroscedastic (TE3) and non-stationary multimodal (TE4). Fig. 7 clearly 
shows that DGPs can handle multimodality, while vanilla GPs cannot. In the non-stationary TE1, the DGP better retains the 
shape of the larger density mass, while GPs have a tendency to accurately approximate only one of its peaks, completely 
ignoring the other. This GP problem with multimodality is clearest in the TE2 case, where GP approximates equal modes 
with a single uniform-like density, unlike DGP, who is able to capture the multimodal uncertainty quite well. The TE4 ex-
ample was shown to be challenging for both GPs and DGPs. GP seems to approximate all posterior modes with an unimodal 
density, similarly as it did in the TE2 case (only now it is skewed), while DGP in general maintains the approximation of 
the biggest mode and struggles at separating the smallest two. It is particularly difficult to separate the smallest modes, 
as they have lower probability of occurrence (0.4), which in a small data setting can be problematic. Lastly, for the TE3 
case, both models perform similarly, although DGP should have struggled more with overfitting the complex noise compo-
nent compared to GP, as it is a more flexible surrogate. Overall, the TE results strengthen our hypothesis about DGPs being 
able to handle objective functions with more irregular uncertainties, which is further confirmed with Wasserstein distances 
summarized in Fig. 8a-8d.

In the case studies, DGPs are either better or on the same level as vanilla GPs in approximating the posterior. The clearest 
advantage of DGPs is observed in the NW case (Fig. 12), where the DGP samples closely follow the true marginals despite 
multimodality of the posterior. Some minor improvements over GPs are observed in the SL case (Fig. 10); however, both 
surrogates visibly struggle with replicating the complex shape of the parameter marginals and more simulations are likely 
needed to approximate all the posterior details (see our data-efficiency experiments below). As for the higher variance, it 
is most noticeable in the BDM (Fig. 9) case. The DGP is sufficiently flexible to provide better solutions than GP, but it also 
has a higher tendency to overfit in this case. The mean Wasserstein distance (Table 2) shows only a slight advantage of 
DGP over the GP model. Lastly, the CI case (Fig. 11) has multimodality only in the subspace (θα, θkc ) (Starobinskii, 1979), 
and it is precisely where the DGP have improved approximations over the GP. In summary, DGPs unlike GPs can work with 
both multimodal and unimodal uncertainties, making them especially suitable for cases when no prior information about 
the form of the uncertainty is available.

We conducted additional experiments to evaluate the performance of DGPs and GPs under different simulation budgets 
in the considered case studies. The results in Fig. 13 show that DGP steadily improved its median performance in all four 
case studies. The most noticeable improvement can be observed in the SL and NW cases, where DGP clearly outperforms 
GP with more than some tens of simulations in NW, and with 100 in SL. This is likely related to inability of the GP to 
model multimodality, which is prevalent in these case studies. As for the unimodal BDM or partially multimodal CI, DGP 
improves with more data, in the sense of reducing the median Wasserstein distance. There is also an abrupt increase in 
variance after getting over 100 simulations, which is likely due to the parameter optimization procedure converging to 
a more flexible configuration. More data may help the optimization procedure to converge to a more accurate model, as 
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Fig. 7. Approximation quality of posteriors by vanilla GP (middle column) and DGP (right column, where LV-2GP is an instance of DGP), in four demonstra-
tion examples (rows). The figures show that DGPs maintain close approximation of the reference posterior (red lines) in TE1 and TE3; DGPs significantly 
surpass GPs in TE2 and show good improvement in TE4. Both surrogates try to model the discrepancy functions (left column), and approximate the pos-
terior (blue lines) of θ for �θ → 0. The quality of inference can be inferred from how closely surrogate posteriors psur(θ |sobs) with 100 different initial 
evidence sets follow the reference posterior pref(θ |sobs).

indicated by DGPs improving its median performance, but not the variance, with more than 150 simulations in BDM and CI 
cases. The high variance significantly hinders the DGP overall performance for these two case studies, and especially for the 
BDM case. Lastly, we also note that in all four case studies, GPs have much smaller posterior accuracy improvement with 
more data than DGPs, which means that more simulations cannot compensate for the restrictive model. The gap in flexibility 
between two model also explains their difference in the variance. In conclusion, DGPs being a more flexible model than GPs, 
can further improve the approximations with more data for both unimodal and multimodal distributions, however with a 
higher variance in high-dimensional unimodal cases. These results support our claim of DGPs being capable of modelling 
multimodal target distributions with a limited number of function evaluations.

4.3. Comparison of LFI approaches

The comparison of the proposed DGP surrogates to other LFI approaches (Table 2) show that DGPs outperform MAF, 
MDN and KELFI alternatives. Across all case studies, none of those methods achieve a performance comparable to DGPs, 
even with much more data (1000 simulations vs 200). Even though MAF and MDNs use active learning, they are trying 
to model the likelihood directly, in contrast to DGPs that model the discrepancy. The former is a more general and harder 
problem, that requires many more observations with the benefit of not having to retrain the model if the observed data 
is changed. On the other hand, KELFI does not use any active learning strategies, therefore, it was expected to have worse 
data-efficiency than DGPs. The only exception, where those alternative techniques performed better than DGPs, is the MDNs 
and MAFs in the TE1 case. This indicates that these neural density estimators have the advantage in non-stationary cases, 
although they also have much greater risk of overfitting, as shown by their poor performance in TE3. In summary, all the 
considered alternatives have the necessary flexibility to show good performance on the considered cases, however, they 
require significantly more data than DGPs, making them unsuitable for modelling irregularly behaved distributions in a 
small data setting. Therefore, DGP is the preferable candidate among them for doing LFI with computationally expensive 
simulators.
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Fig. 8. Wasserstein distance between the surrogate models (GP and LV-2GP, an instance of DGP) posteriors and the true posterior of θ; the smaller the 
distance, the better is the quality of approximations. The DGP approximations of the true posterior are better on multimodal TE2 (b), TE4 (d), SL (f), CI (g) 
and NW (h) examples, maintaining comparable performance on the rest of the cases. The white dot on the violin plot is the median, the black bar is the 
interquartile range, and lines stretched from the bar show lower/upper adjacent values.

Fig. 9. Approximation quality of posterior marginals (columns) by vanilla GP (top) and DGP (bottom) in the BDM case. While DGP surrogate posterior 
samples (blue lines) do not converge towards wrong marginals, unlike GPs, they clearly have much higher variance around true posterior marginals (red 
lines).
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Fig. 10. Approximation quality of posterior marginals (columns) by vanilla GP (left) and DGP (right) in the SL case. Surrogate posterior samples (blue lines) 
of DGP provide only a slightly more accurate approximation of the posterior marginals (red lines) than GPs due to the absence of uniform-like (flat) sample 
instances.

Fig. 11. Approximation quality of posterior marginals (columns) by vanilla GP (top) and DGP (bottom) in the CI case. Surrogate posterior samples (blue 
lines) of DGPs improve upon GPs in the joint space of parameters θα and θkc , where multimodality occurs (Starobinskii, 1979), and maintain comparable 
poor approximations to the true θ marginals (red lines) with higher variance for the rest of parameters.

We also compared different architectures of the LV-DGP model, assessing the influence of the amount of layers and 
surrogate parameters. Based on results from Table 2, the inclusion of the LV layer increased the model performance on 
simulators TE1 (only for LV-2GP), TE4 and NW, which required greater flexibility of the surrogate, and at the same time 
worsened the results for TE2 and TE3, whose discrepancy functions were simple but had complex noise components. This 
suggests that the LV layer should not be used with simple objectives and complex noise components, as there is a higher 
risk of overfitting. Moreover, the inclusion of the LV layer in the DGP architecture results only in the slight increase in the 
running time (see Table 2 from the Supplement), while performance often improves. At the same time, deeper architectures 
than 2 GPs did not show significantly better results, since they only increased the variance, which is expected, as having 
more layers implies more parameters to fit. The connection between high variance and the amount of parameters can 
be further confirmed by comparing LV-2GP and LV-2GP’ models. As LV-2GP’ model has much fewer parameters, it also 
has much lower variance than LV-2GP, proving that reducing the amount of parameters is a valid way of controlling the 
variance; however, it also comes at the cost of worse general performance. In summary, the architecture with one latent 
and two GP layers is the preferred one, since it is the simplest model that has most of the benefits from the inclusion of 
the LV layer. The configuration with the LV layer is more flexible with a higher risk of suffering from the high variance, 
while deeper than 2GP architectures unnecessarily increase the variance even further and can be considered unfit for the 
small-data setting implied by computationally expensive simulators.

5. Discussion

We introduced a novel method for statistical inference when the likelihood is not available, but drawing samples from 
a simulator is possible, although computationally intensive. The introduced method is an extension of BOLFI (Gutmann and 
Corander, 2016) where we have adopted DGP surrogates instead of GP surrogates to model the relationship of the param-
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Fig. 12. Approximation quality of posterior marginals (columns) by vanilla GP (top) and DGP (bottom) in the NW case. Surrogate posterior samples (blue 
lines) of DGPs are flexible enough to approximate all marginals of the true parameter θ posterior (red lines), though have higher variance, while GP samples 
converge to poor marginal distributions.

Fig. 13. Wasserstein distance between surrogate posteriors and the true posterior, shown in the case study experiments, as a function of the total number 
of simulations. DGP approximation accuracy scales better in the NW and SL, and demonstrates lower medians with higher variance than GP in BDM and
CI, as the number of simulations grows. The box plots were computed with distances across 100 simulations. The horizontal line on box plots shows the 
median, the bar shows upper and lower quartiles, and the whiskers indicate the rest of the quartiles.

eters and the stochastic discrepancy between observed data and simulated data. These new surrogates use quantile-based 
modifications for an acquisition function and likelihood approximation, making it feasible for LFI problems. The proposed 
extension retains the active learning property of BOLFI so that the posterior distribution is sought out with as few samples 
as possible. The flexibility of the DGPs improved the resulting posterior approximations in cases where flexibility was re-
quired, and otherwise the observed performance was similar in both cases. Especially good improvements were observed in 
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Table 2
LV-DGP models generally performed the best across all experiments (columns) and comparison models (rows). The per-
formance was measured with the Wasserstein distance (mean ± std) between the surrogate model posterior and the true 
posterior of θ , across 100 runs. Models from Section 4.2 and the best results in each column are highlighted in bold. * 
denotes models, which used 1000 simulations instead of 200 for the sample-efficiency comparison.

Model TE1 TE2 TE3 TE4

2GP 9.32 ± 2.33 9.17 ± 1.23 3.36 ± 2.76 16.77 ± 2.82
4GP 9.36 ± 2.38 9.48 ± 1.37 3.54 ± 2.59 16.56 ± 2.43
GP 8.66 ± 4.25 12.81 ± 0.31 7.34 ± 4.18 17.31 ± 1.68
LV-GP 8.92 ± 5.33 11.93 ± 2.49 8.97 ± 5.93 11.68 ± 1.27
LV-2GP’ 10.96 ± 0.89 11.39 ± 1.48 5.06 ± 2.47 10.53 ± 0.42
LV-2GP 8.62 ± 1.35 9.65 ± 2.20 5.78 ± 4.98 11.83 ± 2.28
LV-5GP 9.15 ± 1.47 10.40 ± 1.59 5.14 ± 4.34 11.94 ± 2.02
KELFI* 20.78 ± 0.23 10.27 ± 0.42 3.42 ± 1.82 17.11 ± 1.57
MAF* 4.89 ± 1.82 9.24 ± 1.01 10.57 ± 4.72 15.61 ± 1.67
MAF 6.39 ± 1.77 10.96 ± 2.27 10.30 ± 5.02 14.83 ± 2.20
MDN* 21.15 ± 2.05 10.37 ± 4.18 10.33 ± 4.67 11.14 ± 5.72
MDN 6.56 ± 4.00 12.30 ± 5.88 12.52 ± 8.69 11.53 ± 7.25

Model BDM SL CI NW

2GP 12.38 ± 6.13 0.36 ± 0.06 1.65 ± 1.05 8.85 ± 1.47
4GP 11.50 ± 5.21 0.37 ± 0.05 1.34 ± 0.70 8.55 ± 1.83
GP 11.09 ± 1.48 0.42 ± 0.06 1.86 ± 0.47 12.38 ± 1.87
LV-GP 11.16 ± 5.32 0.39 ± 0.02 1.83 ± 0.27 8.29 ± 2.06
LV-2GP’ 10.54 ± 4.13 0.39 ± 0.02 1.61 ± 0.47 6.56 ± 1.85
LV-2GP 10.87 ± 5.39 0.35 ± 0.06 1.22 ± 0.60 6.30 ± 1.34
LV-5GP 11.59 ± 5.41 0.37 ± 0.05 1.11 ± 0.62 6.84 ± 1.82
KELFI* 31.96 ± 15.40 0.48 ± 0.01 2.42 ± 1.21 14.74 ± 5.21
MAF* 26.21 ± 4.88 0.63 ± 0.15 2.89 ± 0.87 13.72 ± 1.19
MAF 31.36 ± 9.16 0.72 ± 0.19 1.93 ± 0.29 13.87 ± 0.94
MDN* 26.30 ± 4.34 0.51 ± 0.07 3.65 ± 0.34 9.31 ± 0.81
MDN 28.39 ± 4.07 0.56 ± 0.10 3.42 ± 1.23 11.63 ± 0.91

cases where the distribution of the discrepancy was multimodal, i.e. in cases where GP is known to perform poorly as an 
estimator.

The improvements from using DGP surrogates come with increased computational cost, which we demonstrated to be 
negligible for computationally heavy simulators. DGPs also had a higher variance in unimodal higher dimensional examples. 
Even though data-efficiency experiments indicated performance improvement with more observations, the problem with 
high variance persists, and is likely related to the ability to model multimodality, as comparison methods, that showed this 
ability as well, had similar variance in unimodal cases. Reducing the amount of DGP parameters (e.g. opting for ‘shallower’ 
configurations with fewer inducing points) or bringing more prior knowledge should help control the variance. We recom-
mend using DGPs in cases with multimodal target distributions, where their more expressive surrogates are needed and 
work better than vanilla GPs. If we know a GP is sufficiently flexible, more time could be spent on additional simulations 
rather than a more flexible model.

A natural progression of this work is to analyse DGP uncertainty decomposition and its propagation through layers. De-
composing the uncertainty into its aleatoric and epistemic components would allow better exploration of the parameter 
space. This is especially important when dealing with multimodal distributions, since they often have high epistemic un-
certainty that may prevent BO from exploring other parameter regions. As for uncertainty propagation, individual layers of 
DGPs can be used to learn intermediate transitions inside the simulator. Doing so would require opening the black-box of 
the simulator and incorporating these intermediate transitions as data in the training process. This additional information 
would lead to better usage of simulator time, since some futile simulations could be abandoned once their transition vari-
ables become available. In conclusion, better uncertainty decomposition and propagation can further improve data-efficiency 
of LFI, when dealing with computationally expensive simulators that have irregular noise models.

There has been a parallel work on developing surrogates for multimodal target distributions, namely GLLiM-ABC by 
Forbes et al. (2021), in which Gaussian mixtures are used to fit the posteriors and learn summary statistics. So far, it has 
been applied to only larger data setting O (105), which is different from the one we consider in this work. Further research 
on the performance of GLLiM-ABC with few hundreds of simulations is needed to draw more concrete comparisons with 
the DGP surrogates.
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