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In this article, a forward uncertainty propagation method is presented for a 2-D finite-element (FE) model in an induction
machine. This method is applied to quantify the uncertainty of input parameters, for example, dimensions and material properties,
and demonstrate their variability effect on harmonics related to the broken rotor bar (BRB) faults. To show the most influential input
parameters in the case of BRB harmonics, a global sensitivity analysis is performed from the polynomial chaos expansion (PCE)
approximation of the FE model. The results of this study indicate that BRB harmonics are highly sensitive to stator inner diameter,
rotor outer diameter, rotor bar conductivity, and core materials. Moreover, the combined variability of these sensitive input parameters
can attenuate the amplitude of the BRB harmonics 30%–90% compared to the simulation results at nominal values of input
parameters and closely match with measurement results.

Index Terms— Broken rotor bar (BRB), finite-element (FE) model, forward uncertainty propagation, polynomial chaos expansion
(PCE), sobol sensitivity analysis.

I. INTRODUCTION

BROKEN rotor bar (BRB) faults in an induction machine
can be critical due to their degenerative nature if the

diagnosis procedure cannot be performed in the incipient stage.
The diagnosis of BRB faults has been mostly performed
in the induction machine through motor current signature
analysis (MCSA) [1]. Recently, data-driven machine learn-
ing (ML) methods are becoming more popular due to fully
automatic faults analysis and better prediction accuracy even
in harsh operating conditions [2]. However, the key problem of
ML methods is that they require a substantial amount of data
in the training phase.

Realistic BRB faults data can be extracted by constructing a
measurement platform where faults are typically implemented
artificially. However, constructing such a measurement setup is
a laborious and expensive process. A deterministic simulation
model, for example, the 2-D finite-element (FE) model of
BRB can be a viable solution to produce a large amount of
labeled synthetic data for any arbitrary operating conditions.
Nevertheless, significant deviation may exist between features,
for example, the amplitude and frequency of the harmonics
of simulated and measured BRB faults data, which are often
treated as important features in ML methods [2], [3]. Such
deviation may lead to poor performance of ML methods in
the diagnosis of BRB faults. The frequency and amplitude
deviation of BRB harmonics may arise in the 2-D FE model
due to model discrepancies such as neglecting the effect of
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speed ripple phenomenon, skewness of the rotor bar, and inter
bar current [4]. In addition, the magnetic saturation level tends
to lower the effect of BRB harmonics [5].

Furthermore, uncertainty may exist in input parameters such
as machine dimensions and material properties due to manu-
facturing defects, stresses, or aging during their operational
lifetime [6]–[8]. As a result, the nominal values of these
parameters may deviate and lead to inaccurate estimation of
the amplitude of BRB harmonics. The model discrepancies
in the 2-D FE model of BRB and the effect of magnetic
saturation level on BRB harmonics were well studied in [4]
and [5]; however, no attempt has been made to investigate the
amplitude variability of BRB harmonics comprehensively due
to the uncertainty of input parameters.

We addressed the variability problem of input parameters
in the 2-D FE model of BRB and analyzed their impact on
BRB harmonics comprehensively. The proposed non-intrusive
approach provides great flexibility to calibrate the input para-
meters without modifying the FE model. The major contri-
bution of this article comes from: 1) analyzing the existing
deviation between FE simulated and measured BRB faults
data through the MCSA method; 2) identifying sensitive input
parameters to the BRB harmonics by performing Sobol sensi-
tivity analysis from the polynomial chaos expansion (PCE)
approximation of the high-dimensional FE model; and
3) quantifying uncertainty and calibrating the obtained sen-
sitive input parameters to minimize the deviation in between
simulated and measured BRB data.

II. METHODOLOGY

A. Measurements
The measurement setup was accomplished with two induc-

tion machines having the same rating as the simulated one.
One induction machine was acting as a motor where BRB
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Fig. 1. Flowchart of the proposed uncertainty propagation scheme.

faults were implemented, and another machine was working
as a load. The tested machine was fed from the grid supply,
and the loading machine was connected through an industrial
drive for the flexibility of the load variations. Details of the
measurement setup are provided in [1]. In this article, the
grid-fed data for one and two BRB faults at full load conditions
are utilized for validation purposes.

B. Proposed Uncertainty Propagation Scheme
The flowchart of the proposed forward uncertainty propa-

gation method for the 2-D FE model of BRB is shown in
Fig. 1. In step 1, a probabilistic input space is constructed
for each input parameter through a uniform probability distri-
bution function (pdf). Random realizations are drawn from
the probabilistic input spaces using the Latin Hypercube
Sampling (LHS) method. The advantage of the LHS method
is that it requires fewer samples to sufficiently explore the
input probabilistic space, which significantly reduces the com-
putational cost. Thanks to the randomization method, the 2-D
deterministic FE model can be employed for analyzing the
uncertainty propagation.

The quantity of interest (QoI) is the random time-domain
stator current signals, which are transformed into the fre-
quency domain by performing the fast Fourier transformation
(FFT). Then, BRB harmonic components are segregated from
other harmonic components present in the frequency-domain
signals. Afterward, the random amplitude of BRB harmonic
components are served as the output to build the PCE surrogate
model. The Sobol sensitivity analysis indices are computed to
identify the most sensitive parameters to the BRB harmonics
from the PCE surrogate model. In step 2, a new tolerance
level is set to only sensitive input parameters and propagated
through the FE model deterministically. Subsequently, the FFT
of QoI is performed, and BRB harmonics are segregated to
validate the simulated and measured results in step 3. In step 4,
the calibration process is continued with steps 2 and 3,
respectively, until the amplitude of simulated BRB harmonics
is closely matched with the measurement results.

The list of selected input parameters for the calibration
is provided in Table I. Uniform distribution U(θmin, θmax) is
formed between the lower θmin and upper θmax bounds for
each input parameter according to the initial tolerance level
as mentioned in Table I. The probabilistic uncertainty model
of the B-H (i.e., B is the magnetic flux density, and H is

TABLE I

LIST OF INPUT PARAMETERS FOR CALIBRATION

the magnetic field strength) curve is realized by scaling the
flux density values of a reference material law by Bi =
(1 + δi)Bref , where Bref represents the flux density values
B0, . . . , B23 in the B-H curve mentioned in Table I, and
i = 1, 2, 3, . . . , 200 is the number of realizations [8]. The
stochastic variable δi is drawn from a uniform distribution in
the range ±15% with the LHS method. Since the reference
material law is strictly monotonous, the 200 random scaled
realizations preserve this property. The 24 flux density values
are plugged into the input parameters θ23, . . . , θ46. The knee of
the B-H characteristic is found in parameters θ25, . . . , θ28. The
variability is introduced only in the magnetic flux density B
and the magnetic field strength H remains constant, which also
assists to preserve the monotonicity for individual generated
B-H curve.

A four-pole, 50 Hz, 333 V, 18 kW induction machine with
the skewed rotor bars is simulated by an in-house 2-D FE sim-
ulation software fcsmek. To simulate BRB faults, a three-
phase sinusoidal voltage supply is applied to the machine
terminal, and the three-phase stator current is computed as
an unknown quantity through the time-stepping method. The
BRB faults are implemented by setting the resistance of the
specific bars to a very high value in the circuit equation
of the rotor cage. This results in zero net current; however,
the eddy current still presents in the BRBs. Due to BRBs,
the anomalous current starts to flow through the neighboring
bars, which causes unbalanced magnetic field distribution in
the rotor core. Details of BRB faults modeling in the 2-D
FE model are provided in [9]. Stochasticity is introduced by
extracting 200 realizations from each probabilistic input space
and propagating through the 2-D FE model of BRB. Each
simulation is performed for 16.14 s with a sampling frequency
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of 10 kHz. The resulted random time-domain current signals
are transformed into frequency-domain by using FFT.

The harmonics present in the stator current are segregated
roughly into three categories such as supply harmonics, slot
harmonics, and BRB harmonics. The harmonics which are
multiples of the supply frequency fs stated as supply har-
monics fsh such that fsh = k fs , where k = 1, 2, 3, . . . is the
harmonic indices. The high-frequency principal slot harmonics
fpsh are produced due to the slotting effect of the machine
and can be expressed as fpsh = fs(k Nr ((1 − s)/p) + nw),
where Nr is the number of rotor slots, p is the number of
pole pairs, s is the slip, and nw = ±1,±3, . . . is the order
of stator winding distribution harmonics. The fault harmonics
due to BRB appears in the stator current signal depending on
slip s and supply frequency fs such that fBRB = fs(1 ± 2ks).

The randomness of true simulation model output yM(θ) can
be approximated by a finite series of polynomial expansion

yM(θ) ≈ ŷ(θ) =
P∑

i=1

αi�i(θ) (1)

where θ = [θ1, θ2, . . . , θn] are n-D random input variables,
yM(θ) are the random output variables (BRB harmonics), P is
the truncated polynomial order, � is the known orthogonal
polynomial basis function, and α̂ represents unknown coef-
ficients. Thanks to their orthogonal properties, the Legendre
polynomial basis is suitable one for the uniform pdf, which
allows efficient computation and faster convergence rate for
error minimization [10]. The unknown coefficients α̂ can
be estimated deterministically through the regression analysis
with the cost function

α̂ = arg

(
min E

[(
yM(θ) − ŷ(θ)

)2
])

(2)

where E[·] is the expectation. The orthogonal matching
pursuit (OMP) regression method is used to determine the
unknown coefficients α̂ [11]. However, other methods such
as least angle regression (LARS) can also be used to obtain
the PCE coefficients α̂ [12]. The PCE surrogate model is
constructed for individual random BRB harmonics separately,
so that the sensitivity analysis indices can be estimated inde-
pendently. The accuracy and prediction quality of the con-
structed PCE metamodel for the truncated polynomial order
P = 5 is ensured by obtaining the validation error using leave-
one-out-cross-validation (LOOCV) [12].

According to [13] and [14], the PCE model output ŷ(θ)
associated with random input parameters θ = [θ1, θ2, . . . , θn]
can be decomposed into summands of higher-order dimensions
by

ŷ(θ) = yo +
n∑

i=1

yi(θi) +
∑

1≤i≤ j≤n

yi j(θi , θ j)

+ · · · + y1,2,...,n(θ1, . . . , θn). (3)

The first-order and total order Sobol indices can be computed
from the total variance of model output in (3) and the
conditioned variances as follows:

Si = Var[E[y|θi ]]
Var[y] , STi = Var[E[y|θ∼i ]]

Var[y] (4)

Fig. 2. Segregation of harmonics in the stator current signal is indicated
by different markers. Two BRB data from 2-D FE simulation (using nominal
values of the input parameters) and measurement at full load are used for the
harmonics segregation. Note the logarithmic scale for the y-axis.

Fig. 3. Sobol sensitivity analysis of ten BRB harmonics that appear in the
frequency spectrum range 0–400 Hz of the stator current signal. (a) First-order
Si indices. (b) Total order STi indices. Higher index value indicates the most
influential input parameters.

where θ∼i = θ\θi means the sensitivity measures for all other
variables except the variable θi , and Var[·] is the total output
variance, and Var[·|·] and E[·|·] represent the conditional vari-
ance and expectation, respectively. The first term Si indicates
the main effect of each input parameter θi alone, and the
latter term STi introduces the additional effect of individual
input parameters considering the possible interactions with
other parameters θ∼i alongside their main effect. The higher
value of indices Si and STi indicates that the parameters are
more influential to the output. If the indices are purely additive
(i.e., no interaction among input parameters), then Si = STi ,
and the sum of the first-order indices are

∑n
i=1 Si = 1,

otherwise
∑n

i=1 Si < 1. In the case of PCE, the Sobol indices
in (4) can be estimated straightforwardly from the expansion
coefficients α in the post-processing stage [6], [14]. To obtain
the Sobol sensitivity analysis indices, we incorporated the
sensitivity analysis toolbox from UQLAB [15].

III. APPLICATION AND VALIDATION

BRB faults and other harmonics are segregated and pre-
sented in Fig. 2. Besides the BRB harmonics, supply harmon-
ics have appeared in both simulated and measured signals.
Moreover, slot harmonics are produced in the simulation due
to neglecting the skewness of the rotor bar. Fig. 2 shows that
the BRB harmonics deviate between simulated and measured
data in terms of amplitude and frequency.

Fig. 3(a) and (b) shows the first-order and total order Sobol
indices for two BRB data at full load. It should be noted that
the first-order and total order Sobol indices are computed for
individual random BRB harmonics separately. The obtained
results are presented together for the first ten BRB harmonics
in Fig. 3. It can be seen that few input parameters namely
stator inner diameter θ5, rotor outer diameter θ22, rotor bar
conductivity θ15, and B-H curve data θ39, θ40, θ43, and θ46 from
saturation region have significant impact on the amplitude
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Fig. 4. Calibration of the amplitude and frequency deviation of one and two
BRB harmonics at full load. Only BRB harmonics appear in the frequency
spectrum range 0–400 Hz of the stator current signal are presented. (a) First
BRB harmonic. (b) Second to fifth BRB harmonics. (c) Sixth to tenth BRB
harmonics.

TABLE II

INVESTIGATED CALIBRATION CASES IN THE 2-D FE MODEL OF BRB

of BRB harmonics. Due to high interaction among these
input parameters, first-order Sobol indices are not purely
additive; hence, the sum of first-order Sobol indices for each
harmonic is

∑n
i=1 Si < 1. Total order Sobol indices serve

the additional impact of each input parameter alongside their
main effect which are caused due to their interaction with other
parameters. Nevertheless, the main influence of the obtained
sensitive input parameters remains the same.

To investigate the variability impact, we studied four cali-
bration cases where the nominal values of the air gap (θ5–θ22),
rotor bar conductivity θ15, and the B-H curve (θ23, . . . , θ46)
are varied with a certain degree of uncertainty as reported
in Table II. The air gap is introduced as a function of stator
inner diameter and rotor outer diameter to avoid overlapping
between these two parameters. In addition, B-H curve data
(θ23, . . . , θ46) are varied with respective tolerance levels to
avoid monotonicity issues. The obtained results of one and
two consecutive BRB faults for four calibration cases are
presented in Fig. 4 and compared with simulation (nominal
values of input parameters) and measurement results. The
frequency deviation of BRB harmonics is minimized by
running the simulation at the average slip that is computed
from the average measured speed. It can be observed that
the amplitude of BRB harmonics significantly varies for four
cases. In Case IV, the amplitude deviation is significantly
minimized and fairly matched with measurement results. This
is reasonable as decreasing the value of the air gap and
the B-H curve introduce high magnetic saturation in the
machine. Indisputably, BRB harmonics are highly sensitive to
the magnetic saturation effect, which significantly reduces the
amplitude of BRB harmonics. Moreover, lessening the rotor
bar conductivity value shifts the operating point slightly, which
also contributes to lowering the amplitude of BRB harmonics.

IV. CONCLUSION

This article proposed a non-intrusive uncertainty prop-
agation scheme to calibrate the input parameters in the

2-D FE model of BRB. The PCE approximation of the FE
model provides computational efficiency for estimating the
sensitivity analysis indices. The most interesting finding is
that the amplitude of BRB harmonics is highly susceptible
to the air gap, rotor bar conductivity, and B-H curve of
the core materials. The proposed calibration approach lessens
the amplitude and frequency deviation of BRB harmonics.
The calibrated BRB faults data can be used to build robust
ML-based classifiers. This universal approach can be applied
to calibrate the input parameters of the FE model for other
types of faults, such as eccentricity. In that case, new input
parameters may add to the sensitive parameters profile with
the existing ones for BRB.
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