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2-D Analytical Model for Computing Eddy-Current Loss in
Nonlinear Thick Steel Laminations

Ismet Tuna Gürbüz 1, Paavo Rasilo 2, Floran Martin 1, Osaruyi Osemwinyen 1, and Anouar Belahcen 1

1Department of Electrical Engineering and Automation, Aalto University, 00076 Espoo, Finland
2Unit of Electrical Engineering, Tampere University, 33720 Tampere, Finland

In this article, we propose an analytical method to compute the eddy-current loss in nonlinear thick steel laminations (3–12 mm)
by considering the return path of the eddy currents. Initially, a 2-D finite-element (FE) model is applied to segregate losses measured
from toroidal material samples into hysteresis and eddy-current loss components to use them as reference. Afterward, a 2-D analytical
time-domain model is proposed for the eddy currents based on the solution of the 2-D field problem. The time-domain model is
then used to derive a simple frequency-domain eddy-current loss formulation for the sinusoidal flux density case with the inclusion
of a skin-effect correction factor, which accounts for the nonlinearity of the material. Highly accurate results are obtained from the
proposed model compared to FE reference results with a mean relative error of 5.1% in the nonlinear region.

Index Terms— Eddy currents, eddy-current loss, nonlinearity, skin effect, thick steel laminations.

I. INTRODUCTION

THE attempts in decreasing the manufacturing costs in
the construction of large-diameter synchronous machines

bring over the use of thick laminations (i.e., 3–12 mm) in
the rotor pole shoes. Although this use is efficient in terms
of the manufacturing costs, it causes additional challenges in
proper modeling of eddy-current loss due to the return path of
eddy currents, and prominent skin effect across the lamination
cross section. In order to predict the eddy-current loss for thick
laminations properly, these challenges should be accounted for
in the modeling stage.

In the literature, several studies were conducted to compute
the eddy-current loss numerically from the magnetic field
solution. In [1]–[3], the eddy currents were modeled in 1-D
along the lamination thickness by including the skin effect and
then coupled with the 2-D field solution. In [4] and [5], the
return path of the eddy currents were included and the eddy
currents were modeled in 2-D. In [6], a 2-D axisymmetric
finite-element (FE) model along the lamination cross section
with a hysteretic constitutive law was presented, and this
model was developed further in [7] by including the effect
of cutting for 12 mm thick laminations. These studies showed
that 2-D FE modeling of the eddy currents provides highly
accurate results and enables proper segregation of the losses.
However, coupling of these 2-D models along the lamination
with the 2-D field solution of an electrical machine can be
challenging and computationally inefficient.

To compute the eddy-current loss faster and in a sim-
pler way, analytical formulas were proposed and used in
the post-processing of the numerical field solution. Among
these formulas, time-domain formulas [8], [9] were derived
based on the Bertotti’s low-frequency approach [10], and
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modified to include the skin effect in the calculation. Similarly,
the frequency-domain formulas for the sinusoidal excitation
are also majorly based on Bertotti’s formula [10]. Usually,
these formulas are used for thin laminations (e.g., 0.5 mm)
considering that lamination width w is so much larger than
lamination thickness d , i.e., w � d . These models do not
provide good accuracy for the characterization of the thick
laminations, when w and d are comparable, and skin effect is
dominant even at low frequencies (i.e., 5–10 Hz).

In this article, we present a new analytical method to
compute the eddy-current loss in thick laminations with a 2-D
approach and accounting for the skin effect in the lamination
cross section. For this purpose, the eddy-current loss for
the studied samples is segregated using a 2-D FE model
presented in [7]. Afterward, a time-domain eddy-current loss
model is derived based on the analytical solution of 2-D field
problem. The FE-based segregated eddy-current loss is then
used as a reference to develop the proposed eddy-current
loss model in the frequency-domain for sinusoidally varying
flux density including a skin effect correction factor. A new
phenomenological approach for including the skin effect in the
nonlinear region is applied in the modeling. Highly accurate
results are obtained with the proposed model compared to the
FE reference.

II. MEASUREMENTS AND FE-BASED LOSS SEGREGATION

Measurements were carried out on toroidal samples cut
from typical 3, 6, and 12 mm S275JR grade structural steel
laminations used in the rotor pole shoes of large synchronous
motors. The toroidal samples are made up of different numbers
of laser-cut insulated concentric rings and have the same
external geometry. Examples of the used samples are shown
in Fig. 1(a). Magnetic measurements were carried out in the
range of 0.5–1.5 T magnetization levels, for the quasi-static
and sinusoidal excitation cases at 5 and 10 Hz, and the iron
loss density was calculated from the measured quantities. The
measurement system is described in [7] in detail.
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Fig. 1. (a) Top view and cross section of samples A, C, and E constructed
from 12 mm laminations. Samples A–E are assembled from 1 to 5 concentric
rings, which are 40, 20, 13.3, 10, and 8 mm wide, respectively. In a similar
manner, other sets are assembled by using four insulated layers of 3 mm
laminations, and two insulated layers of 6 mm laminations to form the
same external dimensions. Problem setting for the lamination cross section of
sample C constructed with 12 mm lamination is given in (b) cylindrical and
(c) Cartesian coordinate systems.

Fig. 2. Comparison of measured (circles) and simulated (solid lines) total
losses ptot with 2-D axisymmetric FE model at 5 Hz for samples A, C, and
E. Different colors illustrate different d. For each sample, ptot increases as d
increases. For a fixed d, ptot reduces as w reduces (from samples A to E).

The 2-D axisymmetric FE model presented in [7] is used for
identification of material parameters and simulation of the total
losses based on the measurement results. The model considers
the cross section of the lamination in the r z plane, along which
the current density J is aligned. The magnetic flux density B,
the magnetic field strength H , and the electric vector potential
T vectors are considered in the φ-direction [see Fig. 1(b)].
At the outer surface of the problem H = Hs(r, t). The
defined problem is solved numerically in a MATLAB-based
in-house code by using T� formulation with a constitutive
material law based on scalar Jiles–Atherton (JA) hysteresis
model [11]. The details of the formulation of the model and
the solution procedure is presented in [7]. The total losses ptot

are simulated with a mean relative error of 4.1% against the
measurements for the average magnetic flux density Bm levels
between 0.5 and 1.5 T as shown in Fig. 2.

The results from the axisymmetric case form a background
for developing the model in the Cartesian coordinate sys-
tem. This development is considered to be necessary for the
coupling of the developed model with the 2-D field solution
generally used in the analysis of electrical machines. For this
purpose, we defined a new problem setting for the lamination
cross section in Cartesian coordinate system [see Fig. 1(c)].
The lamination cross section is considered to be in the yz
plane. H(y, z, t) = H (y, z, t)ux , B(y, z, t) = B(y, z, t)ux ,
and T(y, z, t) = T (y, z, t)ux depend on the position y along
the width w and z along the thickness d , and they are

Fig. 3. Simulated eddy-current loss p2D,FE in 2-D Cartesian FE model at 5 Hz
for samples A, C, and E. Different colors illustrate different d. For each
sample, p2D,FE increases as d increases. For a fixed d, ptot reduces as w
reduces (from samples A to E). The results are similar for f = 10 Hz.

considered to be constant along the x-direction. J(y, z, t) =
Jy(y, z, t)uy + Jz(y, z, t)uz is considered to be perpendicular
to H , B and T . With the described problem setting in
Fig. 1(c), the eddy-current loss coupled with hysteresis loss are
simulated for all samples, and then segregated into hysteresis
and eddy-current losses. The segregated eddy-current loss
from FE solution p2D,FE is given in Fig. 3.

III. ANALYTICAL MODEL

The results in Fig. 3 indicate that, qualitatively, eddy-current
loss increases significantly for all samples as d increases. Also,
the eddy-current loss for each set decreases as w decreases as
also observed in [7] due to the return path of the eddy currents.
However, the quantitative changes are different, which shows
that eddy-current loss changes as a function of both d and w.
In this section, we present an analytical model for eddy-current
loss based on this dependency by taking the FE-based loss
segregation as a reference. It should be noted that for the
remainder of the article, the term pe will be used as a general
term for the eddy-current loss, and the term p2D,FE will be used
for the eddy-current loss obtained from the FE reference.

A. Two-Dimensional Eddy-Current Loss Model

For the problem defined in Fig. 1(c), considering the consti-
tutive law J = σ E, where σ is the electrical conductivity and
E is the electric field strength, and combining it with Ampere’s
and Faraday’s laws, the 2-D problem can be expressed as

∇2 H (y, z, t) = σ
∂ B(y, z, t)

∂ t
. (1)

We assume a quadratic spatial dependency for H (y, z, t) as

H (y, z, t) = Hs(t) + a(t)
(
y − (w/2)2

)(
z − (d/2)2

)
(2)

where Hs(t) is the magnetic field strength at the surface
of the lamination. Parameter a(t) = (−3/(d2 + w2))∂t B0(t)
is solved by requiring the average of σ−1∇2 H (y, z, t) over
[−(w/2)(w/2)] × [−(d/2)(d/2)] to be equal to the rate-of-
change of the desired average flux density B0(t). The material
law HFe(B) is then expressed weakly by requiring the average
of H (y, z, t) to be equal to HFe(B0). This finally gives

Hs(t) = HFe(B0(t)) + σd2w2

12(d2 + w2)

∂ B0(t)

∂ t
(3)

which resembles the 1-D low-frequency approach for
eddy-current loss [10] and reduces to it when w � d .
Average gravimetric loss density pav over one period T
of a closed cycle can be computed using (3) such that
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Fig. 4. Comparison of 1-D and 2-D low-frequency approaches p1D,low
(dashed lines) and p2D,low (solid lines) with the 2-D FE results p2D,FE (circles)
for 5 and 10 Hz. Each graph shows the eddy-current loss for samples A, C, and
E with same d. Different colors in each graph illustrate different w. p2D,low
and p1D,low are similar when w → ∞. When w ≈ d, estimation of p1D,low
is poor, while p2D,low estimates the pattern successfully.

pav = (ρT )−1
∫ T

0 Hs(t)∂t B0(t)dt , where ρ is the mass density.
When B0(t) is sinusoidal such that B0(t) = Bmsin(2π f t), the
integration of the dynamic term of Hs(t) reduces to

p2D,low( f, Bm) = σπ2

6ρ

d2w2

d2 + w2
f 2 Bm

2. (4)

Initially, the eddy-current loss for 5 and 10 Hz frequencies
are approximated with p2D,low in (4) and compared with the
FE reference p2D,FE and the 1-D low-frequency approximation
p1D,low( f, Bm) = (σπ2d2/6ρ) f 2 B2

m (see Fig. 4). Fig. 4 shows
that p2D,low successfully models the pattern of the eddy-current
loss as a function of w, which cannot be achieved with
the 1-D model. Furthermore, the eddy-current loss for the
d = 3 mm sheet at both frequencies and the d = 6 mm
sheet at 5 Hz is estimated fairly well. However, the estimation
becomes poorer for the other cases due to skin effect, which
increases as d and f increases. While the losses in the linear
region are overestimated, the losses in the nonlinear region are
underestimated when the skin effect is significant.

B. Correction for Skin Effect

In the linear case with a permeability μ, the 2-D prob-
lem in (1) can be solved analytically by separation of
variables [12]. This gives a magnetic field distribution of
H (y, z) = Hsh(y, z), where h(y, z) is

h(y, z) =
cosh

(
1+ j√

2
y
δ

)
cosh

(
1+ j√

2
z
δ

)
cosh

(
1+ j√

2
w
2δ

)
cosh

(
1+ j√

2
d
2δ

)

+
∑

m

4
mπ

sin
(

mπ
2

)
1 − j

(
mπδ
w

)2 cos
(mπy

w

) cosh

(√
2 j + (

mπδ
w

)2 z
δ

)

cosh

(√
2 j + (

mπδ
w

)2 d
2δ

)

+
∑

n

4
nπ

sin
(

nπ
2

)
1− j

(
nπδ

d

)2 cos
(nπz

d

) cosh

(√
2 j + (

nπδ
d

)2 y
δ

)

cosh

(√
2 j + (

nπδ
d

)2 w
2δ

) . (5)

Fig. 5. p2D,FE/p2D,low ratio as a function of relative permeability μr for
0.75 T < Bm < 1.5 T at 10 Hz. In each graph, the ratios for samples A, C,
and E are demonstrated for each case of d separately. Note the exponential
relationship from the presented graphs.

Here, m and n are odd harmonics and δ = 1/
√

π f μσ is
the skin depth. Due to linearity, the h(y, z) distribution can
be directly scaled to obtain any desired value of Bm, which
allows us to calculate the eddy-current loss p̃2D analytically as

p̃2D( f, Bm) = Re
{

j (2π f )Bm H ∗
s

}
with

Hs =
(

μ

wd

∫ d/2

−d/2

∫ w/2

−w/2
h(y, z)dydz

)−1

Bm. (6)

From (5) and (6), we can estimate the low-frequency limit
of the eddy-current loss by assuming that without skin effect,
the loss obeys a quadratic dependency on the frequency similar
to (4)

p̃2D,low( f, Bm) = f 2 lim
f →0

( p̃2D( f, Bm)/ f 2) (7)

where p̃2D,low is the eddy-current loss at low frequency in
linear region. It turns out that the low-frequency limit (7) does
not exactly match with (4). However, we can use (6) and (7)
to define a skin-effect factor describing the ratio between the
exact loss and the low-frequency loss in the linear region as

Flin( f ) = p̃2D( f, Bm)/ p̃2D,low( f, Bm) (8)

which is independent of Bm. Although it is difficult to obtain a
closed-form expression for (8) due to the infinite sums required
in h(y, z), we can still easily evaluate (8) by summing up the
terms until a desired accuracy is obtained. This factor can then
be used to correct the loss in the linear region.

To account for the transition from linear to nonlinear regions
after a given threshold flux-density amplitude Bt, we investi-
gated the relationship between p2D,FE and p2D,low in the range
of 0.75–1.5 T magnetization levels. In Fig. 5 the p2D,FE/p2D,low

ratio is shown as a function of the relative permeability μr

identified from the FE model for each sample.
Fig. 5 shows that the behavior of the p2D,FE/p2D,low ratio

as a function of μr for each case can be approximated by
an exponential relationship in the nonlinear region, for which
we considered the threshold Bt to be between 0.75–1 T. The
characteristics of the exponential curves for each d and w
combination are different as the significance of the skin effect
varies depending on d and w. For instance, for d = 3 mm
and w = 8 mm, the p2D,FE/p2D,low ratio is close to 1 for
each flux density value; whereas, for d = 12 mm and w =
40 mm, the ratio changes between 0.52 and 1.15 when the
flux density changes from 0.75 to 1.5 T. Furthermore, the
pattern of the curves indicates that the saturation is reached
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Fig. 6. Comparison of the proposed calculation p2D (solid lines) with the
2-D FE results p2D,FE (circles). Each graph shows the eddy-current loss for
samples A, C, and E with same d. Different colors in each graph illustrate
different w. With the included skin-effect correction factor F( f, Bm), (11)
estimates the eddy-current loss for all cases successfully.

at low permeability/high flux density values. In light of these
analyses, we define an empirical correction factor Fnon( f, Bm)
for the nonlinear region Bm ≥ Bt as

Fnon( f, Bm) = k + 1 − eτ( f )(μ(Bm)−μ0)

with

τ ( f ) = ln(k + 1 − Flin( f ))/(μ(Bt) − μ0). (9)

Here, k is the only fitting coefficient, and τ is the coefficient
which ensures the continuity at Bm = Bt so that Flin = Fnon.
Fnon( f, Bm) extrapolates to k when μ = μ0. In its final form,
the skin-effect factor F( f, Bm) can be expressed as

F( f, Bm) =
{

Flin( f ), Bm ≤ Bt (linear region)

Fnon( f, Bm), Bm ≥ Bt (nonlinear region)

(10)

which enables the calculation of eddy-current loss in 2-D with
skin-effect correction such that

p2D( f, Bm) = p2D,low( f, Bm)F( f, Bm). (11)

We assumed that Bt = 0.75 T and performed least-squares
fitting for each d and w combination separately, as their iden-
tified B–H curves in FE model vary. Therefore, τ parameters
are calculated for each permeability, and k is fit for each d
and w combination. Estimated eddy-current loss with the fit
coefficients are illustrated in Fig. 6.

Fig. 6 shows that the eddy-current loss for each case is
obtained with a high accuracy. The mean relative error for all
the cases is 8.1%. For the nonlinear part, Bm > 0.75 T, the
mean relative error is 5.1%, which shows the applicability of
the derived mathematical expression in (9). The details of the
relative error in the nonlinear region for all combinations are
given in Table I. The estimated Fnon and p2D,FE/p2D,low ratio
for 12 mm laminations are compared in Fig. 7.

The coefficients of the proposed correction factor Fnon

are kept constant for different frequencies for simplicity.
Therefore, the model estimates the exponential relationship in
average. The errors presented in Table I prove the accuracy
of the proposed method, which successfully estimates the
eddy-current loss for several cases.

TABLE I

RELATIVE ERROR IN THE NONLINEAR REGION

Fig. 7. Comparison of the p2D,FE/p2D,low ratio (circles) and estimation of
the model Fnon (solid lines) for d = 12 mm with fit parameter k = 1.54 for
w = 40 mm and k = 1.36 for w = 13.3 mm cases, respectively. The dashed
lines show the extrapolation of Fnon for μr when Bm > 1.5 T.

IV. CONCLUSION

In this article, we present two main contributions. First,
we propose a simple time-domain eddy-current model for
thick laminations. Then, we obtain a simple frequency-domain
eddy-current model for sinusoidally varying flux density and
modify it with a skin-effect correction accounting for the
material’s nonlinearity. Incorporation of the models to the
machine simulation should be investigated in further studies.
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