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Abstract
Numerous signal processing applications are emerging on mobile computing sys-
tems. These applications are subject to responsiveness constraints for user interac-
tivity and, at the same time, must be optimized for energy efficiency. Many cur-
rent embedded devices are composed of low-power multicore processors that offer a 
good trade-off between computational capacity and low power consumption. In this 
context, equalizers are widely used in multiple mobile-based applications such as 
“Music streaming” to adjust the levels of bass and treble in sound reproduction. In 
this study, we evaluate a graphic equalizer from audio, computational capacity, and 
energy efficiency perspectives, as well as the execution of multiple real-time equal-
izers running on an embedded quad-core processor of a mobile device. To this end, 
we experiment with the working frequencies as well as the parallelism that can be 
extracted from a quad-core ARM Cortex-A57. Results show that using high CPU 
frequencies and three or four cores, our parallel algorithm is able to equalize more 
than five channels per watt in real time with an audio buffer of 4096 samples, which 
implies a latency of 92.8 ms at the standard sample rate of 44.1 kHz.

Keywords  Audio systems · Real time · Embedded systems · System-on-chip (SoC)

1  Introduction

Low-power (embedded) processors play an important role for a myriad of signal 
processing applications, such as communications [1], image processing [2], visual 
detection [3], speech recognition [4], and audio processing [5], among others. In the 
era of smartphones and tablets, these energy-efficient architectures have increased 
significantly their computational capacity and are nowadays utilized in a large vol-
ume of multimedia, including video and audio processing.

 *	 Jose A. Belloch 
	 jbelloc@ing.uc3m.es

Extended author information available on the last page of the article

http://orcid.org/0000-0002-2595-1828
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-022-04495-3&domain=pdf


15716	 J. A. Belloch et al.

1 3

In this context, equalizers are widely used in multiple mobile-based applications 
such as “Music streaming" to adjust the levels of bass and treble in sound reproduc-
tion [6]. In fact, equalizing filters are used for improving the frequency response of 
loudspeakers or headphones [7–9] and for reducing the effects of room acoustics on 
the sound quality [10, 11]. A graphic equalizer consists of many filters with fixed 
center frequencies, and the gain of each filter, which is often called the command 
gain, is the only adjustable parameter [12], as shown in Fig. 1. A graphic equalizer 
can be implemented as a cascade of equalizing filters [12, 13] or as a parallel bank 
of bandpass filters [12, 14]. The parallel structure is more advantageous compared 
to the series one in terms of quantization noise performance [15], and also supports 
the parallel computation of the filter sections, leading to a performance benefit on 
GPUs, for example [16–18]. In this study, we evaluate the parallel graphic equalizer 
(PGE). Note however that here we are not utilizing the parallel structure of the filter 
for parallel computation. On the contrary, the parallellization comes from comput-
ing multiple channels in the same time. This also means that our findings are appli-
cable to series equalizers as well, or any other real-time audio algorithms that should 
be computed for multiple channels.

However, the parallel graphic equalizer (PGE) has the disadvantage that updating 
its parameters requires about hundred times more operations than the update in a 
standard equalizer [14]. A parameter update is necessary during interactive opera-
tion every time a command gain is modified. When the parameters are redesigned, 
a complex target response must be produced from the command gain values. This 
has been made more efficient by computing the target response based on minimum-
phase basis functions and a more efficient WLS design in [19].

Nowadays, there exists system-on-chip (SoC) that delivers notable computa-
tional capacity while partially retaining the appealing low power consumption. One 

Fig. 1   At the top: an example of sliders positions. At the bottom: Magnitude response approximated by 
the graphic equalizer with these sliders positions
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example of this type of system is the NVIDIA Jetson Nano board [20] which is 
based on a quad-core ARM Cortex-A57 CPU at 1.43 GHz with 4 GiB of LPDDR4 
memory, and a 128-core Nvidia Maxwell GPU. One of its main features is its low 
power consumption combined with several levels of parallelism yielding a very high 
performance per Watt. Moreover, it also offers the possibility of adjusting its energy 
consumption by reducing the frequency of the CPU cores or the GPU.

Up to now, there have been studies analyzing the computational performance 
of filtering process of the PGE without taking into account the mandatory updat-
ing process that occurs when the sliders changes (see Fig. 1) [18], as well as works 
implementing this updating process in a sequential way [21]. In this work, we ana-
lyze the performance of the whole system in terms of audio processing and energy 
consumption as a function of CPU operating frequency and number of cores used. 
The aim of this work is to find an efficient implementation which exhibits a proper 
trade-off between performance and energy consumption taking into account the real-
time constraint.

This paper is structured as follows. Section 2 offers a brief overview of the Par-
arallel Graphic Equalizer. Section 3 describes the multicore implementation. Sec-
tion 4 explores the performance of the PGE in terms of maximum number of audio 
channels that can be rendered in real time; provides a detailed analysis of the power 
dissipation; and analyzes the energy efficiency of different hardware configurations. 
Finally, Sect. 5 closes the paper with concluding remarks.

2 � Parallel graphic equalizer

Equalizers correct or enhance the spectrum of a signal in order to meet a desired 
requirement. Equalizers are widely used in music production and in sound reproduc-
tion to control the timbral balance of music [22, 23], as well as to reduce the effects 
of room acoustics on the sound quality [10]. In graphic equalizers, the user controls 
the gain of each frequency band using a set of sliders that modify the desired mag-
nitude response [12, 14, 24–26]. Common graphic equalizers control the gain at 31 
frequency bands spaced one third of an octave apart.

The basic idea of the PGE [14, 19] is that based on the slider positions set by the 
user (top plot in Fig.  1), a smooth target frequency response Ht (�n) is computed, 
where �n ( n = 1, 2, ...,N ) represents a finite set of angular frequencies. Then, the 
next step is the parameter estimation for the parallel IIR filters. The filter structure is 
composed of a set of parallel second-order sections having the transfer function

where d0 is called the direct path gain and K is the number of filter sections.
The first task in fixed-pole parallel filter design is setting the pole positions, 

which control the frequency resolution of the design [27]. It was shown in [14] that 
having two times as many pole pairs as command points and placing them logarith-
mically in frequency provides a sufficient resolution. The pole radii |pk| are set such 

(1)H(z) = d0 +

K∑

k=1

bk,0 + bk,1z
−1

1 + ak,1z
−1 + ak,2z

−2
,
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that the magnitude responses of the parallel sections meet approximately at their 
−3-dB points [14, 27]. The transfer function (1) becomes linear in its free numerator 
parameters bk,0 , bk,1 , and d0 , when the denominator coefficients are determined by 
the fixed poles. Writing (1) in matrix form yields

where � = [H(�1)…H(�N)]
T is a column vector containing the resulting fre-

quency response of the parallel filter, � = [b1,0, b1,1,… , bK,0, bK,1, d0]T is a col-
umn vector containing the free parameters, and � is a modeling matrix, which 
contains the sampled frequency responses of the second-order all-pole filters 
1∕(1 + ak,1e

−j�n + ak,2e
−j2�n ) in its odd columns, their delayed versions (multiplied by 

e−j�n ) in the even columns, and last, a column of 1’s, which corresponds to the con-
stant frequency response of the direct path. As in [14], we use a frequency-depend-
ent weighting for LS error minimization [28, 29], in the form of a diagonal matrix 
� whose values are computed by the the weighting function W(�n) = 1∕|Ht (�n)| , 
where W(�n) is a real-valued non-negative weight at frequency �n.

Finally, we compute the optimal filter parameters �opt . Note that this computation 
must be carried out each time the sliders change, since � and � are updated based 
on the slider positions:

To this end, we use the �� decomposition of the matrix � = �� , where � is an 
orthogonal matrix and � is an upper triangular matrix. Thus, the pseudo-inverse is 
computed as

where � = ��1 . Note that � = [�T
1

�]T and � = [�1 �2] . Thus, we can discard 
those elements of � that are multiplied by zeros. In order to obtain �T� , we need to 
obtain a second �� decomposition:

where �E = [�E
T

1
�]T . Now we can compute �opt as

(2)� = ��,

(3)�opt = (�T�T��)−1�T�T��.

(��)+ = (�T�T��)−1(�T�T )

= (�T�T�T���)−1(�T�T�T )

= (�T

1
�T��1)

−1(�T

1
�T )

= �−1
1
(�T�)−1�−T

1
�T

1
�T

= �−1
1
(�T�)−1�T ,

(4)�T� = �T
E
�T

E
�E�E = �E

T

1
�E1,

�opt = (��)+(��)

�opt = �−1
1
(�

E

T

1
�

E1
)−1�T (��)

�
E

T

1
�

E1
�1�opt = �T (��).
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Denoting � = �T�� , � = �1�opt , and � = �E1� , we have to solve three triangular 
linear systems to obtain �opt:

3 � Multicore implementation

The aim of this work is to analyze how an embedded quad-core processor is 
able to manage a multichannel parallel graphic equalizer. To this end, we lever-
age OpenMP [30] to parallelize both the computation of the filter coefficients by 
using the weighted least squares method, and the filtering process that will be 
done through each one of 62 second-order sections that compose each one of the 
channels to be processed, as shown in Fig. 2. Note that all channels can have dif-
ferent equalizer settings, so each channel needs to compute its coefficients sepa-
rately. That means that different OpenMP threads can perform the whole steps of 
different equalization in parallel: for each equalization, the thread first computes 

(5)
�

E

T

1
� = �,

�
E1
� = �, and

�1�opt = �.

Fig. 2   Parallel implementation of the two steps of the multichannel parallel graphic equalizer: Computa-
tion of coefficients and filtering process
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the coefficients of a filter and then sequentially executes the multiplications and 
sums that constitute the filtering operations of an IIR filter. Thus, the openMP 
threads that are shown at the bottom of Fig. 2 are the same that are shown at the 
top. In fact, the red arrow at the figure shows the flow of the execution. Note that 
if we had enough computational resources, we could perform all the equaliza-
tions in parallel without any kind of communication or synchronization among 
the OpenMP threads.

In order to execute the operations that update the coefficients of the filter, we 
use various software libraries for numerical linear algebra, such as LAPACK 
(Linear Algebra Package) [31] and BLAS (Basic Linear Algebra Subprograms) 
[32]. Since we are dealing with matrices and vectors of small sizes, instead of 
using the multi-threaded versions of these libraries, we use their sequential ver-
sion in combination with the parallelism provided by OpenMP to equalize differ-
ent channels in parallel. Table 1 shows the routines that have been used in order 
to carry out the updating computations of the filters coefficients.

3.1 � Evaluation platform

We have performed our experiments in a Jetson Nano development kit, which is 
a platform launched by NVIDIA in 2019. It combines low cost, high computa-
tional performance and low power consumption. Our platform contains a quad-
core ARM Cortex-A57 processor, an NVIDIA GPU with 128 cores and a Max-
well architecture, and four GiB of LPDRR4 memory, among other components to 
develop all kind of applications.

All our experiments were executed in the A57 multicore processor designed 
by ARM implementing the ARMv8-A 64-bit microarchitecture. It contains two 
MiB of L2 cache, 48 KiB of L1 instruction cache and 32 KiB of L1 data cache. 
Each core includes a vector floating point unit and supports the NEON SIMD 
extension.

Table 1   Routines of LAPACK 
and BLAS that have been 
used for implementing the 
coefficients update of the filters

Operations Description Routine

� ← ��
1

Weighting of matrix �
1
. –

� is a diagonal matrix
� ← �� Element-wise multiplication –

� is a diagonal matrix
� ← �T� Vector-Matrix Multiplication xgemv

�
E1

← � Computation of the � matrix xgeqrf

from the �� decomposition of E
� ← �

E

T

1
∖� Solving xtrsm

� ← �
E1
∖� Three triangular

�opt ← �
1
�� Linear systems
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4 � Experimental evaluation

4.1 � Experimental parameters

In this section, we show the experimental evaluation of the parallel graphic 
equalizer on the four cores of the Cortex-A57 processor. In the experiments, we 
have analyzed the effects of using from one to four cores both in terms of execu-
tion time and energy consumption of the algorithm. We have evaluated the effect 
of using the 14 different frequencies allowed by the A57 processors, which vary 
from 102 to 1479 MHz.

We have performed experiments using different buffer sizes varying from 64 
to 8192 samples. One of the goals of our evaluation is to assess the effect of the 
buffer size in the maximum number of channels that can be processed in real 
time. In addition, the experiments have been carried out with two main objec-
tives. The first objective was to find the combination of number of cores and fre-
quencies that maximizes the number of channels that can be processed in real 
time without taking into account the power consumed by the device. The second 
objective was to take into account the power consumption and find the optimal 
combination of number of cores and frequencies that allows to process the maxi-
mum number of channels per watt in real time.

4.2 � Execution time

First, we analyze the evolution of the execution time of the algorithm with the 
number of channels and the effect of parameters such as the buffer sample size 
and the number of CPU cores. We run our first experiments at maximum CPU 
frequency (1479 MHz) and we use an audio buffer size of 4096 samples, which 
implies a real-time threshold of 92.8 ms at the standard audio sampling frequency 
of 44.1 kHz.

Figure 3 shows that the execution time increases linearly with the number of 
channels and that it can be substantially reduced by using more cores. As a con-
sequence, by increasing the number of cores we can also increase the number 
of channels that can be processed in real time. For example, if we execute the 
sequential version of the algorithm in one core we can process up to seven chan-
nels in real time. However, if we execute the parallel version using the four cores 
of the CPU, we can process up to 27 channels in real time.

To analyze the advantage of using more CPU cores we show in Fig. 4 the speed-
up obtained in the same experiments shown in Fig.  3. If we take as optimum a 
speed-up equal to the number of cores, then we obtain the optimal speed-up when 
using two and three cores and near the optimal when using four cores. The saw-
tooth pattern shown by the lines is due to the load balancing effect on the different 
cores. That is, we obtain the best speed-up when we process the same number of 
channels in every core. Logically, when we increase the total number of channels to 
process, the load imbalance is reduced and so is the height of the teeth.
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Next we analyze the effect of increasing the buffer size on the maximum num-
ber of channels that can be processed in real time. Figure 5 shows that the number 
of channels increases at a steep rate for small buffer sizes, but tends to converge 
to a maximum for larger sizes of the buffer. This can be explained by the fact that 
the computational load is made up of two factors: first, the computation of the 
filter coefficients, which is done only once for each buffer, and second, the filter-
ing process, which is applied sample by sample, and thus depends on the buffer 
size linearly. Therefore at small buffer sizes, where the coefficient calculation 
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dominates the computational load, increasing the buffer size decreases the aver-
age load significantly, thus increases the number of channels we may process. 
In contrast, at larger buffer sizes the computational complexity gets dominated 
by the filtering process, and thus there is no further advantage of increasing the 
buffer size. The disadvantage of too large of a buffer size is larger latency in the 
processing and constraining to user to update the filter parameters at a smaller 
rate. Since we approach the maximum throughput with a buffer size of 4096 sam-
ples, we use this size in the rest of the experiments. Note that another way of 
increasing the computational efficiency would be simply not calculating the filter 
coefficients for each buffer, but only for every tenth buffer, for example, while 
using smaller buffer sizes. However, this has not been investigated in the present 
study.

4.3 � Energy consumption

One of the main goals of using SoC, such as the one included in the Jetson Nano 
board, is to combine high computational performance with low energy consump-
tion. In this section, we will evaluate the effect of modifying the frequency of the 
CPU cores on the number of channels that can be processed in real time, and also on 
the energy consumption of the platform.

We obtain the energy consumption as the product of the time taken by our algo-
rithm to complete and the measured power dissipation of the whole platform. As we 
want to measure only the energy consumed by our algorithm, we previously subtract 
the power dissipated by the operating system processes while running at the default 
frequency of the CPU.

Firstly, we will evaluate the effect of reducing the frequency of the cores in the 
processing time of eight channels using a buffer of 4096 samples. Figure 6 shows 
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that using only one core we cannot process eight channels in real time even using 
the maximum frequency. However, if we use two cores, we can reach this number 
using a wide range of the frequencies of the CPU. As we increase the number of 
cores, we can process 8 channels in real time with very low frequencies which, as 
we will see, can greatly reduce the energy consumption of the algorithm.

Figure 7 shows how the maximum number of channels that we can process in real 
time evolves both with the number of cores and the CPU frequencies. Increasing any 
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of these two parameters increases that number from only one channel using one core 
at 307.2 MHz to 27 channels using four cores at maximum frequency. The figure 
also shows that using the two lowest frequencies of the CPU we cannot process any 
channel in real time even using the four available cores.

Next we show how the CPU frequency and the number of cores affects the energy 
consumed by the algorithm. Figure 8 shows that as we increase the number of cores, 
we reduce not only the processing time, but also the energy consumed by the algo-
rithm to process eight channels. Regarding the CPU frequency, increasing it does 
not always reduce the energy consumption. As a matter of fact, the lowest consump-
tion is obtained using four cores at 1132.8 MHz. Moreover, using frequencies as low 
as 307.2 MHz with four cores we approach the most efficient case in terms of energy 
consumption.

On the other hand, if we want to increase the number of channels processed in 
real time, we have to increase the frequency or the number of cores. However, we 
pay a price in terms of energy consumption, as it can be seen in Fig. 9.

Finally, in order to assess the energy efficiency of the algorithm we will use a 
parameter that combines the computational performance and the energy consump-
tion. On many occasions, we may be interested in reducing the time required to pro-
cess each channel, but without an excessive increase in power consumption. For this 
purpose, we are interested in finding the value where the energy consumption of 
processing each channel is minimal. Moreover, in our case we keep the constraint 
that the channels must be processed in real time. To calculate this value, we can 
divide the maximum number of channels processed in real time that we can see in 
Fig. 7 by the power dissipated by the platform during their processing. In this way, 
we will obtain an efficiency metric that will give us the number of channels per watt 
in real time. Figure 10 shows again that the maximum energy efficiency is obtained 
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when using four cores at high frequencies. Specifically, we can process up to 5.68 
channels per watt with four cores at 1326 MHz. However, even using three cores we 
can process more than five channels per watt at several frequencies. As we reduce 
the frequency and the number of cores, the algorithm is less efficient in terms of 
channels per watt.
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5 � Conclusions

In this work, we have analyzed the performance of a multichannel parallel graphic 
equalizer on an embedded multicore system from audio, computational performance 
and energy efficiency perspectives. Specifically, we have used the quad-core ARM 
Cortex-A57 that is embedded on the NVIDIA Jetson Nano board for our experi-
ments. We have been aiming for a configuration that provides an efficient trade-off 
between computational performance and energy consumption. To this end, we have 
analyzed different configurations varying the number of cores, the buffer size of the 
audio samples, as well as the frequency of the CPU cores. From the results, we can 
extract that it is not necessary to exploit all the cores or to work at the maximum 
frequency in order to achieve an efficient implementation. Our experiments indicate 
that using a high CPU frequency and three or four cores, our parallel algorithm is 
able to equalize more than five channels per watt in real time using an audio buffer 
of 4096 samples, which implies a latency of 92.8 ms at the standard sample rate of 
44.1 kHz.
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