
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by you for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

Belloch, Jose A.; Badía, José M M.; León, German; Bank, Balázs; Välimäki, Vesa
Multicore implementation of a multichannel parallel graphic equalizer

Published in:
Journal of Supercomputing

DOI:
10.1007/s11227-022-04495-3

Published: 01/09/2022

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY

Please cite the original version:
Belloch, J. A., Badía, JM. M., León, G., Bank, B., & Välimäki, V. (2022). Multicore implementation of a
multichannel parallel graphic equalizer. Journal of Supercomputing, 78(14), 15715-15729.
https://doi.org/10.1007/s11227-022-04495-3

https://doi.org/10.1007/s11227-022-04495-3
https://doi.org/10.1007/s11227-022-04495-3

Vol.:(0123456789)

The Journal of Supercomputing (2022) 78:15715–15729
https://doi.org/10.1007/s11227-022-04495-3

1 3

Multicore implementation of a multichannel parallel
graphic equalizer

Jose A. Belloch1  · José M Badía2 · German León2 · Balázs Bank3 ·
Vesa Välimäki4

Accepted: 29 March 2022 / Published online: 22 April 2022
© The Author(s) 2022

Abstract
Numerous signal processing applications are emerging on mobile computing sys-
tems. These applications are subject to responsiveness constraints for user interac-
tivity and, at the same time, must be optimized for energy efficiency. Many cur-
rent embedded devices are composed of low-power multicore processors that offer a
good trade-off between computational capacity and low power consumption. In this
context, equalizers are widely used in multiple mobile-based applications such as
“Music streaming” to adjust the levels of bass and treble in sound reproduction. In
this study, we evaluate a graphic equalizer from audio, computational capacity, and
energy efficiency perspectives, as well as the execution of multiple real-time equal-
izers running on an embedded quad-core processor of a mobile device. To this end,
we experiment with the working frequencies as well as the parallelism that can be
extracted from a quad-core ARM Cortex-A57. Results show that using high CPU
frequencies and three or four cores, our parallel algorithm is able to equalize more
than five channels per watt in real time with an audio buffer of 4096 samples, which
implies a latency of 92.8 ms at the standard sample rate of 44.1 kHz.

Keywords  Audio systems · Real time · Embedded systems · System-on-chip (SoC)

1  Introduction

Low-power (embedded) processors play an important role for a myriad of signal
processing applications, such as communications [1], image processing [2], visual
detection [3], speech recognition [4], and audio processing [5], among others. In the
era of smartphones and tablets, these energy-efficient architectures have increased
significantly their computational capacity and are nowadays utilized in a large vol-
ume of multimedia, including video and audio processing.

 *	 Jose A. Belloch
	 jbelloc@ing.uc3m.es

Extended author information available on the last page of the article

http://orcid.org/0000-0002-2595-1828
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-022-04495-3&domain=pdf

15716	 J. A. Belloch et al.

1 3

In this context, equalizers are widely used in multiple mobile-based applications
such as “Music streaming" to adjust the levels of bass and treble in sound reproduc-
tion [6]. In fact, equalizing filters are used for improving the frequency response of
loudspeakers or headphones [7–9] and for reducing the effects of room acoustics on
the sound quality [10, 11]. A graphic equalizer consists of many filters with fixed
center frequencies, and the gain of each filter, which is often called the command
gain, is the only adjustable parameter [12], as shown in Fig. 1. A graphic equalizer
can be implemented as a cascade of equalizing filters [12, 13] or as a parallel bank
of bandpass filters [12, 14]. The parallel structure is more advantageous compared
to the series one in terms of quantization noise performance [15], and also supports
the parallel computation of the filter sections, leading to a performance benefit on
GPUs, for example [16–18]. In this study, we evaluate the parallel graphic equalizer
(PGE). Note however that here we are not utilizing the parallel structure of the filter
for parallel computation. On the contrary, the parallellization comes from comput-
ing multiple channels in the same time. This also means that our findings are appli-
cable to series equalizers as well, or any other real-time audio algorithms that should
be computed for multiple channels.

However, the parallel graphic equalizer (PGE) has the disadvantage that updating
its parameters requires about hundred times more operations than the update in a
standard equalizer [14]. A parameter update is necessary during interactive opera-
tion every time a command gain is modified. When the parameters are redesigned,
a complex target response must be produced from the command gain values. This
has been made more efficient by computing the target response based on minimum-
phase basis functions and a more efficient WLS design in [19].

Nowadays, there exists system-on-chip (SoC) that delivers notable computa-
tional capacity while partially retaining the appealing low power consumption. One

Fig. 1   At the top: an example of sliders positions. At the bottom: Magnitude response approximated by
the graphic equalizer with these sliders positions

15717

1 3

Multicore implementation of a multichannel parallel graphic…

example of this type of system is the NVIDIA Jetson Nano board [20] which is
based on a quad-core ARM Cortex-A57 CPU at 1.43 GHz with 4 GiB of LPDDR4
memory, and a 128-core Nvidia Maxwell GPU. One of its main features is its low
power consumption combined with several levels of parallelism yielding a very high
performance per Watt. Moreover, it also offers the possibility of adjusting its energy
consumption by reducing the frequency of the CPU cores or the GPU.

Up to now, there have been studies analyzing the computational performance
of filtering process of the PGE without taking into account the mandatory updat-
ing process that occurs when the sliders changes (see Fig. 1) [18], as well as works
implementing this updating process in a sequential way [21]. In this work, we ana-
lyze the performance of the whole system in terms of audio processing and energy
consumption as a function of CPU operating frequency and number of cores used.
The aim of this work is to find an efficient implementation which exhibits a proper
trade-off between performance and energy consumption taking into account the real-
time constraint.

This paper is structured as follows. Section 2 offers a brief overview of the Par-
arallel Graphic Equalizer. Section 3 describes the multicore implementation. Sec-
tion 4 explores the performance of the PGE in terms of maximum number of audio
channels that can be rendered in real time; provides a detailed analysis of the power
dissipation; and analyzes the energy efficiency of different hardware configurations.
Finally, Sect. 5 closes the paper with concluding remarks.

2 � Parallel graphic equalizer

Equalizers correct or enhance the spectrum of a signal in order to meet a desired
requirement. Equalizers are widely used in music production and in sound reproduc-
tion to control the timbral balance of music [22, 23], as well as to reduce the effects
of room acoustics on the sound quality [10]. In graphic equalizers, the user controls
the gain of each frequency band using a set of sliders that modify the desired mag-
nitude response [12, 14, 24–26]. Common graphic equalizers control the gain at 31
frequency bands spaced one third of an octave apart.

The basic idea of the PGE [14, 19] is that based on the slider positions set by the
user (top plot in Fig. 1), a smooth target frequency response Ht (�n) is computed,
where �n ( n = 1, 2, ...,N ) represents a finite set of angular frequencies. Then, the
next step is the parameter estimation for the parallel IIR filters. The filter structure is
composed of a set of parallel second-order sections having the transfer function

where d0 is called the direct path gain and K is the number of filter sections.
The first task in fixed-pole parallel filter design is setting the pole positions,

which control the frequency resolution of the design [27]. It was shown in [14] that
having two times as many pole pairs as command points and placing them logarith-
mically in frequency provides a sufficient resolution. The pole radii |pk| are set such

(1)H(z) = d0 +

K∑

k=1

bk,0 + bk,1z
−1

1 + ak,1z
−1 + ak,2z

−2
,

15718	 J. A. Belloch et al.

1 3

that the magnitude responses of the parallel sections meet approximately at their
−3-dB points [14, 27]. The transfer function (1) becomes linear in its free numerator
parameters bk,0 , bk,1 , and d0 , when the denominator coefficients are determined by
the fixed poles. Writing (1) in matrix form yields

where � = [H(�1)…H(�N)]
T is a column vector containing the resulting fre-

quency response of the parallel filter, � = [b1,0, b1,1,… , bK,0, bK,1, d0]T is a col-
umn vector containing the free parameters, and � is a modeling matrix, which
contains the sampled frequency responses of the second-order all-pole filters
1∕(1 + ak,1e

−j�n + ak,2e
−j2�n) in its odd columns, their delayed versions (multiplied by

e−j�n ) in the even columns, and last, a column of 1’s, which corresponds to the con-
stant frequency response of the direct path. As in [14], we use a frequency-depend-
ent weighting for LS error minimization [28, 29], in the form of a diagonal matrix
� whose values are computed by the the weighting function W(�n) = 1∕|Ht (�n)| ,
where W(�n) is a real-valued non-negative weight at frequency �n.

Finally, we compute the optimal filter parameters �opt . Note that this computation
must be carried out each time the sliders change, since � and � are updated based
on the slider positions:

To this end, we use the �� decomposition of the matrix � = �� , where � is an
orthogonal matrix and � is an upper triangular matrix. Thus, the pseudo-inverse is
computed as

where � = ��1 . Note that � = [�T
1

�]T and � = [�1 �2] . Thus, we can discard
those elements of � that are multiplied by zeros. In order to obtain �T� , we need to
obtain a second �� decomposition:

where �E = [�E
T

1
�]T . Now we can compute �opt as

(2)� = ��,

(3)�opt = (�T�T��)−1�T�T��.

(��)+ = (�T�T��)−1(�T�T)

= (�T�T�T���)−1(�T�T�T)

= (�T

1
�T��1)

−1(�T

1
�T)

= �−1
1
(�T�)−1�−T

1
�T

1
�T

= �−1
1
(�T�)−1�T ,

(4)�T� = �T
E
�T

E
�E�E = �E

T

1
�E1,

�opt = (��)+(��)

�opt = �−1
1
(�

E

T

1
�

E1
)−1�T (��)

�
E

T

1
�

E1
�1�opt = �T (��).

15719

1 3

Multicore implementation of a multichannel parallel graphic…

Denoting � = �T�� , � = �1�opt , and � = �E1� , we have to solve three triangular
linear systems to obtain �opt:

3 � Multicore implementation

The aim of this work is to analyze how an embedded quad-core processor is
able to manage a multichannel parallel graphic equalizer. To this end, we lever-
age OpenMP [30] to parallelize both the computation of the filter coefficients by
using the weighted least squares method, and the filtering process that will be
done through each one of 62 second-order sections that compose each one of the
channels to be processed, as shown in Fig. 2. Note that all channels can have dif-
ferent equalizer settings, so each channel needs to compute its coefficients sepa-
rately. That means that different OpenMP threads can perform the whole steps of
different equalization in parallel: for each equalization, the thread first computes

(5)
�

E

T

1
� = �,

�
E1
� = �, and

�1�opt = �.

Fig. 2   Parallel implementation of the two steps of the multichannel parallel graphic equalizer: Computa-
tion of coefficients and filtering process

15720	 J. A. Belloch et al.

1 3

the coefficients of a filter and then sequentially executes the multiplications and
sums that constitute the filtering operations of an IIR filter. Thus, the openMP
threads that are shown at the bottom of Fig. 2 are the same that are shown at the
top. In fact, the red arrow at the figure shows the flow of the execution. Note that
if we had enough computational resources, we could perform all the equaliza-
tions in parallel without any kind of communication or synchronization among
the OpenMP threads.

In order to execute the operations that update the coefficients of the filter, we
use various software libraries for numerical linear algebra, such as LAPACK
(Linear Algebra Package) [31] and BLAS (Basic Linear Algebra Subprograms)
[32]. Since we are dealing with matrices and vectors of small sizes, instead of
using the multi-threaded versions of these libraries, we use their sequential ver-
sion in combination with the parallelism provided by OpenMP to equalize differ-
ent channels in parallel. Table 1 shows the routines that have been used in order
to carry out the updating computations of the filters coefficients.

3.1 � Evaluation platform

We have performed our experiments in a Jetson Nano development kit, which is
a platform launched by NVIDIA in 2019. It combines low cost, high computa-
tional performance and low power consumption. Our platform contains a quad-
core ARM Cortex-A57 processor, an NVIDIA GPU with 128 cores and a Max-
well architecture, and four GiB of LPDRR4 memory, among other components to
develop all kind of applications.

All our experiments were executed in the A57 multicore processor designed
by ARM implementing the ARMv8-A 64-bit microarchitecture. It contains two
MiB of L2 cache, 48 KiB of L1 instruction cache and 32 KiB of L1 data cache.
Each core includes a vector floating point unit and supports the NEON SIMD
extension.

Table 1   Routines of LAPACK
and BLAS that have been
used for implementing the
coefficients update of the filters

Operations Description Routine

� ← ��
1

Weighting of matrix �
1
. –

� is a diagonal matrix
� ← �� Element-wise multiplication –

� is a diagonal matrix
� ← �T� Vector-Matrix Multiplication xgemv

�
E1

← � Computation of the � matrix xgeqrf

from the �� decomposition of E
� ← �

E

T

1
∖� Solving xtrsm

� ← �
E1
∖� Three triangular

�opt ← �
1
�� Linear systems

15721

1 3

Multicore implementation of a multichannel parallel graphic…

4 � Experimental evaluation

4.1 � Experimental parameters

In this section, we show the experimental evaluation of the parallel graphic
equalizer on the four cores of the Cortex-A57 processor. In the experiments, we
have analyzed the effects of using from one to four cores both in terms of execu-
tion time and energy consumption of the algorithm. We have evaluated the effect
of using the 14 different frequencies allowed by the A57 processors, which vary
from 102 to 1479 MHz.

We have performed experiments using different buffer sizes varying from 64
to 8192 samples. One of the goals of our evaluation is to assess the effect of the
buffer size in the maximum number of channels that can be processed in real
time. In addition, the experiments have been carried out with two main objec-
tives. The first objective was to find the combination of number of cores and fre-
quencies that maximizes the number of channels that can be processed in real
time without taking into account the power consumed by the device. The second
objective was to take into account the power consumption and find the optimal
combination of number of cores and frequencies that allows to process the maxi-
mum number of channels per watt in real time.

4.2 � Execution time

First, we analyze the evolution of the execution time of the algorithm with the
number of channels and the effect of parameters such as the buffer sample size
and the number of CPU cores. We run our first experiments at maximum CPU
frequency (1479 MHz) and we use an audio buffer size of 4096 samples, which
implies a real-time threshold of 92.8 ms at the standard audio sampling frequency
of 44.1 kHz.

Figure 3 shows that the execution time increases linearly with the number of
channels and that it can be substantially reduced by using more cores. As a con-
sequence, by increasing the number of cores we can also increase the number
of channels that can be processed in real time. For example, if we execute the
sequential version of the algorithm in one core we can process up to seven chan-
nels in real time. However, if we execute the parallel version using the four cores
of the CPU, we can process up to 27 channels in real time.

To analyze the advantage of using more CPU cores we show in Fig. 4 the speed-
up obtained in the same experiments shown in Fig. 3. If we take as optimum a
speed-up equal to the number of cores, then we obtain the optimal speed-up when
using two and three cores and near the optimal when using four cores. The saw-
tooth pattern shown by the lines is due to the load balancing effect on the different
cores. That is, we obtain the best speed-up when we process the same number of
channels in every core. Logically, when we increase the total number of channels to
process, the load imbalance is reduced and so is the height of the teeth.

15722	 J. A. Belloch et al.

1 3

Next we analyze the effect of increasing the buffer size on the maximum num-
ber of channels that can be processed in real time. Figure 5 shows that the number
of channels increases at a steep rate for small buffer sizes, but tends to converge
to a maximum for larger sizes of the buffer. This can be explained by the fact that
the computational load is made up of two factors: first, the computation of the
filter coefficients, which is done only once for each buffer, and second, the filter-
ing process, which is applied sample by sample, and thus depends on the buffer
size linearly. Therefore at small buffer sizes, where the coefficient calculation

 0

 50

 100

 150

 200

 250

 300

 350

 5 10 15 20 25 30

P
ro

ce
ss

in
g

tim
e

(m
s)

Number of channels

cores
1
2
3
4

RT(44.1KHz)

Processing time at maximum CPU frequency

Fig. 3   Processing time of a different number of channels at maximum CPU frequency with a buffer size
of 4096 samples

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 5 10 15 20 25 30

S
pe

ed
up

Number of channels

cores
2
3
4

Speedup at maximum CPU frequency

Fig. 4   Speed-up when processing 4 channels at maximum CPU frequency with a buffer size of 4096
samples

15723

1 3

Multicore implementation of a multichannel parallel graphic…

dominates the computational load, increasing the buffer size decreases the aver-
age load significantly, thus increases the number of channels we may process.
In contrast, at larger buffer sizes the computational complexity gets dominated
by the filtering process, and thus there is no further advantage of increasing the
buffer size. The disadvantage of too large of a buffer size is larger latency in the
processing and constraining to user to update the filter parameters at a smaller
rate. Since we approach the maximum throughput with a buffer size of 4096 sam-
ples, we use this size in the rest of the experiments. Note that another way of
increasing the computational efficiency would be simply not calculating the filter
coefficients for each buffer, but only for every tenth buffer, for example, while
using smaller buffer sizes. However, this has not been investigated in the present
study.

4.3 � Energy consumption

One of the main goals of using SoC, such as the one included in the Jetson Nano
board, is to combine high computational performance with low energy consump-
tion. In this section, we will evaluate the effect of modifying the frequency of the
CPU cores on the number of channels that can be processed in real time, and also on
the energy consumption of the platform.

We obtain the energy consumption as the product of the time taken by our algo-
rithm to complete and the measured power dissipation of the whole platform. As we
want to measure only the energy consumed by our algorithm, we previously subtract
the power dissipated by the operating system processes while running at the default
frequency of the CPU.

Firstly, we will evaluate the effect of reducing the frequency of the cores in the
processing time of eight channels using a buffer of 4096 samples. Figure 6 shows

 0

 5

 10

 15

 20

 25

 30

 2
56

 5
12

 1
02

4
 2

04
8

 4
09

6
 8

19
2

N
um

be
r

of
 c

ha
nn

el
s

Buffer size (samples)

cores
1
2
3
4

Maximum number of channels in Real Time

Fig. 5   Effect of the buffer size on the maximum number of channels that can be processed in real time

15724	 J. A. Belloch et al.

1 3

that using only one core we cannot process eight channels in real time even using
the maximum frequency. However, if we use two cores, we can reach this number
using a wide range of the frequencies of the CPU. As we increase the number of
cores, we can process 8 channels in real time with very low frequencies which, as
we will see, can greatly reduce the energy consumption of the algorithm.

Figure 7 shows how the maximum number of channels that we can process in real
time evolves both with the number of cores and the CPU frequencies. Increasing any

 0

 50

 100

 150

 200

 1
02

 2
04

 3
07

.2

 4
03

.2

 5
18

.4

 6
14

.4

 7
10

.4

 8
25

.6

 9
21

.6

 1
03

6.
8

 1
13

2.
8

 1
22

4

 1
32

6

 1
42

8

 1
47

9

P
ro

ce
ss

in
g

tim
e

(m
s)

CPU frequency (MHz)

cores
1
2
3
4

RT(44.1KHz)

Processing time of 8 channels

Fig. 6   Effect of the CPU frequency in the processing time of 8 channels

102.0

204.0

307.2

403.2

518.4

614.4

710.4

825.6

921.6

1036.8

1132.8

1224.0

1326.0

1428.0

1479.0

1 2 3 4

C
P

U
 fr

eq
ue

nc
y

(M
H

z)

Number of cores

 1 2 3 4

 1 2 3 4

 2 4 6 8

 3 4 6 8

 3 6 9 12

 4 8 12 12

 4 8 12 16

 5 10 15 16

 5 10 15 20

 5 10 15 20

 6 12 18 24

 6 12 18 24

 7 14 21 27

 0

 5

 10

 15

 20

 25

Maximum number of channels in real time

Fig. 7   Effect of the CPU frequency in the maximum number of channels that can be processed in real
time. Values are only shown when at least one channel can be processed in real time

15725

1 3

Multicore implementation of a multichannel parallel graphic…

of these two parameters increases that number from only one channel using one core
at 307.2 MHz to 27 channels using four cores at maximum frequency. The figure
also shows that using the two lowest frequencies of the CPU we cannot process any
channel in real time even using the four available cores.

Next we show how the CPU frequency and the number of cores affects the energy
consumed by the algorithm. Figure 8 shows that as we increase the number of cores,
we reduce not only the processing time, but also the energy consumed by the algo-
rithm to process eight channels. Regarding the CPU frequency, increasing it does
not always reduce the energy consumption. As a matter of fact, the lowest consump-
tion is obtained using four cores at 1132.8 MHz. Moreover, using frequencies as low
as 307.2 MHz with four cores we approach the most efficient case in terms of energy
consumption.

On the other hand, if we want to increase the number of channels processed in
real time, we have to increase the frequency or the number of cores. However, we
pay a price in terms of energy consumption, as it can be seen in Fig. 9.

Finally, in order to assess the energy efficiency of the algorithm we will use a
parameter that combines the computational performance and the energy consump-
tion. On many occasions, we may be interested in reducing the time required to pro-
cess each channel, but without an excessive increase in power consumption. For this
purpose, we are interested in finding the value where the energy consumption of
processing each channel is minimal. Moreover, in our case we keep the constraint
that the channels must be processed in real time. To calculate this value, we can
divide the maximum number of channels processed in real time that we can see in
Fig. 7 by the power dissipated by the platform during their processing. In this way,
we will obtain an efficiency metric that will give us the number of channels per watt
in real time. Figure 10 shows again that the maximum energy efficiency is obtained

102.0

204.0

307.2

403.2

518.4

614.4

710.4

825.6

921.6

1036.8

1132.8

1224.0

1326.0

1428.0

1479.0

1 2 3 4

C
P

U
 fr

eq
ue

nc
y

(M
H

z)

Number of cores

223.67 160.91 144.51 140.29

199.68 111.52 108.42 103.64

121.57 104.48 106.41 103.12

324.44 200.86 168.23 147.39

274.66 174.03 150.82 132.56

243.36 157.41 137.77 120.18

219.22 145.91 128.21 119.38

200.84 136.21 124.80 108.95

185.89 130.61 116.41 105.74

177.59 130.88 112.64 101.93

167.78 120.68 112.17 99.05

165.47 120.53 110.91 104.63

180.41 125.20 112.39 104.49

167.53 127.55 116.25 110.07

255.46 173.79 153.24 136.98

 0

 50

 100

 150

 200

 250

Energy consumed (mJ) to process 8 channels

Fig. 8   Energy consumption to process 8 channels varying CPU frequency and number of cores. Buffer
size: 4096 samples

15726	 J. A. Belloch et al.

1 3

when using four cores at high frequencies. Specifically, we can process up to 5.68
channels per watt with four cores at 1326 MHz. However, even using three cores we
can process more than five channels per watt at several frequencies. As we reduce
the frequency and the number of cores, the algorithm is less efficient in terms of
channels per watt.

102.0

204.0

307.2

403.2

518.4

614.4

710.4

825.6

921.6

1036.8

1132.8

1224.0

1326.0

1428.0

1479.0

1 2 3 4

C
P

U
 fr

eq
ue

nc
y

(M
H

z)

Number of cores

12.78 25.84 36.53 51.31

39.90 50.60 63.47 79.57

65.22 86.81 104.26 131.69

87.93 78.25 97.44 122.39

81.79 109.71 140.08 172.97

97.16 133.64 171.43 164.48

89.64 128.78 166.14 207.45

107.38 152.67 196.16 201.04

102.01 148.46 192.41 245.19

100.17 148.27 196.97 253.48

121.76 185.29 247.63 313.08

125.32 190.27 257.80 329.14

147.97 226.21 305.05 379.84

 0

 50

 100

 150

 200

 250

 300

 350

Energy consumed (mJ) to process the maximum number of channels in RT

Fig. 9   Energy consumption to process the maximum number of channels in real time for every combina-
tion of CPU frequency and number of cores. Values are only shown when at least one channel can be
processed in real time

102.0

204.0

307.2

403.2

518.4

614.4

710.4

825.6

921.6

1036.8

1132.8

1224.0

1326.0

1428.0

1479.0

1 2 3 4

C
P

U
 fr

eq
ue

nc
y

(M
H

z)

Number of cores

0.98 1.64 2.17 2.59

0.60 1.07 1.43 1.74

1.17 2.02 2.70 3.23

1.71 1.94 2.52 3.01

1.64 2.77 3.54 4.25

2.15 3.53 4.51 3.92

2.10 3.38 4.25 5.02

2.52 4.05 5.11 4.71

2.47 3.88 4.85 5.57

2.38 3.69 4.50 5.21

2.69 4.06 4.94 5.68

2.52 3.77 4.51 5.11

2.86 4.24 5.06 5.52

 0

 1

 2

 3

 4

 5

Processed channels per watt in real time

Fig. 10   Effect of the CPU frequency and number of cores in the number of channels per watt that can be
processed in real time

15727

1 3

Multicore implementation of a multichannel parallel graphic…

5 � Conclusions

In this work, we have analyzed the performance of a multichannel parallel graphic
equalizer on an embedded multicore system from audio, computational performance
and energy efficiency perspectives. Specifically, we have used the quad-core ARM
Cortex-A57 that is embedded on the NVIDIA Jetson Nano board for our experi-
ments. We have been aiming for a configuration that provides an efficient trade-off
between computational performance and energy consumption. To this end, we have
analyzed different configurations varying the number of cores, the buffer size of the
audio samples, as well as the frequency of the CPU cores. From the results, we can
extract that it is not necessary to exploit all the cores or to work at the maximum
frequency in order to achieve an efficient implementation. Our experiments indicate
that using a high CPU frequency and three or four cores, our parallel algorithm is
able to equalize more than five channels per watt in real time using an audio buffer
of 4096 samples, which implies a latency of 92.8 ms at the standard sample rate of
44.1 kHz.

Acknowledgements  Part of this work was conducted in June-August 2021, when Dr. Jose A. Belloch
made a research visit to the Aalto Acoustics Lab. The research conducted at Aalto University belongs
to the activities of the Nordic Sound and Music Computing Network—NordicSMC (NordForsk Pro-
ject No. 86892). The research visit was funded by “Ayuda Movilidad Programa Propio de Investi-
gación, modalidad A: jóvenes doctores, de la Universidad Carlos III de Madrid, 2021/00310/001.”
The work has also been supported by the Spanish Ministry of Science and Innovation under projects
PID2019-106455GB-C21 and PID2020-113656RB-C21; by the National Research, Development, and
Innovation Fund of Hungary under Grant TKP2021-EGA-02; and the Regional Government of Madrid
throughout the project MIMACUHSPACE-CM-UC3M (2022/00024/001).

Funding  Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​
ses/​by/4.​0/.

References

	 1.	 Liu Z, Dickson K, McCanny JV (2005) Application-specific instruction set processor for soc
implementation of modern signal processing algorithms. IEEE Trans Circuits Syst I Regul Pap
52(4):755–765

	 2.	 Andreopoulos Y, Jiang D, Demosthenous A (2010) Prediction-based incremental refinement for
binomially-factorized discrete wavelet transforms. IEEE Trans Signal Process 58(8):4441–4447

	 3.	 Ren S, Deligiannis N, Andreopoulos Y, Islam MA, van der Schaar M (2014) Dynamic schedul-
ing for energy minimization in delay-sensitive stream mining. IEEE Trans Signal Process
62(20):5439–5448

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

15728	 J. A. Belloch et al.

1 3

	 4.	 Keller Y, Coifman RR, Lafon S, Zucker SW (2010) Audio-visual group recognition using diffusion
maps. IEEE Trans Signal Process 58(1):403–413

	 5.	 Rumsey F (2020) Modular synths and embedded computing. J Audio Eng Soc 68(3):234–237
	 6.	 “Equalizer at Spotify,” https://​suppo​rt.​spoti​fy.​com/​us/​artic​le/​equal​izer/, (accessed 2021 November

17)
	 7.	 Ramos G, López JJ (2006) Filter design method for loudspeaker equalization based on IIR paramet-

ric filters. J Audio Eng Soc 54(12):1162–1178
	 8.	 Rämö J, Välimäki V (2012) Digital augmented reality headset. J Electr Comput Eng. https://​doi.​org/​

10.​1155/​2012/​457374
	 9.	 Kamaris G, Zachos P, Mourjopoulos J (2021) Low filter order digital equalization for mobile device

earphones. J Audio Eng Soc 69(5):297–308
	10.	 Mäkivirta A, Antsalo P, Karjalainen M, Välimäki V (2003) Modal equalization of louspeaker-room

responses at low frequencies. J Audio Eng Soc 51(5):324–343
	11.	 Brännmark L-J, Bahne A, Ahlén A (2013) Compensation of loudspeaker-room responses in a robust

MIMO control framework. IEEE Trans Audio Speech Lang Process 21(6):1201–1216
	12.	 Välimäki V, Reiss JD (2016) All about audio equalization: solutions and frontiers. Appl Sci 6(5):129
	13.	 Välimäki V, Liski J (2017) Accurate cascade graphic equalizer. IEEE Signal Process Lett

24(2):176–180
	14.	 Rämö J, Välimäki V, Bank B (2014) High-precision parallel graphic equalizer. IEEE/ACM Trans

Audio Speech Lang Process 22(12):1894–1904
	15.	 Chen W (1996) Performance of cascade and parallel IIR filters. J Audio Eng Soc 44(3):148–158
	16.	 Belloch JA, Gonzalez A, Martínez-Zaldívar FJ, Vidal AM (2011) Real-time massive convolution for

audio applications on GPU. J Supercomput 58(3):449–457
	17.	 Savioja L, Välimäki V, Smith JO (2011) Audio signal processing using graphics processing units. J

Audio Eng Soc 59(1–2):3–19
	18.	 Belloch JA, Bank B, Savioja L, Gonzalez A, Välimäki V (2014) Multi-channel IIR filtering of audio

signals using a GPU. In: Proceedings of the IEEE International Conference on Acoust, Speech and
Signal Processing (ICASSP), Florence, Italy

	19.	 Bank B, Belloch JA, Välimäki V (2017) Efficient design of a parallel graphic equalizer. J Audio Eng
Soc 65(10):817–825

	20.	 NVIDIA Corp (2020) NVIDIA jetson linux developer guide. PR-06076-R32
	21.	 Belloch JA, Bank B, Larios D, Igual F, Quintana-Orti E, Vidal AM (2017) Solving weighted least

squares (WLS) problems on ARM-based architectures. J Supercomput 73(1):530–542
	22.	 Perez Gonzales E, Reiss J (2009) Automatic equalization of multi-channel audio using cross-adap-

tive methods. In: Proceedings of the AES 127th Conv. New York
	23.	 Rämö J, Välimäki V (2013) Live sound equalization and attenuation with a headset. In: Proceedings

of the AES 51st International Conference, Helsinki, Finland, Aug. (2013)
	24.	 Holters M, Zölzer U (2006) Graphic equalizer design using higher-order recursive filters. In: Pro-

ceedings of the Montreal, QC, Sep, Int. Conf. Digital Audio Effects, pp 37–40
	25.	 Tassart S (2013) Graphical equalization using interpolated filter banks. J Audio Eng Soc

61(5):263–279
	26.	 Chen Z, Geng GS, Yin FL, Hao J (2014) A pre-distortion based design method for digital audio

graphic equalizer. Digit Signal Process 25:296–302
	27.	 Bank B (2013) Audio equalization with fixed-pole parallel filters: An efficient alternative to com-

plex smoothing. J Audio Eng Soc 61(1/2):39–49
	28.	 Parks TW, Burrus CS (1987) Digit Filter Des. Wiley, USA
	29.	 Bank B (2011) Logarithmic frequency scale parallel filter design with complex and magnitude-only

specifications. IEEE Signal Process Lett 18(2):138–141
	30.	 Dagum L, Menon R (1998) OpenMP: an industry standard API for shared-memory programming.

Comput Sci Eng, IEEE 5(1):46–55
	31.	 Tomov S, Dongarra J, Baboulin M (2008) Towards dense linear algebra for hybrid GPU accelerated

manycore systems. LAPACK Working Note, Tech Rep 210. [Online]. http://​www.​netlib.​org/​lapack/​
lawns​pdf/​lawn2​10.​pdf

	32.	 Dongarra J, Croz JD, Hammarling S, Hanson RJ (1985) A proposal for an extended set of Fortran
basic linear algebra subprograms. ACM Signum Newslett 20(1):2–18

https://support.spotify.com/us/article/equalizer/
https://doi.org/10.1155/2012/457374
https://doi.org/10.1155/2012/457374
http://www.netlib.org/lapack/lawnspdf/lawn210.pdf
http://www.netlib.org/lapack/lawnspdf/lawn210.pdf

15729

1 3

Multicore implementation of a multichannel parallel graphic…

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Authors and Affiliations

Jose A. Belloch1  · José M Badía2 · German León2 · Balázs Bank3 ·
Vesa Välimäki4

	 José M Badía
	 badia@uji.es

	 German León
	 leon@uji.es

	 Balázs Bank
	 bank@mit.bme.hu

	 Vesa Välimäki
	 vesa.valimaki@aalto.fi

1	 Depto. de Tecnología Electrónica, Universidad Carlos III de Madrid, Leganés, Spain
2	 Depto. de Ingeniería y Ciencia de Computadores, Universitat Jaume I de Castelló,

Castellón de la Plana, Spain
3	 Department of Measurements and Information Systems, Budapest University of Technology

and Economics, Budapest, Hungary
4	 Acoustics Lab, Department of Signal Processing and Acoustics, Aalto University, Espoo,

Finland

http://orcid.org/0000-0002-2595-1828

