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ARTICLE

Targeted land management strategies could halve
peatland fire occurrences in Central Kalimantan,
Indonesia
Alexander J. Horton 1✉, Jaakko Lehtinen2,3 & Matti Kummu 1

Indonesian peatlands and their large carbon stores are under threat from recurrent large-scale

fires driven by anthropogenic ecosystem degradation. Although the key drivers of peatland fires

are known, a holistic methodology for assessing the potential of fire mitigation strategies is

lacking. Here, we use machine learning (convolutional neural network) to develop a model

capable of recreating historic fire observations based on pre-fire season parameters. Using this

model, we test multiple land management and peatland restoration scenarios and quantify the

associated potential for fire reduction. We estimate that converting heavily degraded swamp

shrubland areas to swamp forest or plantations can reduce fires occurrence by approximately

40% or 55%, respectively. Blocking all but major canals to restore these degraded areas

to swamp forest may reduce fire occurrence by 70%. Our findings suggest that effective

land management strategies can influence fire regimes and substantially reduce carbon

emissions associated with peatland fires, in addition to enabling sustainable management of

these important ecosystems.
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Large areas of Indonesian tropical swamp forests have been
transformed into degraded peatlands over the last few dec-
ades through anthropogenic ecosystem degradation, agri-

cultural expansion, and the draining of peatland. These degraded
landscapes are increasingly vulnerable to recurrent fires, which
have become more prevalent since the late 1990s1. These peatland
fires have considerable climate impacts, as they represent one of
the largest reserves of near-surface terrestrial organic carbon
globally, containing between 90 and 180 Gt of carbon2–6. Severe
fire events across tropical peatland regions in Southeast Asia from
1997 to 2015 have released between 0.8 and 9.43 Gt of CO2 into
the atmosphere in a single fire season, which is the equivalent of
up to 30% of total global fossil fuel emissions released in 20207–11.

Fires also pose critical threats to every aspect of the societies that
they affect; the physical environment, the economy, public health,
agriculture, and social structure are all impacted. The estimated loss
of income to the Indonesian economy due to the 2015 fires in terms
of destruction of property, infrastructure, and potential earnings
from lost crop yields and trade is estimated to surpass 16 billion
USD (1.8% of Indonesia’s GDP; World Bank 2015). Peatland fires
also precipitate profound societal and livelihood changes, as the
recurrent destruction of infrastructure and agriculture exacerbates
local populations’ vulnerabilities, raising tensions and forcing a shift
from subsistence livelihoods to new practices in an effort to trans-
form the degraded peatlands into an economically productive
landscape12–14. Although lighting fires is prohibited in the region,
most ignitions are anthropogenic in origin, started by either small-
scale farmers for land-clearance or to renew the topsoil fertility,
or by private companies and government agencies to expand agri-
cultural land into forest stands15–17.

Reducing peatland fires is an essential component of any strategy
seeking to reduce global carbon emissions as well as ensuring the
long-term economic productivity of these degraded landscapes,
safeguarding endemic biodiversity, and protecting the interests of
vulnerable communities. In 2010, Central Kalimantan was desig-
nated the pilot province for a number of climate mitigation and
peatland rehabilitation schemes in an attempt to reduce the severity
of fires in the region18,19. However, these land management pro-
grammes and rehabilitation efforts have largely been unsuccessful as
corruption, poor governance, lack of accountability, and uncertainty
about the effectiveness of the measures means many of these state-
wide regulations and restoration schemes are flouted or flagrantly
ignored13,19–21. Whilst there are many obstacles to reducing fires
throughout Kalimantan and the wider region, one major obstacle
may be the strict adherence to land management regulations at
all levels, from government officials to small scale land holders.
A better understanding and clearer demonstration of the potential
benefits of these projects might generate more support from the
local communities.
There are many studies that advocate the need for peatland

restoration through either canal blocking or land-cover man-
agement, and highlight the economic benefits of fire reduction,
but these lack a clear demonstrable and quantifiable linkage
between restoration efforts and future fire reductions. Where
canal restoration efforts are the focus of investigations, physical
models of catchment wide hydrology are usually employed to
show the impact that canal restoration will have on the water
table and saturation of peatland, which is then used to argue for
the overall reduction of future fires22–24. However, these studies
do not offer clear, spatially explicit estimates of fire distributions
as a result of restoration efforts, nor do they combine the impacts
of multiple restoration strategies. Studies that do include spatially
explicit descriptions of fire distributions tend to focus on iden-
tifying factors that are most important for the initiation and
propagation of large fire events15,17,25–27. These models are all
retrospective in nature, taking as model inputs factors that are

measurable at the time of the fire events rather than being driven
by predictive variables that estimate a future state, and as such are
not best suited for simulating scenarios of expected fire dis-
tributions under different conditions.
These previous models were developed using either physical

principals, multiple regression, or basic machine learning
techniques. However, recent developments in deep learning
techniques has shown promising results, particularly using con-
volutional neural networks (CNNs), which have successfully been
used in other global regions to develop models that predict fire
distributions from concurrent (fire-season) predictor variables,
producing results that surpass alternative machine learning and
modelling methodologies28–31. However, these examples of fire
CNN models also include fire season data, which makes them
unsuitable for simulating the potential changes in future fires
due to some input variables containing evidence of the spatial
distribution of fires it is trying to evaluate, such as normalised
difference vegetation index (NDVI). Such models are, therefore,
more descriptive in nature—identifying the locations of fires after
their occurrence, rather than predictive. This makes them
unsuitable for scenario simulation, as some input variables may
be biased towards the ‘true’ spatial distribution of fire occurrences
and not representatively simulate deviations based on alternative
conditions.
Here we develop the first model that accurately describes the

distribution of fires using input variables that are measured before
the fire season, allowing us to develop and test the impact of
different land management and restoration scenarios on future
fire events without bias. We achieved this by using a CNN
machine learning algorithm to perform a binary classification
analysis (fire = 1, non-fire = 0) on our set of pre-fire season
predictor variables against observations of fire-season hotspots.
Using our classification model ‘FireCNN’, we test the impact
of strategies identified by existing studies22,23,32—including canal
blocking, reforestation, conversion to plantation, as well as
combinations of these restoration efforts—assessing the potential
for each to reduce the median number of fire occurrences. We
also quantify the potential future impact of continued defor-
estation, simulating the conversion of swamp forests to both
degraded scrublands and plantations. Our findings demonstrate
the potential impacts of future peatland restoration efforts, pro-
viding much-needed evidence for the potential success of these
strategies, which may, in turn, benefit the implementation of
similar projects currently underway.

Results
We focused our investigation on the region that includes and
surrounds the ex-Mega Rice Project (EMRP) area of central
Kalimantan in Borneo (Fig. 1), which exhibits the highest density
of peatland fires in Southeast Asia33. Since 1997 forest fires have
been a recurring phenomenon due to decades of logging, oil palm
plantation development, and an unsuccessful large-scale rice
cultivation scheme that inadvertently transformed swamp forests
into degraded peatlands by digging over 4000 km of drainage
canals and clearing an area of roughly 1 million hectares of dense
swamp forest34,35. The area displays a distinct dry season with
mean monthly precipitation below 200 mm (May–October), and
a wet season with mean monthly precipitation between 200 and
400 mm (November–April) season25. Yet there is a consistent
mean monthly temperature of around 28 degrees. The fire season
runs from August–October (i.e., last months of dry season) with
mean monthly hotspots peaking at around 11,000, however, fire
occurrences are not consistent from year to year, with large inter-
annual variations ranging from hundreds of hotspots (2010) to
hundreds of thousands (2015)25.
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We developed a CNN model that replicates the spatial and
temporal variability observed in these hotspot data during the
fire season (Aug–Oct) using input variables that are either from
the pre-fire season (May–Jul), or are spatially and/or temporally
static (see “Methods”). Very few fires occur outside the fire
season months, accounting for >90% of the total fire hotspots
detected in our study area between 2000 and 201925. We selected
input variables that have been identified in previous work to
most significantly impact fire distributions in the area25,
including land-cover classifications, a forest clearance index,
pre-fire season (May–Jul) vegetation indices (NDVI, EVI, etc),
pre-fire season drought indices (Standardised Precipitation-
Evapotranspiration Index measured backwards from July),
number of pre-fire season cloud days, distances to infrastructure,
topography, peat depth, and the Oceanic Niño Index (ONI) (see
“Methods” for details of all variables included).
A CNN is applied to a small (n x n) subsection of the input

image rather than for each pixel separately, which marks its
distinction from the standard ‘artificial’ neural network. By
applying the CNN model at an n x n scale we preserve some
proximity information about the input variables, which would
otherwise be lost. We tried a wide variety of model structures and
convolution sizes, but found that a series of 3 × 3 convolutions
was most effective. Therefore, our FireCNN model initially
applies a 3 × 3 convolution to the input raster stack of predictor
variables, with each variable constituting one of the 31 separate
feature maps in the input raster image (equivalent to the red,
green, and blue layers of simple images). We then apply a further
four of these 3 × 3 convolutions separated by pointwise non-
linearities (see Methods), with each application transforming the

input image into a new raster with the same width and height as
the original, but many more (128) channels (transformed feature
maps), before finally being reduced down to just one feature map-
the output. The output is a probability (0–1) denoting the like-
lihood of a fire occurrence at each pixel in the output image.

Model performance mapping fires. The training algorithm that
fits our CNN model to the observation data does so by attempting
to reduce a loss function, which is an evaluation of the error in
our model estimate against the observed hotspot data. It splits the
training dataset 70/30, using results from 70% to feedback into
the optimisation process to improve results, and then testing
those improvements on the remaining 30% (see “Methods”).
Over 20 iterations of feedback improvements (epochs), we found
that both the training data and test data metrics of accuracy,
precision, and recall all steadily increased as the loss function was
reduced (Fig. 2a). After 20 epochs we see that the overall accuracy
of the model is very good, showing 93% of all predictions (fire
and not-fire) agreeing with observations. The model precision is
also very high, showing that 75% of fire predictions made by the
model agree with observations of fires. However, model recall
shows that only about 50% of all the fires observed in hotspot
data were predicted by the model, the other 50% were incorrectly
predicted as not-fire.

Having fitted and validated the model against the entire dataset
of fire-occurrences taken from across the 20 year study period, we
then looked at the model performance for individual years
(Fig. 2b, c). For the metrics of accuracy and precision, the model
performs consistently well across all years, with small inter-
quartile ranges about the medium values of 95% for accuracy, and
78% for precision. The recall metric, however, varies considerably
from year to year (Fig. 2b), with the model performing better in
years with higher numbers of fire-occurrences (2014, 2015, 2018,
and 2019) and performing less well in years with fewer fire
occurrences (2008, 2010) (see fire occurrences in the region in
Fig. 2b in Horton et al. 2021). This is reflected in the much larger
interquartile range that centres around the much lower median
value of 46% (Fig. 2c).
These metrics indicate that the model performs very well as a

tool to replicate the expected distribution of fires during the fire
season based on pre-fire season inputs for years that are included
in the training dataset. The median accuracy for the model across
all years is extremely high at 95%. However, this is partly due to
the large amount of negative fire-occurrence space each year, so
that the vast majority of model predictions are ‘no-fire’, which
result in high accuracy scores irrespective of how well the model
predicts where fires actually occur. Therefore, the metrics for
precision and recall are much more pertinent in describing model
performance. The median precision score for our model across all
years means that 78% of locations that the model predicted there
would be a fire-occurrence agreed with the observed fire hotspots.
The median recall score, however, was much lower at 46%,
meaning that the model only identified around half of all the fires
that were observed by MODIS and VIIRS. Comparing the model
outputs against observed hotspot data for a sample of years
suggests that the model correctly identifies larger groupings of
fires, but is not able to estimate more isolated occurrences (Fig. 3).
For the case of 2008, where most of the fires are isolated instances
rather than larger burn areas (Fig. 3b), this results in a very low
recall metric (9%) (Fig. 2b).

Peatland management scenarios. For using the model as a tool
for testing potential land management strategies, the precision
metric is most important, as it indicates the model’s ability to
state with great confidence that a certain combination of input

Fig. 1 Study area map. Land cover map showing the whole study area
(edge of map) circa 2015 as well as the ex-Mega Rice Project (EMRP) area
(black outline). Inset map of Borneo provided by OpenStreetMap.
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variables will produce a fire. So, having confirmed that the
model’s performance was good enough to be used as a tool, we
developed a number of peatland management scenarios to test.
These included two scenarios that investigate the impact of
restoring areas that have been heavily degraded or cleared of
swamp forest, one that simulates the restoration of the swamp
forest, and one that simulates establishing plantations in these
degraded areas. We also developed a scenario for blocking all but
the major canals, and then tested the combined impact of canal
blocking and each of the land cover restoration scenarios (swamp
forest and plantation). In addition to these five fire reduction
strategies, we simulated the potential effect of continued defor-
estation in the area with two additional scenarios that convert all
remaining swamp forest to either ‘Shrubland’ or ‘Plantation’. For
a full description of the scenarios, see the “Methods”.
We found that substantial impacts can be made just by

managing a single aspect of the landscape. Comparing the ratio of

fire-occurrence predictions of each land management scenario
against the base scenario shows that the most impactful land
cover alteration scenario is the conversion of ‘Swamp shrubland’
and ‘Scrubland’ to ‘Plantation’, reducing the median number of
fire-occurrences by 55% (Fig. 3). This scenario reduced fire-
occurrences more than either converting these areas to ‘Swamp
forest’ or including only major canals, which both reduced the
median number of fires by about 40%. The combined scenarios
simulating the blocking of all but the major canals and either
reforesting the areas of unmanaged degraded and cleared forest or
converting them to plantations were most impactful, reducing the
median fire count by 70 and 76% respectively.
The two scenarios simulating deforestation were less impactful,

with the median number of fire-occurrences increasing by 10%
for the case where shrubland follows deforestation, and decreas-
ing by 20% for the case where plantations follow deforestation
(Fig. 4).

Fig. 2 FireCNN model performance. a Progression of the loss function (purple lines), recall (blue lines), precision (green lines), and accuracy (red lines)
through the 20 iterations of the fitting algorithm. b Yearly model performance metrics of accuracy (red bars), precision (green bars), and recall (blue bars)
for the study period (2002–2019). c The same distribution of model performance metrics as shown in (b) here displayed as boxplots with the median
(black line), interquartile range (box limits), 1.5 × interquartile range (whiskers), and outliers (points) all marked. Accuracy is the percentage of all model
estimates that are correct (fire and not-fire), precision is the percentage of model fire estimates that are correct, and recall is the percentage of observed
fire hotspots that the model correctly predicted. The data used to generate (a) can be found in Supplementary Data 1, and the data used to generate (b and
c) can be found in Supplementary Data 2.
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Model use as an early warning tool. Having demonstrated the
capability of the model to accurately and precisely predict fire-
season occurrences using pre-fire season variables, and thus its
capability for scenario building, we also tested the models suit-
ability to be used as an early warning tool that might indicate
where future fires will occur to help mitigation efforts. To be used
as an early warning tool, the model must accurately and precisely
predict fire occurrences for a year that was not part of the training
dataset (see “Methods”), as observations of future fire hotspots
will not be available to help train the model. Therefore, to test this
suitability, we repeated the model calibration procedure using
only data from 2002 to 2018, then applied the model to pre-fire
season data from 2019 to generate estimates of fire occurrences
for the 2019 fire-season.
As one might expect, the performance indicators were less good

than when applying the model to a year within the training dataset

(Fig. 5a). This is particularly true of the recall metric, which
reduced from 76 to 10% when the 2019 data was omitted from the
training dataset. Inspecting the output maps for the early warning
model and the original FireCNN model against the map of
observed hotspot data (Fig. 5b, c), we can see that the early warning
model did identify many of the areas most affected by fire, but the
region of model probability prediction >0.5 is only a small
subsection of these areas, which results in the very low recall metric.
The FireCNNmodel, in contrast, aligns very closely to the observed
fire hotspots, with very few model estimates falling outside the fire
hotspot buffer zones (white outlines in Fig. 5b, c).
Although the model was able to accurately and precisely

predict where the detected fires would occur (accuracy 81% and
precision 67%), it identified only a very small proportion of all the
observed fires, recall being just 10% (Fig. 5). These performance
metrics suggest the model is not suitable to effectively function

Fig. 3 FireCNN model outputs. FireCNN model outputs showing the estimated distribution of probability of fire (0–1) for years 2003, 2008, 2013, and
2018 against observations of MODIS and VIIRS hotspot data outlined in white. Close up areas 1–4 are displayed next to the full size maps. Accuracy (A),
precision (P), and recall (R) for each year are marked as annotations. Accuracy is the percentage of all model estimates that are correct (fire and not-fire),
precision is the percentage of model fire estimates that are correct, and recall is the percentage of observed fire hotspots that the model correctly
predicted.
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outside the scope of the training dataset timeframe. That being
said, 2019 was an exceptional year in that the number of fire
occurrences is much higher than previous years with the
exception of 2015. To test the model for other years remains
for future work.
It should be noted that this failure should not be seen as a

reason to doubt the validity of our scenario results. At present our
model takes a suite of 31 predictor variables as inputs (see
Supplementary Table S1 for a complete list), in attempting to
predict fire-distributions for a year outside the training dataset,
we were asking the model to render new combinations of these
variables that hadn’t been seen previously. However, when setting
up our scenarios, we only vary between 1 and 4 of these variables,
whilst keeping the remainder in the same configuration as the
training dataset. This ensures that the scenarios don’t replicate
anything outside of the model’s verified remit and means that we
can be confident in our findings.

Discussion
In advancing the application of CNNs to the problem of detecting
fires, we have demonstrated the potential for these methodologies
to produce powerful models that are truly predictive. Our results
build on the foundations of other studies that focus on fire dis-
tributions in the peatlands of Indonesia by reenforcing the notion
that these fires are anthropogenic in origin15,17,25,27. But in
developing a model that can accurately and precisely replicate the
distribution of fires from a set of predictive variables, we have
extended the current state of knowledge by being able to con-
fidently demonstrate the future impact of land management
strategies. Whilst there are numerous studies that examine the
role of drainage canals and degraded land cover in propagating
fire, and proport that restoring these elements would contribute
to alleviating future fires23,32,36, ours is the first study to clearly
demonstrate and quantify the linkage between canal restoration
projects, the active management of severely degraded forest areas,
and the potential for substantial fire reduction.

Scenarios. Our model scenarios suggest that the most impactful
land management strategy to reduce the number of fire-
occurrences in the region would be to block as many canals as
is pragmatically possible and replace areas of cleared forest that
have swamp shrubland and scrubland as successional growth
with plantations. Although this makes sense intuitively, as plan-
tation owners maintain and manage their investments with care
to avoid fires, this may not be possible to implement practically,
as plantations require the system of drainage canals to lower the
water table sufficiently for the establishment and continued cul-
tivation of the trees. This makes establishing plantations incom-
patible with a strategy of blocking drainage canals. Therefore,
despite plantations seeming to be more effective at reducing fire-
occurrences than swamp forest, the most practical solution might
be to block as many drainage canals as possible and encourage the
re-colonisation of swamp forest in these most degraded of areas,
or an alternative crop type that doesn’t require the draining of
peatland for successful cultivation.
This same consideration of canals being an inextricable

component of establishing plantations must also be taken into
consideration when looking at the deforestation scenarios. The
scenario that replaces swamp forest with plantations shows a
decrease in fire-occurrences, however, areas, where swamp forest
has been converted to plantations, are located far away from
drainage canals and so have a lower probability of fire attributed
to them by the model structure. In practice, areas that were
cleared of swamp forest to make way for plantations would have
drainage canals dug for their establishment, and so the probability
of fire would be much larger than modelled in the scenario. In
future analysis, new canals should be simulated alongside the
areas converted to plantations to better represent the probable
impacts, though this would require a thorough description of the
management practices associated with establishing new planta-
tions. This is also the reason that the scenario that replaces
swamp forest with shrubland shows a relatively small impact on
fire-occurrences; the areas simulated as deforested are far away
from drainage canals and other anthropogenic activities (roads

Fig. 4 Land management scenario results. Percentage change from base case scenario yearly modelled fire-occurrences (2002–2019) for each
management scenario displayed as violin plots showing the entire distribution of values about the median (black line) with one outlier falling beyond the y-
axis as marked. The x-axis values are the proportion of the total number of observations within each group (0–1). The data used to generate Fig. 4 can be
found in Supplementary Data 3.
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and settlements), and so have a low probability of fire in the
model. In practice, anthropogenic infrastructure (canals, roads,
etc.) are required for clearing a large area of forest, and so these
encroachments would make these areas more susceptible to fires.
If these additional factors of deforestation were included in the
model scenarios, we would likely see much larger increases in the
number of fires modelled for deforestation.

Model uncertainty, limitations, and future research. The main
source of uncertainty when undertaking any modelling activity is
the accuracy of the input data. We have attempted to use the best
quality data, with as high a spatial and temporal resolution as
possible for our study area. However, the detection of fire-hotspots
will be hampered by false positives and missed observations
obscured by cloud and smoke cover. Rather than only use obser-
vations with a high confidence associated, we have included all
recorded hotspots to maximise the volume of training data avail-
able for the neural network model, which requires large numbers of
observations to produce meaningful relationships between the
input variables. Some of the predictor variables are also subject to
inaccuracies, such as the anthropogenic proximities, which were
taken as they appear circa 2015 from OpenStreetMap as an input

for all years. This is unlikely to affect the distance to canals input, as
the vast majority were dug in the 1990’s, but the distance to roads
and settlements in the earlier years of the analysis may be distorted
by infrastructure that wasn’t actually present at the time. In addi-
tion, the historic land cover maps that we have used fail to dis-
tinguish between plantation types, and each will have a different
land management associated. In recent years oil palm plantations
are most common, but there are also agricultural crop plantations,
rubber plantations, and industrial timber plantation in the region.
Furthermore, we were unable to represent the hydrological impact
of restoration efforts blocking many small-scale canals throughout
the MRP32,37, as identifying the precise locations, the extent of the
damming, and the timing of the interventions proved impractical.
Whilst these inaccuracies within the model inputs will undoubt-

edly affect the performance of the model in a predictive capacity,
they shouldn’t significantly impact its utility as a descriptor of future
scenarios, as the scenarios are used only as a comparison against the
base-case, which has been shown to accurately and precisely
reproduce the recorded observations. These inaccuracies in the
hotspot and input variable data may in part explain the poor recall
metric scored by our model. However, recall is less important than
precision for our purposes, as we require the model to say with a
high degree of confidence that a set of input variables will produce a

Fig. 5 Comparison of FireCNN and early warning model results for 2019. a Performance metrics of accuracy, precision, and recall for the application to
2019 data of both the early warning model (training data 2002–2018) and the FireCNN model (training data 2002–2019). b Output map of 2019 modelled
fire occurrence probabilities (0–1) for the early warning model (2019 excluded from training dataset). c Output map of 2019 modelled fire occurrence
probabilities (0–1) for the FireCNN model (2019 included in training dataset). Both a and b have buffer zones indicating where the observed (MODIS and
VIIRS) hotspot data is located in white outlines. Accuracy is the percentage of all model estimates that are correct (fire and not-fire), precision is the
percentage of model fire estimates that are correct, and recall is the percentage of observed fire hotspots that the model correctly predicted.
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fire. We then change the set of input variables and ask the model for
a comparison. That the model misses many fire occurrences is not
an issue for making comparisons between scenarios so long as it
consistently misses many fire occurrences. We can, therefore, be
confident in the proportional impacts that the model predicts, even
if these don’t correspond precisely to the magnitude of fires that
would be recorded.
What remains to be decided is which combination of strategies

is most likely to deliver the most economic, environmental, and
social benefits, and can pragmatically be implemented. The
strategy which most reduces the number of fires is not necessarily
the correct strategy to promote. Whilst blocking all drainage
canals and restoring swamp forest might be the most effective fire
reducer, it will probably not be the most economically viable,
unless the economic benefits of the additional 15% in fire cost
reduction outweigh the potential profits from establishing
plantations. If any fire mitigation strategy is to be successful, it
must have the support of local communities and authorities that
implement the programme, which will require clearly demon-
strable social opportunities rather than being seen as a hindrance
to regional progress. Future research may assess each of these
components of restoration strategies and develop a holistic
framework for drawing comparisons between proposed pro-
grammes, and identify which has the highest chance of success.

Conclusion
Our CNN model was able to accurately and precisely predict the
spatial distribution of fire-season hotspot data based on pre-fire
season input variables, allowing us to simulate peatland restora-
tion land management strategies and quantify the impact on
future fires. Our findings confirm that substantial reductions in
the median number of fire occurrences can be brought about by
simple land use and canal restoration implementations that have
the potential to reduce fires by up to 70%. As current peatland
restoration projects are marred and undermined by misconcep-
tions and scepticism as to the effectiveness of management stra-
tegies, especially those that directly impact the livelihood of local
communities such as the blocking of drainage canals, these results
may help to clearly demonstrate the potential benefits and
communicate the long term importance of complying with land
management policies. Successfully Implementing fire mitigation
policies in the region would also considerably reduce the current
annual GHG emissions from peatland fires, which would posi-
tively contribute towards the Paris agreement objectives.
The success of our model to predict the locations of future fires

using pre-fire season variables is an encouraging endorsement of
using the CNN methodology applied here to generate models of
fire distributions in other regions. And based on the partial
success of our initial attempt, if we were to improve the quality
and quantity of the input training data, it may even be possible to
develop a working early warning system that could predict the
location of fire occurrences outside of the training data period.

Methods
Data sources and pre-processing. Each of the predictor variables used in our
analysis (Table 1), as well as the dependent variable (fire hotspots) underwent
pre-processing to transform the data into a format suitable to be passed to our
CNN model for prediction. Here we briefly outline these processes and describe
the method of generating a training and validation data set for model devel-
opment. For further details about each predictor variable pre-processing, see
Horton et al. (2021).

Fire hotspots. We used both Moderate Resolution Imaging Spectroradiometer
(MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS) fire hotspot
data as the dependent variable for use in our model development. As fire hot-
spots do not give precise locations, but rather indicate that a fire hotspot
occurred within a grid cell of the size of the dataset (MODIS 1 km, VIIRS
375 m), we represented each fire hotspot as a 500 m buffered area around the

centre point of each grid square identified. We used all fire hotspot occurrences
with a confidence rating >50%.

Landcover. We use a collection of historic land cover maps generated by the
Ministry of Forestry Indonesia from 1996 to 2016 at 2–3 year intervals38. Before
use, we re-designated the land cover map classifications to reduce the number from
25 to just 8 (supplementary Table S2), which are ‘Primary and secondary dry
forest’, ‘Swamp forest, ‘Swamp scrubland’, ‘Scrubland, Transition, and bare land’,
‘Riceland’, ‘Plantation’, ‘Settlements’, ‘water, and Cloud’.

In addition to these 8 land cover classifications, we also derived a forest
clearance index, which identifies areas cleared of forest and assigns an index value
that is large negative (−10) immediately after clearing and degrades back towards 0
as time since clearing increases yearly. Areas that are re-forested are assigned large
positive values (10) that degrade towards 0 yearly as time since afforestation
increase25.

Vegetation indices. All vegetation indices were taken as pre-fire season 3-month
averages from May to July. In addition to the original MODIS ET, PET, NDVI, and
EVI products, we also included ‘normalised’ variables, whereby each vegetation
index was expressed as the ratio of the same index taken at a reference site. The
reference site was an area of dense primary forest outside of the EMRP area.

Proximity to anthropogenic factors. The distance to roads and settlement rasters
were derived from OpenStreetMap data as the Euclidean distance to nearest feature
in 250 m resolution. The same was done for all water bodies, which were then
classified by hand into either canals or rivers. These features are taken as those
shown in 2015 for all years, and therefore may misrepresent earlier years. However,
the majority of canal development in the region took place between 1996 and 1998
and so should not differ dramatically from this date onwards.

Oceanic Niño Index (ONI). We use a single value for the entire study area taken as
the three-month average for the early fire season each year (July–September).

Number of cloud days. Using the state_1km band in the daily MODIS terra
product (MOD09GA version 6), which classifies each pixel as either ‘no cloud’,
‘cloud’, ‘mixed’, or ‘unknown’, we counted the number of ‘cloud’ or ‘mixed’ des-
ignations for each pixel for the pre-fire season period May–July.

Cross year normalisation. All predictor variables are normalised to be represented
between 0 and 1 as the range between the minimum and maximum values for each
variable that occur across all years, such that:

Vnorm ¼ V � Vmin

Vmax � Vmin

where Vnorm is the normalised version of the predictor variable V , Vmax is the
maximum value within the training dataset across all years (2002–2019), and Vmin
is the minimum value within the training dataset across all years.

Training and validation dataset assembly. Once pre-processed, all predictor
variable rasters were resampled to the same dimensions (with a resolution of 0.002
degrees in the WGS84 co-ordinate system) and stacked yearly, so that each year
(2002–2019) comprised of a 31 feature maps input as a raster stack, with each
feature map representing a different predictor variable. Each yearly stack was then
split into tiles matching the input dimensions of the CNN model. Our final model
was built to take an input size of 32 × 32 pixels (raster cells). Therefore, each yearly
raster stack was split into many 32 × 32 × 31 raster stack tiles that span the defined
study area. These were then converted to 3D arrays holding the values of all
predictor variables for each raster stack tile.

The same process was repeated for the yearly fire hotspot rasters used as the
dependent variable in building our model. Each year was split into 32 × 32 × 1 tiles
across the study area, and then converted to 3D arrays, each of which pairs with
one predictor variable array.

The 3D predictor variable arrays (dimensions: 32 × 32 × 31) were then stacked
into one large 4D array containing all these individual tiles across all years
(dimensions: W × 32 × 32 × 31, where W is a large value). The same was done with
the 3D dependent variable arrays (dimension: 32 × 32 × 1), preserving the order so
that each element in this large 4D array (dimensions: W × 32 × 32 × 1) matches
with its counterpart in the predictor variable array.

The order of this large 4D training data array was then randomised along the
first dimension to avoid bias in passing to the CNN training algorithm, but the
randomised re-ordering was repeated with the dependent variable array so as to
preserve the elementwise pairing for cross-validation.

Model development and application. Fire prediction requires the combination
of spatial and temporal indicators to generate a probabilistic output for each
location within a given study area. There is a need to preserve a certain level of
proximity information, as the location of variables in relation to one another
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may have a substantial impact on the results. For example, a patch of secondary
forest that is immediately adjacent to an area recently deforested may have a
significantly higher probability of fire occurrence than an area surrounded
entirely by primary forest.

CNNs retain spatial features by employing a moving window of reference,
known as a kernel, over the input image that captures these proximity relationships
within the model structure. For this reason, CNNs are often used for image
classification problems, and is an ideal model configuration for the problem of fire
prediction across an area. Therefore, we have developed a CNN binary
classification model using the Keras API package39 that builds on the TensorFlow
machine learning platform40.

Model structure. CNN models typically apply a combination of kernel layers and
dense layers that perform a series of transformations on the multi-channel input to
either reduce it down to a single value, or to output an image the same width and
height as the input with a single channel. These classification models can either
assign a single value (binary classifier), or return one of many possible
classifications.

Kernels act on a subsection of the input stack (31 feature maps), assigning
weights according to each cell’s position within the subsection to transform and
combine the values into a new format to pass forward. As the kernel is applied to
all subsections of the input stack, it transforms them to the new format, and builds
a reconstituted image with dimensions that usually differ from the input. A dense
layer will do the same operation, but acting only on a single grid cell of the input
stack, acting at the same location upon all input feature maps within the stack at a
time—using all values at that location (i.e., the 1 × 1 subsection) and transforming
them according to assigned weights to pass forward a new set of channels to a
single grid cell on the output stack. Each layer, either kernel or dense, may expand
or contract the number of channels it passes forward. A kernel layer may also
change the width and height dimensions of the subsection it passes forwards.

We require an output that corresponds to a map of fire-occurrences; therefore
our model needs to perform a series of transforms that preserve the width and
height of the input, but reduce it to a single channel. The single channel in the
output then represents the probability of each cell being classified as fire or not-
fire (0–1).

Our CNN model is comprised of 5 kernel layers (K1–K5 in Fig. 5), each acts on
a 3 × 3 subsection and preserves width and height, passing forwards a transformed
3 × 3 section. Kernel K1 takes an input of 31 channels (predictor variables) but
passes forward 128 channels to form the transformation T1 (Fig. 6). Kernels K2–K4
take inputs of 128 channels and pass forward 128 channels (T2–T4). Kernel K5
takes an input of 128 channels but passes forward 1 channel—the output. After
each kernel applies its weights, there is an activation function applied before the
values are passed on, which modify the answer to fit the necessary criteria to be a
valid input to the next process. Kernels K1–K4 have a rectified linear (relu)
activation function, which returns the input value if positive, and 0 if negative.
Kernel K5 has a sigmoid activation function, that transforms the input values to

between 0 and 1 such that negative values are transformed to <0.5, and positive
values are transformed to >0.5.

Model training and validation. We used a stochastic gradient descent optimising
function called Adam41 combined with a binary cross-entropy loss function to
train the model against our fire-hotspot dataset iterated over 20 epochs. We split
the data 70/30, using 70% as training data and 30% as validation data, recording
accuracy, precision, and recall as the performance metrics, as well as the loss
function itself.

After model training, we applied the model to each yearly raster stack and
compared the output against the fire-hotspot data for further model validation.
Before validating the model outputs, we applied a simple 3 × 3 moving average
window as a smoothing function to reduce the edge effects of tiling that are a by-
product of having to split the study area into smaller tiles (32 × 32) for passing to
the model. For this yearly validation, we again used the metrics accuracy, precision,
and recall, such that:

Accuracy ¼ 100ðTPþ TNÞ=ðTPþ TNþ FPþ FNÞ

Precision ¼ 100ðTPÞ=ðTPþ FPÞ

Recall ¼ 100ðTPÞ=ðTPþ FNÞ
where TP is true positive, TN is true negative, FP is false positive, and FN is false
negative. These comparisons were made on a raster cell to raster cell basis after
designating a 500 m buffer around each fire hotspot observation (MODIS and
VIIRS data) and converting the buffers to a raster image of the same resolution and
extent as the model prediction.

Scenarios. After validating the model performance, we built future scenarios to
investigate the impact on fire occurrence of managing key anthropogenic features
of the landscape: canals and land cover (Table 2).

Studies have shown that unmanaged areas of heavily degraded or cleared
swamp-forest are most susceptible to fires16,17,25,26,33,42. Therefore, we have built
scenarios that investigate the possible impact of managing these areas by altering
the model inputs to re-assign the land-cover designations ‘Swamp shrubland’ and
‘Scrubland’, as well as other land designation alterations. The first such restoration
scenario investigates the impact of reforesting these areas by re-assigning the
designations to ‘Swamp forest’. The second such scenario investigates the impact of
converting these unmanaged areas to plantations by re-assigning the designations
to ‘Plantation’. We also built two further land cover scenarios to investigate the
impact of continued deforestation in the region by re-assigning the ‘Swamp forest’
designation to ‘Swamp shrubland’ and ‘Plantation’.

We then built a scenario to investigate the impact of canal blocking on fire
occurrence, modifying the proximity to canals model input by reducing the
number of canals included in our proximity analysis to just two major canals, one

Table 1 Model input data sources, citation, original resolution, and date ranges.

Dataset (variable) Data source Citation Resolution Temporal coverage

MODIS fire hotspot (fire distribution) MODIS product MCD14DL
(collection 6)

Giglio et al. 201643 1 km (Aug–Oct)
2001–2019

VIIRS fire hotspot (fire distribution) Product VNP14IMGTDL_NRT Schroeder et al. 201444 375m (Aug–Oct)
2012–2019

NDVI and EVI (vegetation indices) MODIS product MOD13Q1 Running et al. 201745 230m (May–Jul)
2001–2019

ET and PET (ET:PET ratio) MODIS product MOD16A2 Didan 201546 500m (May–Jul)
2001–2019

SPEI (3 and 12 month measured
backwards from July)

Calculated from ET/PET and
NASA’s GPM rainfall data

Vicente-Serrano et al.
201047; Huffman et al.
201848

0.1 deg 2001–2019

Distance to roads Open street map OSM 201849 250m 2015
Distance to canals Open street map OSM 201849 250m 2015
Distance to rivers Open street map OSM 201849 250m 2015
Distance to settlements Open street map OSM 201849 250m 2015
Indonesia Ministry of Forestry land
cover (land- cover type, forest
clearance index)

National Forest Monitoring
System (NFMS)

MoF 201638 125 m 1996, 2000, 2003, 2006,
2009, 2011, 2012,
2013, 2015

Oceanic Niño Index (ONI) NOAA/ National Weather Service NOAA 201950 NA (July–Sep)
2001–2019

Elevation/slope/aspect SRTM Jarvis et al. 200851 90m 2000
Peat depth CIFOR wetland project Gumbricht et al. 201752 231 m 2017
Number of cloud days (May–Jul) MODIS product MOD09GA

(version 6)
1 km (May–Jul)

2001–2019
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that runs north-south, and one that runs west-east (Fig. 1). These canals could not
practically be blocked due to their size and importance as navigation conduits.

The final scenario simulates the combined impact of both re-foresting
unmanaged degraded and cleared forest areas and the blocking of canals
simultaneously.

To evaluate the impact of each scenario on fire occurrences, we calculated the
ratio of model predictions >0.5 probability (i.e., that a fire would occur in that
raster cell) for each year for each scenario against the same year for the baseline
scenario.

Model use as a predictive tool. To evaluate the model’s potential to predict
future fire distribution across the wider ex-Mega Rice Project area, we trained a
second version of the model following the same methodology outlined above,
but included only data from 2002 to 2018 in the training and test data passed to
the model fitting algorithm. We then applied the model to the predictor vari-
ables corresponding to 2019 and compared model outputs to the observations of
fire-occurrences by again looking at the metrics accuracy, precision, and recall.
We also present a visual comparison of the outputs from the full model (2019
included in training data), the predictive model (2019 not included), and the
observation data (MODIS and VIIRS hotspots).

Data availability
We acknowledge the use of data and/or imagery from NASA’s Fire Information for
Resource Management System (FIRMS) (https://earthdata.nasa.gov/firms), part of
NASA’s Earth Observing System Data and Information System (EOSDIS). All data used
in this analysis are freely available at the associated references given in the text.

Code availability
For enquiries about code availability, please contact the corresponding author.
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