
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by you for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

Antoniadis, Antonios; De Berg, Mark; Kisfaludi-Bak, Sándor; Skarlatos, Antonis
Computing Smallest Convex Intersecting Polygons

Published in:
30th Annual European Symposium on Algorithms, ESA 2022

DOI:
10.4230/LIPIcs.ESA.2022.9

Published: 01/09/2022

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY

Please cite the original version:
Antoniadis, A., De Berg, M., Kisfaludi-Bak, S., & Skarlatos, A. (2022). Computing Smallest Convex Intersecting
Polygons. In S. Chechik, G. Navarro, E. Rotenberg, & G. Herman (Eds.), 30th Annual European Symposium on
Algorithms, ESA 2022 Article 9 (Leibniz International Proceedings in Informatics, LIPIcs; Vol. 244). Schloss
Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.ESA.2022.9

https://doi.org/10.4230/LIPIcs.ESA.2022.9
https://doi.org/10.4230/LIPIcs.ESA.2022.9

Computing Smallest Convex Intersecting Polygons
Antonios Antoniadis !

Department for Applied Mathematics, University of Twente, Enschede, The Netherlands

Mark de Berg !

Department of Mathematics and Computer Science, TU Eindhoven, The Netherlands

Sándor Kisfaludi-Bak !

Department of Computer Science, Aalto University, Espoo, Finland

Antonis Skarlatos !

Department of Computer Science, Universiät Salzburg, Austria

Abstract
A polygon C is an intersecting polygon for a set O of objects in R2 if C intersects each object in O,
where the polygon includes its interior. We study the problem of computing the minimum-perimeter
intersecting polygon and the minimum-area convex intersecting polygon for a given set O of objects.
We present an FPTAS for both problems for the case where O is a set of possibly intersecting convex
polygons in the plane of total complexity n.

Furthermore, we present an exact polynomial-time algorithm for the minimum-perimeter inter-
secting polygon for the case where O is a set of n possibly intersecting segments in the plane. So far,
polynomial-time exact algorithms were only known for the minimum perimeter intersecting polygon
of lines or of disjoint segments.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases convex hull, imprecise points, computational geometry

Digital Object Identifier 10.4230/LIPIcs.ESA.2022.9

Related Version Full Version: https://arxiv.org/abs/2208.07567

Funding Mark de Berg is supported by the Dutch Research Council (NWO) through Gravitation-
grant NETWORKS-024.002.003.
Antonis Skarlatos: Part of the work was done during an internship at the Max Planck Institute for
Informatics in Saarbrücken, Germany.

1 Introduction

Convex hulls are among the most fundamental objects studied in computational geometry.
In fact, the problem of designing efficient algorithms to compute the convex hull of a planar
point set O – the smallest convex set containing O – is one of the problems that started
the field [5, 11]. Since the early days, the problem has been studied extensively, resulting in
practical and provably efficient algorithms, in the plane as well as in higher dimensions; see
the survey by Seidel [13, Chapter 26] for an overview.

A natural generalization is to consider convex hulls for a collection O of geometric objects
(instead of points) in R2. Note that the convex hull of a set of polygonal objects is the same
as the convex hull of the vertices of the objects. Hence, such convex hulls can be computed
using algorithms for computing the convex hull of a point set. A different generalization,
which leads to more challenging algorithmic questions, is to consider the smallest convex set
that intersects all objects in O. Thus, instead of requiring the convex set to fully contain
each object from O, we only require that it has a non-empty intersection with each object.

Notice that in case of points, the “smallest” set is well-defined: if convex sets C1 and C2
both contain a point set O, then C1 ∩ C2 also contains O. Hence, the convex hull of a point
set O can be defined as the intersection of all convex sets containing O. When O consists of
objects, however, this is no longer true, and the term “smallest” is ambiguous. In the present

© Antonios Antoniadis, Mark de Berg, Sándor Kisfaludi-Bak, and Antonis Skarlatos;
licensed under Creative Commons License CC-BY 4.0

30th Annual European Symposium on Algorithms (ESA 2022).
Editors: Shiri Chechik, Gonzalo Navarro, Eva Rotenberg, and Grzegorz Herman; Article No. 9; pp. 9:1–9:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:a.antoniadis@utwente.nl
mailto:M.T.d.Berg@tue.nl
mailto:sandor.kisfaludi-bak@aalto.fi
https://orcid.org/0000-0002-6856-2902
mailto:antonis.skarlatos@plus.ac.at
https://orcid.org/0000-0002-7623-9419
https://doi.org/10.4230/LIPIcs.ESA.2022.9
https://arxiv.org/abs/2208.07567
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2 Computing Smallest Convex Intersecting Polygons

paper we consider two variants: given a set O of possibly intersecting convex polygons in
R2 of total complexity n, find a convex set of minimum perimeter that intersects all objects
in O, or a convex set of minimum area that intersects all objects in O.

Observe that a minimum-perimeter connected intersecting set C for O must be a convex
polygon. To see this, observe that for any object o ∈ O we can select a point po ∈ o∩C, and
take the convex hull of these points; the result is a feasible convex polygon whose perimeter
is no longer than that of C. Thus the convexity of the solution could be omitted from the
problem statement. This contrasts with the minimum-area problem, where there is always
an intersecting polygon of zero area, namely, a tree. The convexity requirement is therefore
essential in the problem statement. Note that it is still true that the minimum-area convex
intersecting set is a polygon: given a convex solution, we can again take the convex hull of
the points po and get a feasible solution whose area is not greater than the area of the initial
convex solution. We also remark that the two problems typically have different optima. If O
consists of the three edges of an equilateral triangle, then the minimum-area solution is a
line segment (that is, a degenerate polygon of zero area), whereas the minimum-perimeter
solution is the triangle whose vertices are the midpoints of the edges.

The problem of computing minimum-area or minimum-perimeter convex intersecting
polygons, as well as several related problems, have already been studied. Dumitrescu and
Jiang [4] considered the minimum-perimeter intersecting polygon problem. They gave a
constant-factor approximation algorithm as well as a PTAS for the case when the objects
in O are segments or convex polygons. They achieved a running time of nO(1)/ε+2O(1/ε2/3)n.
They also prove that computing a minimum-perimeter intersecting polygon for a set O of
non-convex polygons (or polygonal chains) is NP-hard. For convex input objects, however,
the hardness proof fails. Hence, Dumitrescu and Jiang ask the following question.

Question 1. Is the problem of computing a minimum-perimeter intersecting polygon
of a set of segments NP-hard?

In case of disjoint segments, a minimum-perimeter intersecting polygon can be found in
polynomial time [6, 7], but for intersecting segments the question is still open.

The problem of computing smallest intersecting polygons for a set O of objects has also
been studied in works on imprecise points. Now the input is a set of points, but the the exact
locations of the points are unknown. Instead, for each point one is given a region where the
point can lie. One can then ask questions such as: what is the largest possible convex hull
of the imprecise points? And what is the smallest possible convex hull? If we consider the
objects in our input set O as the regions for the imprecise points, then the latter question
is exactly the same as our problem of finding smallest intersecting convex sets. In this
setup both the minimum-perimeter and minimum-area problem have been considered, for
sets O consisting of convex regions of total complexity n. There are exact polynomial-time
algorithms for minimum (and maximum) perimeter and area, for the special case where O
consists of horizontal line segments or axis-parallel squares [10]. Surprisingly, some of these
problems are NP-hard, such as the maximum-area/perimeter problems for segments. This
gave rise to the study of approximation algorithms and approximation schemes [9].

In some cases, the minimum-perimeter problem can be phrased as a travelling salesman
problem with neighborhoods (TSPN). Here the goal is to find the shortest closed curve
intersecting all objects from the given set O. In general, an optimal TSPN tour need not be
convex, but one can show that in the case of lines or rays, an optimal tour is always convex:
if a convex polygon intersects a line (or a ray) then its boundary intersects the line (resp. the
ray). Therefore, computing a minimum-perimeter intersecting polygon of lines (or rays) is
the same problem as TSPN with line neighborhoods (resp. ray neighborhoods). TSPN of

A. Antoniadis, M. de Berg, S. Kisfaludi-Bak, and A. Skarlatos 9:3

lines in R2 admits a polynomial-time algorithm [2]. In higher dimensions, TSPN has a PTAS
for hyperplane neighborhoods [1], but notice that this is not the natural generalization of the
minimum-intersecting polygon problem. Tan [12] proposed an exact algorithm for TSPN of
rays in R2, but there seems to be an error in the argument; see the full version for details. At
the time of writing this article, we believe that a polynomial-time algorithm for TSPN of rays
is not known, but there is a constant-factor approximation algorithm due to Dumitrescu [3],
as well as a PTAS [4].

Our results. In order to resolve Question 1, we first need to establish a good structural
understanding and a dynamic programming algorithm. It turns out that the algorithm can
also be used for approximation. We give dynamic-programming-based approximation schemes
for the minimum-perimeter and minimum-area convex intersecting polygon problems. Our
first algorithm is a fully polynomial time approximation scheme (FPTAS) for the minimum-
perimeter problem of arbitrary convex objects of total complexity n.

▶ Theorem 1. Let O be a set of convex polygons of total complexity n in R2 and let opt
be the minimum perimeter of an intersecting convex polygon for O. For any given ε > 0,
we can compute an intersecting polygon for O whose perimeter is at most (1 + ε) · opt, in
O(n2.373/ε+ n/ε8) time.

This is a vast improvement over the PTAS given by Dumitrescu and Jiang [4], as the
dependence on 1/ε is only polynomial in our algorithm. Our approximation algorithms work
in a word-RAM model, where input polygons are defined by the coordinates of their vertices,
and where each coordinate is a word of O(logn) bits.

We also get a similar approximation scheme for the minimum area problem, albeit with
a slower running time. Here we rely more strongly on the fact that the objects of O are
convex polygons, and an extension to (for example) disks is an interesting open question.
The full version details how the minimum-perimeter FPTAS needs to be adapted to the
minimum-area setting.

▶ Theorem 2. Let O be a set of convex polygons of total complexity n in R2 and let opt
be the minimum area of an intersecting convex polygon for O. For any given ε > 0, we
can compute a convex intersecting polygon for O whose area is at most (1 + ε) · opt, in
O(n17 log(1/ε) + n11/ε24) time.

We remark that both Theorem 1 and Theorem 2 work if the input has polytopes instead of
polygons, that is, when each object is the intersection of some half-planes.

While the dynamic programming algorithm developed above is crucial to get an exact
algorithm, we are still several steps from being able to resolve Question 1. The main challenge
here is that the vertices of the optimum intersecting polygon can be located at arbitrary
boundary points in O, and there is no known way to discretize the problem. We introduce
a subroutine that uses an algorithm of Dror et al. [2] to compute parts of the minimum-
perimeter intersecting polygon that contain no vertices of input objects. We are able to
achieve a polynomial-time algorithm (on a real-RAM machine) for the minimum perimeter
intersecting polygon problem only when the objects are line segments.

▶ Theorem 3. Let O be a set of n line segments in the plane. Then we can compute a
minimum-perimeter intersecting polygon for O in O(n9 logn) time.

If P ̸= NP, then this gives a direct negative answer to Question 1. The theorem also extends
to the case of rays (this is the scenario studied by Tan [12]; see the discussion in the full
version.

ESA 2022

9:4 Computing Smallest Convex Intersecting Polygons

Our techniques. Our approximation algorithms both compute an approximate solution
whose vertices are from some fine grid. To determine a suitable grid resolution, we need to
be able to compute lower bounds on opt, which is non-trivial. It is also non-trivial to know
where to place the grid, such that it is guaranteed to contain an approximate solution. The
problem is that our lower bound gives us the location of a solution that is a constant-factor
approximation, but this can be far from the location of a (1 + ε)-approximation. Hence, for
the minimum-area problem we generate a collection of grids, one of which is guaranteed to
contain a (1+ε)-approximate solution. Finally, we face some further difficulties since a square
grid may be insufficient: the optimum intersecting polygon may be extremely (exponentially)
thin and long, and of area close to zero. In such cases there is no square grid of polynomial
size that would contain a good solution. These problems are resolved in Section 2.

Section 3 presents our dynamic programming algorithm for minimum perimeter. In the
dynamic programming the main technical difficulty lies in the fact that it is not clear what
subset of objects should be visited in each subproblem. A portion of the optimum’s boundary
could in principle be tasked with intersecting an arbitrary subset of O, while some of the
objects in O need not be intersected by the optimum boundary and will simply be covered by
the interior of the optimum intersecting polygon: a naïve approach therefore would not yield
a polynomial-time algorithm. Our carefully designed subproblems have a clear corresponding
set of objects to “visit”, using orderings of certain tangents of input objects for this purpose.
The minimum area problem uses a similar dynamic program, see the full version for its
details.

Finally, in order to present our exact algorithm in Section 4, we need to modify our
dynamic program to deal with subproblems where the vertices of a convex chain do not come
from a discretized set. In such cases, we have to find the order in which the objects of O
are visited by the chain. We are able to prove a specific ordering only in the case when the
objects are line segments. The order then allows us to invoke the algorithm of Dror et al. [2]
in a black-box manner.

2 Locating an optimal solution

The algorithms to be presented in subsequent sections need to approximately know the size
and location of a smallest intersecting polygon. We use an algorithm from [4] to locate the
minimum-perimeter intersecting polygon. With respect to the minimum-area intersecting
polygon we prove that either there is a solution with a constant number of vertices (that
can be computed with a different algorithm), or it is sufficient to consider polygons whose
vertices are from a grid which comes from a polynomial collection of different grids.

Locating the minimum-perimeter optimum. For the minimum-perimeter intersecting
polygon of a set O of convex objects, Dumitrescu and Jiang [4] present an algorithm A1 that,
for a given ε1 > 0, outputs a rectangle R intersecting all input objects O and with perimeter
at most 4

π (1+ε1)opt. At a high level, A1 guesses an orientation of the rectangle among ⌈ π
4ε1

⌉
many discrete orientations and then uses a linear program to identify the smallest perimeter
rectangle of that orientation that intersects O. In [4] it is described how Algorithm A1 is
used to locate an optimal solution if the input objects are convex polygons. In particular,
for any ε > 0 running A1 with ε1 = ε

2+ε gives a rectangle R. Let σ be the square that is
concentric and parallel to R and has a side length of 3 · per(R). Then the following holds.

▶ Lemma 4 (Lemma 3 in [4]). Suppose that per(R) ≥ (1 + ε)opt. Then there is an optimum
polygon Copt that is covered by σ.

A. Antoniadis, M. de Berg, S. Kisfaludi-Bak, and A. Skarlatos 9:5

vCopt

Copt

E

Q

(i) (ii)

Figure 1 (i) If v and adjacent sides of Copt are disjoint from X, then we can slide v without
increasing the area of Copt. (ii) The points of Q (green) and their circumscribed ellipse E.

Algorithm A1 needs to solve O(1/ε) many linear programs with O(n) variables and O(n)
constraints each. Thus R and σ can be found in O(TLP(n)/ε) time, where O(TLP(n) is the
running time of an LP solver with O(n) variables and O(n) constraints. The state-of-the-art
LP solver by Jiang et al. [8] achieves a running time better than O(n2.373). Lemma 4 directly
implies that if per(R) ≥ (1 + ε)per(Copt), then

diam(Copt) ≤ diam(σ) = 3
√

2per(R) ≤ 3
√

2 4
π

(1 + ε)per(Copt) = O(diam(Copt)). (1)

The shape and location of the minimum-area optimum. For the rest of this section, let
X denote the set of vertices in the planar arrangement given by O.

▶ Lemma 5. Let Copt be a minimum-area intersecting polygon for the input O that has the
minimum number of vertices, and among such polygons has the maximum number of points
from X on its boundary. Then for any vertex v of Copt that is not in X, the relative interior
of at least one side of Copt adjacent to v contains a point of X.

Proof. Suppose for a contradiction that v ̸∈ X and that the relative interior of the sides in
Copt adjacent to v are disjoint from X. Observe that v must be on the boundary of an input
object, so it is in the relative interior of an edge e of an input object, see Fig. 1(i). Then there
exists a vector parallel to e along which we can move v while fixing its neighboring vertices
in Copt, without increasing the area of Copt. This movement can be continued until we hit a
point in X, or the angle of the polygon becomes π at v1 or v2. As a result, we end up with a
feasible polygon S whose area is no greater than that of Copt, and it has one less vertex or
at least one more point of X on its boundary. This contradicts the properties of Copt. ◀

The following lemma is more involved. Its full proof can be found in the full version.

▶ Lemma 6. For any given set of input polygons O and 0 < ε < 1 there is an intersecting
polygon C of area (1 + ε)opt which either has at most 8 vertices, or its vertices are in a
rectangular grid G of size O(1/ε3) ×O(1/ε3) where G belongs to a collection G of grids that
can be generated in polynomial time.

Proof sketch. Let Q = X ∩ ∂Copt. By Lemma 5 we can show that |Q| ⩾ ⌈|V (Copt)|/2⌉, so
if |V | ⩾ 9, then |Q| ⩾ 4. We guess the circumscribed ellipse of Q, and use an affinity on the
entire instance and Copt which transforms the ellipse into a circle E. Wlog. we assume that
E is the unit circle centered at the origin. It is known that the disk with boundary 1

2E is
covered by conv(Q) and thus by Copt.

Consider the division of ∂Copt defined by the points of Q. A section of ∂Copt between
two consecutive points of Q is a spike if it has a vertex v ∈ V (Copt) that is at distance
Ω(1/ε) from the origin. One can show that if such a spike exists, then area(Copt) is Ω(1/ε).

ESA 2022

9:6 Computing Smallest Convex Intersecting Polygons

On the other hand, we can show that Copt cannot have more than 2 spikes. We then claim
that if Copt has a spike, then there is a polygon on at most 8 vertices that has area at most
(1 + ε)area(Copt). This is because Copt can be covered by the intersection of the “cones”
defined by the spike(s), which defines a polygon C. We can show that the extra area in the
intersection of the (at most two) spike cones is O(1), thus area(C) ⩽ (1 + ε)area(Copt), and
C has at most 8 vertices, as desired.

If Copt has no spikes, then all of its vertices are within distance O(1/ε) from the origin.
We define a fine grid G (that depends on the guessed ellipse E) in the radius O(1/ε) square
around the origin, and use standard arguments to show that the minimum area intersecting
polygon whose vertices are from G has area at most (1 + ε)opt. We can therefore return all
the grids G for each guess of the circumscribed ellipse of Q. ◀

3 An FPTAS for the minimum-perimeter problem of convex objects in
the plane

Let O be a set of n convex objects in the plane for which we want to compute a minimum-
perimeter convex intersecting polygon. We assume that O cannot be be stabbed by a single
point – this is easy to test without increasing the total running time. Since a minimum-
perimeter intersecting polygon is necessarily convex, we will from now on drop the adjective
“convex” from our terminology. We do this even when referring to convex intersecting
polygons that are not necessarily of minimum perimeter.

In the previous section we have seen that for any ε > 0, we can find a feasible rectangle
R and a square σ with the following property: Either per(R) ≤ (1 + ε)opt, or Copt ⊆ σ with
diam(Copt) = Ω(1)diam(σ). Next we describe an algorithm that, given a parameter ε > 0
and a corresponding square σ, outputs an intersecting polygon C∗ ⊆ σ for O such that if
per(R) ≥ (1 + ε)per(Copt) then per(C∗) ⩽ (1 + ε)opt, where opt = per(Copt) (cf. Lemma 4
and Equation 1). Finally, we output either R or C∗, whichever has smaller perimeter.

Our algorithm starts by partitioning σ into a regular grid G(σ) of O(1/ε2) cells of edge
length at most (ε/8) · opt. We say that a convex polygon is a grid polygon if its vertices are
grid points from G(σ). The following observation is standard, but a full proof can be found
in the full version.

▶ Observation 7. Suppose σcontains an optimal solution Copt. Let C(σ) be a minimum-
perimeter grid polygon that is an intersecting polygon for O. Then per(C(σ)) ⩽ (1 + ε) · opt.

Next we describe an algorithm to compute a minimum-perimeter grid polygon C(σ) that
is an intersecting polygon for O.

First, we “guess” the lexicographically smallest vertex vbot of C(σ), see Figure 2(i). We
can guess vbot in O(1/ε2) different ways. For each possible guess we will find the best solution
(if it exists), and then we report the best solution found over all guesses.

Now consider a fixed guess for the lexicographically smallest vertex vbot of C(σ). With a
slight abuse of notation we will use C(σ) to denote a minimum-perimeter grid polygon that
is an intersecting polygon of O and that has vbot as lexicographically smallest vertex. (If
the polygon C(σ) does not exist, the algorithm described below will detect this.) We will
compute C(σ) by dynamic programming.

The vertices of C(σ) are grid points in the region h+ \ρ0, where h+ is the closed half-plane
above the horizontal line through vbot and ρ0 is the horizontal ray emanating from vbot and
pointing to the left. Let V be the set of such grid points, excluding vbot. We first order the
points from V in angular order around vbot. More precisely, for a point v ∈ V , let ϕ(v) denote

A. Antoniadis, M. de Berg, S. Kisfaludi-Bak, and A. Skarlatos 9:7

ρ∗(w)
ρ∗(w)

vbot

v
w

oi`w(oi)

ρ(w)

v
w

ρ∗(w)

ρ0

vbot vbot

v

w

ρ∗(w)

v w

vbot vbot

v

w

(i) (ii)

Figure 2 (i) The wedge defined by ρ0 and ρ(w) is shown in light grey. Objects in O(v, w) are red,
objects in O \ O(v, w) are blue. (ii) The partial solution C(Γ) must be contained in the red region,
while C \ C(Γ) must lie in the blue region. There are four situations, depending on whether the
angle between ρ0 and ρ(w) is acute or not, and whether the line containing vw intersects ρ0 or not.

the angle over which we have to rotate ρ0 in clockwise direction until we hit v. For two points
v, w ∈ V , we write v ≺ w if ϕ(v) < ϕ(w). Let V + := V ∪ {vbot, vbot}, where vbot is a copy
of vbot, and define vbot ≺ v and v ≺ vbot for all v ∈ V . The copy vbot serves to distinguish
the start and the end vertex of the clockwise circular sequence of vertices of C(σ). Note that
if vbot, v1, . . . , vk, vbot denotes this circular sequence then vbot ≺ v1 ≺ · · · ≺ vk ≺ vbot (since
C(σ) will never have two vertices that make the same angle with vbot).

We now describe our dynamic-programming algorithm. Consider a polyline from vbot
to some point v ∈ V . We say that this polyline is a convex chain if, together with the line
segment vvbot, it forms a convex polygon. We denote the convex polygon induced by such a
chain Γ by C(Γ). The problem we now wish to solve is as follows:

Compute a minimum-length convex chain Γ∗ from vbot to vbot such that C(Γ∗) is an
intersecting polygon for O.

Our dynamic-programming algorithm uses the partial order ≺ defined above. We now want
to define a subproblem for each point v ∈ V +, which is to find the “best” chain Γv ending
at v. For this to work, we need to know which objects from O should be covered by the
partial solution C(Γv). This is difficult, however, because objects that intersect the ray from
vbot and going through v could either be intersected by C(Γv) or by the part of the solution
that comes after v. To overcome this problem we let the subproblems be defined by the
last edge on the chain, instead of by the last vertex. This way we can decide which objects
should be covered by a partial solution, as explained next.

Consider a convex chain from vbot to a point w ∈ V + whose last edge is vw. Let ρ(w)
be the ray emanating from vbot in the direction of w, and let ρ∗(w) be the part of the ray
starting at w. For w = vbot we define ρ(w) to be the horizontal ray emanating from vbot and
going to the right, and we define ρ∗(w) = ρ(w). For an object oi ∈ O that intersects ρ∗(w),
let ℓw(oi) be a line that is tangent to oi at the first intersection point of ρ∗(w) with oi. We
now define the set O(v, w) to be the subset of objects oi ∈ O such that one of the following
conditions is satisfied; see also Figure 2(i).

(i) oi intersects the wedge defined by ρ0 and ρ(w), but not ρ(w) itself; or
(ii) oi intersects vbotw; or
(iii) oi intersects ρ∗(w) but not vbotw, and the tangent line ℓw(oi) intersects the half-line

containing vw and ending at w.
The next lemma shows that we can use the sets O(v, w) to define our subproblems.

▶ Lemma 8. Let C be any convex polygon that is an intersecting polygon for O and that has
vbot as lexicographically smallest vertex and vw as one of its edges. Let Γw be the part of ∂C
from vbot to w in clockwise direction. Then all objects in O(v, w) intersect C(Γw) and all
objects in O \ O(v, w) intersect C \ C(Γw).

ESA 2022

9:8 Computing Smallest Convex Intersecting Polygons

We can now state our dynamic program. To this end we define, for two points v, w ∈ V +

with v ≺ w, a table entry A[v, w] as follows.

A[v, w] := the minimum length of a convex chain Γ from vbot to w whose last edge is vw and
such that all objects in O(v, w) intersect C(Γ),

where the minimum is ∞ if no such chain exists. Lemma 8 implies the following.

▶ Observation 9. Let Γ∗ be a shortest convex chain from vbot to vbot such that C(Γ∗) is an
intersecting polygon for O. Then length(Γ∗) = min{A[v, vbot] : v ∈ V and O(v, vbot) = O}.

Hence, if we can compute all table entries A[v, w] then we have indeed solved our problem.
(The lemma only tells us something about the value of an optimal solution, but given the
table entries A[v, w] we can compute the solution itself in a standard way.)

The entries A[v, w] can be computed using the following lemma. Define ∆(vbot, v, w) to
be the triangle with vertices vbot, v, w.

▶ Lemma 10. Let v, w ∈ V + with v ≺ w. Let V (v, w) be the set of all points u ∈ V ∪ {vbot}
with u ≺ v such that u lies below the line ℓ(v, w) through v and w and such that all objects
in O(v, w) \ O(u, v) intersect ∆(vbot, v, w). Then

A[v, w] =

|vbotw| if v = vbot and all objects in O(v, w) intersect vbotw

∞ if v = vbot and not all objects in O(v, w) intersect vbotw

|vw| + min
u∈V (v,w)

A[u, v] otherwise

Putting everything together, we can finish the proof of Theorem 1.

Proof of Theorem 1. We first use algorithm A1 from [4] to compute the rectangle R and
the square σ, which as discussed can be done in O(n2.373/ε) time. For a square σ we guess
the vertex vbot in O(1/ε2) different ways.

For each guess we run the dynamic-programming algorithm described above. There
are O(1/ε4) entries A[u, v] in the dynamic-programming table. The most time-consuming
computation of a table entry is in the third case of Lemma 10. Here we need to compute
the set O(v, w), which can be done in O(n) time by checking every oi ∈ O. For each of
the O(1/ε2) points with u ≺ v such that u lies below the line ℓ(v, w) we then check in
O(n) time if all objects in O(v, w) \ O(u, v) intersect ∆(vbot, v, w), so that we can compute
A[v, w]. Hence, computing A[v, w] takes O(n/ε2) time, which implies that the whole dynamic
program needs O(n/ε6) time.

Thus the algorithm takes O(n2.373/ε) +O(1/ε2) ·O(n/ε6) = O(n2.373/ε+n/ε8) time. ◀

▶ Remark 11. Although Theorem 1 is stated only for the case where O is a set of convex
polygons, it is not too hard to extend it to other convex objects, for example disks: one
just needs to replace the approximate rectangle-finding linear program of Dumitrescu and
Jiang [4] with some other polynomial-time algorithm to find an (approximate) minimum
perimeter intersecting rectangle in each of the O(1/ε) orientations.

A. Antoniadis, M. de Berg, S. Kisfaludi-Bak, and A. Skarlatos 9:9

Copt

(i) (ii)

u v

Figure 3 (i) Subroutine I computes a minimum perimeter intersecting polygon whose vertices are
not segment endpoints. (ii) Subroutine II computes a polygon with fixed edge uv for some (sub)set
of segments. With the exception of u and v, the polygon’s vertices are not allowed to be segment
endpoints.

4 An exact algorithm for the minimum-perimeter intersecting polygon
of segments

We describe an exact algorithm to compute a minimum-perimeter intersecting object for a
set O of line segments1 in the plane. Consider an optimal solution Copt, and let Y be the set
of all endpoints of the segments in O. The exact algorithm is based on two subroutines for
the following two problems. As before, whenever we talk about intersecting polygons, we
implicitly require them to be convex. Figure 3 illustrates the polygons computed by these
subroutines.

Subroutine I : If O admits a minimum-perimeter intersecting polygon with none of
its vertices being in Y , then compute such a polygon. Otherwise compute a feasible
intersecting polygon, or report +∞.
Subroutine II : Given two points u, v ∈ R2 and a subset O′ ⊆ O, decide if O′ admits a
minimum-perimeter intersecting polygon that has uv as one of its edges and none of whose
other vertices belongs to Y and, if so, compute a minimum-perimeter such intersecting
polygon. If no such minimum-perimeter intersecting polygon exists, report +∞. Note
that we allow u = v, in which case the edge uv degenerates to a point.

In the full version we show:

▶ Theorem 12. There exist exact algorithms for Subroutine I and Subroutine II that run in
time O(n6 logn) and O(n3 logn), respectively.

Setting the stage for the dynamic program

With Subroutine I available, it remains to find the minimum-perimeter intersecting polygon
that has at least one vertex from Y . To this end we will develop an algorithm that, for a
given point pbot ∈ Y , finds a minimum-perimeter convex intersecting polygon that has pbot
as a vertex (if it exists). We will run this algorithm for each choice of pbot ∈ Y .

Let pbot ∈ Y be given, and assume that O admits an intersecting polygon that has pbot
as a vertex (this can be tested in O(n logn) time). In contrast to Section 3, pbot need not
be the lexicographically smallest point and our algorithm therefore relies on guessing the

1 Although we describe our algorithm for non-degenerate segments, all our arguments also work if some
(or all) of the segments are in fact lines, rays, or even points.

ESA 2022

9:10 Computing Smallest Convex Intersecting Polygons

(i)

pbotρ0

C+
opt

C−
opt

ψj

oi

ψ(oi)

(ii)

w

ψw(oi)

oi

ρ0

ρ(w)

pbot

Figure 4 (i) The grey double wedge indicates the region containing the tangent at pbot. (Note
that then there must be more segments than the blue and red segments that are shown. In particular,
there must be segments parallel to the lines delimiting the double wedge.) The blue segments are
in O(ρ0)+ so they must be intersected by C+

opt, while the red segment is in O(ρ0)− and must be
intersected by C−

opt. (ii) The definition of ψw(oi).

orientation of a line tangent to Copt at pbot. More specifically, we are able to find a set
Ψ = {ψ1, ψ2, . . . , }, of O(n) possible angles with ψj < ψj+1 for all 0 ≤ j ≤ |Ψ| (where we set
ψ0 := 0 and ψ|Ψ|+1 = π) and reduce the problem to:

Given a point pbot and value j with 0 ⩽ j ⩽ |Ψ|, find a minimum-perimeter intersecting
polygon Copt for O such that
pbot is a vertex of Copt,
the horizontal ray ρ0 going from pbot to the left does not intersect Copt,
Copt has a tangent line ℓ at pbot such that the clockwise angle from ρ0 to ℓ lies in
the range [ψj , ψj+1].

In the above, each angle ψj corresponds to the angle over which we have to rotate ρ0
clockwise so that it becomes parallel with some segment oj ∈ O. An extensive description of
this reduction can be found in the full version.

The dynamic program

We will now develop our dynamic program for the problem that we just stated, for a given
point pbot ∈ Y , a ray ρ0, and range [ψj , ψj+1]; see Figure 4(i).

Let O(ρ0) ⊆ O denote the set of segments that intersect the ray ρ0, and let ℓ0 be the
line containing ρ0. The line ℓ0 may split the optimal solution Copt into two parts: a part
C+

opt above ℓ0 and a part C−
opt below ℓ0. Let ψ(oi) denote the angle over which we have to

rotate ρ0 in clockwise direction until it becomes parallel to oi. Since we have fixed the range
of the tangent at pbot to lie in the range [ψj , ψj+1], we can split O(ρ0) into two subsets,
O(ρ0)+ := {oi ∈ O(ρ0) : ψ(oi) ⩾ ψj+1} and O(ρ0)− := {oi ∈ O(ρ0) : ψ(oi) ⩽ ψj}.

Note that O(ρ0) = O(ρ0)+ ∪ O(ρ0)−, because ψj and ψj+1 are consecutive angles in Ψ.
Because the orientation of the tangent at pbot lies in the range [ψj , ψj+1], we know that the
segments in O(ρ0)+ must be intersected by C+

opt, while the segments in O(ρ0)− must be
intersected by C−

opt; see Figure 4(i). Intuitively, the segments in O(ρ0)+ must be intersected
by “the initial part” of Copt, while the segments in O(ρ0)− are intersected by “the later part”.
We will use this when we define the subproblems in our dynamic program.

In Section 3 we defined subproblems for pairs of grid points v, w. The goal of such a
subproblem was to find the minimum-length convex chain Γ such that C(Γ) intersects a
certain subset O(v, w) and whose last edge is vw. The fact that we knew the last edge vw was
crucial to define the set O(v, w), since the slope of vw determined which objects should be
intersected by C(Γ). In the current setting this does not work: we could define a subproblem
for pairs v, w ∈ Y , but “consecutive” vertices v, w from Y along Γ are now connected by a

A. Antoniadis, M. de Berg, S. Kisfaludi-Bak, and A. Skarlatos 9:11

polyline Zvw whose inner vertices are disjoint from Y . The difficulty is that the polyline
Zvw depends on the segments that need to be intersected by C(Γ). Hence, there is a cyclic
dependency between the set of segments to be intersected by C(Γ) (which depends on the
slope of zw, where z is the vertex of Zvw preceding w) and the vertex z (which depends on
the segments that need to be intersected by C(Γ)). We overcome this problem as follows.

Similarly to the previous section, we call a polyline Γ from pbot to some point v ∈ Y a
convex chain if, together with the line segment vpbot, it forms a convex polygon. We denote
this polygon by C(Γ). Consider a convex chain Γw ending in a point w ∈ Y . Let ρ(w) denote
the ray from pbot through w and let ρ∗(w) be the part of this ray starting at w. Let O(w) be
the set of input segments that intersect ρ∗(w). Of those segments, C(Γw) must intersect the
ones such that the line ℓ(oi) containing2 the segment oi intersects the half-line containing zw
and ending at w, where z is the (unknown) vertex preceding w. For a segment oi ∈ O(w),
let ψw(oi) be the angle over which we have to rotate ρ(w) in clockwise direction to make
it parallel to oi; see Figure 4(ii). Let Ψ(w) = {ψ1, ψ2, . . .}, for all 1 ⩽ j < |Ψ(w)|, be the
sorted set of (distinct) angles ψw(oi) defined by the segments in O(w). For an index j with
1 ⩽ j ⩽ |Ψ(w)|, define O(w, j) := {oi ∈ O(w) : ψw(oi) ⩽ ψj}, and define O(w, 0) = ∅. We
call O(w, j) a prefix set. The key observation is that C(Γw) must intersect the segments
from some prefix set O(w, j), where j depends on the unknown vertex z preceding w. So our
dynamic program will try all possible prefix sets O(w, j), and make sure that subproblems
are combined in a consistent manner.

We now have everything in place to describe our dynamic-programming table. It consists
of entries A[w, j], where w ranges over all points in Y , and j ranges over all values for
which O(w, j) is defined. For convenience add two special entries, A[pbot, 0] and A[pbot, 0];
the former will serve as the base case, and the latter will contain (the value of) the final
solution. Note that these are the only ones for pbot and pbot, and that we have at most
|Y | ·n = O(n2) entries. We define the set O∗(w, j) of segments to be covered in a subproblem.

For a point w ∈ Y , the set O∗(w, j) consists of the segments oi ∈ O that satisfy one
of the following conditions:

(i) oi intersects the clockwise wedge from ρ0 to ρ(w) – note that this wedge need
not be convex – but not ρ(w) itself, and oi ̸∈ O−(ρ0); or

(ii) oi intersects pbotw; or
(iii) oi ∈ O(w, j).
Furthermore, O∗(pbot, 0) := ∅ and O∗(pbot, 0) := O.

We would like now to define A[w, j] to be the minimum length of a convex chain Γ from
pbot to w such that all objects in O∗(w, j) intersect C(Γ). There is, however, a technicality
to address: the minimum-perimeter polygon that intersects all segments from O need not
be convex when we require it to have pbot as a vertex. Such a non-convex polygon cannot
be the final solution – if the optimum for a given choice of pbot is non-convex, then pbot
was not the correct choice – but it makes a clean definition of our subproblems awkward.
Therefore, instead of first defining the subproblems and then giving the recursive formula, we
will immediately give the recursive formula and then prove that it computes what we want.

For two points v, w ∈ Y + (where Y + = Y ∪ {pbot}) with v ≺ w and a set O′ ⊆ O, let
L(v, w,O′) be the minimum length of a convex chain Γ from v to w such that the convex
polygon defined by Γ and vw is an intersecting set for O′ and all inner vertices of Γ are
disjoint from Y . Recall that we can compute L(v, w,O′) using subroutine II. As before, let
∆(pbot, v, w) denote the triangle with vertices pbot, v, w.

2 Since the input objects are now segments, the tangent line ℓw(oi) is just the line containing oi.

ESA 2022

9:12 Computing Smallest Convex Intersecting Polygons

▶ Definition 13. Let w ∈ Y + and j be a value for which O[w, j] is defined. Thus 0 ⩽ j ⩽
|Ψ(w)|, where we set |Ψ(w)| := 0 for w ∈ {pbot, pbot}. For v ≺ w and 0 ⩽ j′ ⩽ |Ψ(v)|, let

O∗(w, j, v, j′) := O∗(w, j) \
(

O∗(v, j′) ∪ {oi ∈ O : oi intersects ∆(pbot, v, w)}
)

and define

A[w, j] :=

0 if w = pbot

min
v≺w

0⩽j′⩽|Ψ(v)|

L(v, w,O∗(w, j, v, j′)) +A[v, j′] otherwise.

The next lemma implies that the table entry A[pbot, 0] defined by this recursive formula gives
us what we want. Part (a) implies that A[pbot, 0] will never return a value that is too small,
while part (b) implies that for the correct choice of pbot and range of orientations for the
tangent to Copt at pbot, the entry A[pbot, 0] gives us (the value of) the optimal solution.

▶ Lemma 14. Consider the table entry A[pbot, 0] defined by Definition 13 for a given point
pbot and range [ψi, ψi+1].
(a) There exists a convex intersecting polygon for O of perimeter at most A[pbot, 0].
(b) If pbot is a vertex of the minimum-perimeter convex intersecting polygon Copt for O,

and ρ0 does not intersect Copt, and there is a tangent line ℓ at pbot whose orientation is
in the range [ψi, ψi+1], then per(Copt) = A[pbot, 0].

Putting everything together

Lemma 14 implies that after solving the dynamic programs for all choices of pbot and the
range [ψi, ψi+1], we have found the minimum perimeter intersecting set for O. (Computing
the intersecting set itself, using the relevant dynamic-program table, is then routine.) This
leads to the proof of Theorem 3.

Proof of Theorem 3. The number of dynamic programs solved is O(|Y | · n) = O(n2). The
dynamic-programming tables have O(n2) entries. Computing an entry takes O(|Y | · n) =
O(n2) calls to Subroutine II, at O(n3 logn) time each. The dynamic programs thus take
O(n2) · O(n2) · O(n2) · O(n3 logn) = O(n9 logn) time. If the optimal solution does not go
through any point of Y , then by Theorem 12 it will be found in O(n6 logn) time. The
optimum of these two algorithms is the global optimum. ◀

5 Conclusion

We gave fully polynomial time approximation schemes for the minimum perimeter and
minimum area convex intersecting polygon problems for convex polygons. Additionally, we
developed a polynomial-time algorithm for the minimum perimeter problem of segments.

It is likely that the running times of our algorithms can be improved further. One could
also try to generalize the set of objects, for example, adapting the minimum area algorithm
to arbitrary convex objects. We propose the following open questions for further study.

Is there a polynomial-time exact algorithm for the minimum area convex intersecting
polygon of segments?
Is there a polynomial-time exact algorithm for minimum perimeter or minimum area
convex intersecting polygon of convex polygons, or are these problems NP-hard?

A. Antoniadis, M. de Berg, S. Kisfaludi-Bak, and A. Skarlatos 9:13

Is there a polynomial-time approximation scheme for the minimum volume or minimum
surface area convex intersecting polytope of convex polytopes in R3? Can we at least
approximate the diameter of the optimum solution to these problems?

It would be especially interesting to see an NP-hardness proof for minimum volume or surface
area convex intersecting set of convex objects in higher dimensions.

References
1 Antonios Antoniadis, Krzysztof Fleszar, Ruben Hoeksma, and Kevin Schewior. A PTAS for

Euclidean TSP with hyperplane neighborhoods. ACM Trans. Algorithms, 16(3):38:1–38:16,
2020.

2 Moshe Dror, Alon Efrat, Anna Lubiw, and Joseph SB Mitchell. Touring a sequence of polygons.
In STOC 2003: Proceedings of the thirty-fifth annual ACM symposium on Theory of computing,
pages 473–482, 2003.

3 Adrian Dumitrescu. The traveling salesman problem for lines and rays in the plane. Discrete
Mathematics, Algorithms and Applications, 4(04):1250044, 2012.

4 Adrian Dumitrescu and Minghui Jiang. Minimum-perimeter intersecting polygons. Algorith-
mica, 63(3):602–615, 2012. doi:10.1007/s00453-011-9516-3.

5 Ray A. Jarvis. On the identification of the convex hull of a finite set of points in the plane.
Information processing letters, 2(1):18–21, 1973.

6 Ahmad Javad, Ali Mohades, Mansoor Davoodi, and Farnaz Sheikhi. Convex hull of imprecise
points modeled by segments in the plane, 2010.

7 Yiyang Jia and Bo Jiang. The minimum perimeter convex hull of a given set of disjoint
segments. In International Conference on Mechatronics and Intelligent Robotics, pages 308–318.
Springer, 2017.

8 Shunhua Jiang, Zhao Song, Omri Weinstein, and Hengjie Zhang. A faster algorithm for solving
general lps. In STOC ’21: 53rd Annual ACM SIGACT Symposium on Theory of Computing
2021, pages 823–832. ACM, 2021. doi:10.1145/3406325.3451058.

9 Marc J. van Kreveld and Maarten Löffler. Approximating largest convex hulls for imprecise
points. J. Discrete Algorithms, 6(4):583–594, 2008. doi:10.1016/j.jda.2008.04.002.

10 Maarten Löffler and Marc J. van Kreveld. Largest and smallest convex hulls for imprecise
points. Algorithmica, 56(2):235–269, 2010. doi:10.1007/s00453-008-9174-2.

11 Franco P. Preparata and Se June Hong. Convex hulls of finite sets of points in two and three
dimensions. Communications of the ACM, 20(2):87–93, 1977.

12 Xuehou Tan. The touring rays and related problems. Theoretical Computer Science, 2021.
13 Csaba D. Tóth, Joseph O’Rourke, and Jacob E Goodman. Handbook of discrete and computa-

tional geometry. CRC press, 2017.

ESA 2022

https://doi.org/10.1007/s00453-011-9516-3
https://doi.org/10.1145/3406325.3451058
https://doi.org/10.1016/j.jda.2008.04.002
https://doi.org/10.1007/s00453-008-9174-2

