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a b s t r a c t 

Portfolio decision analysis models support decisions on the allocation of resources among assets with un- 

certain outcomes (e.g., investments, projects or stocks). These models require information on the decision 

maker’s risk-preferences which can be difficult to obtain in practice. Stochastic dominance criteria show 

promise in this regard as they can compare portfolios without exact specification of risk-preferences, but 

the current literature lacks practical approaches for generating the efficient frontier, i.e., the set of those 

portfolios that are not stochastically dominated by any other portfolio. We address this gap by develop- 

ing models to identify sets of portfolios that are efficient in the sense of second- or third-order stochastic 

dominance (SSD, TSD). These models provide novel insights into the composition of portfolios belong- 

ing to the efficient frontier by, e.g., identifying those assets that are included in all efficient portfolios. 

Moreover, the identification of the efficient frontier makes it possible to utilize additional information on 

the decision maker’s risk-preferences to further reduce the set of admissible portfolio alternatives, and 

to analyze the implications this information has on the amount of capital that should be allocated to 

each individual asset. We illustrate the usefulness of these models with applications in project portfolio 

selection and financial portfolio diversification. 

© 2022 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

1. Introduction 

Organizations need to decide how to diversify capital and 

other resources among assets with uncertain outcomes such 

as R&D projects, products or financial instruments. These deci- 

sions can be supported with portfolio decision analysis (PDA; 

Salo, Keisler, & Morton, 2011 ) models that harness utility the- 

ory to capture the decision makers’ risk-preferences and opti- 

mization techniques to identify the optimal portfolio. PDA mod- 

els usually encode risk preference with a single utility func- 

tion that is consistent with the preference statements the de- 

cision maker provides on pairs of uncertain outcomes. Provid- 

ing such complete preference information can be time-consuming 

and difficult for the decision maker (see, e.g., Hazen, 1986, 

Moskowitz, Preckel, & Yang, 1993 ) and hence models that al- 

low for incomplete information especially on multiobjective pref- 

erences have been widely deployed to support real-life portfo- 

lio decision making in, for instance, infrastructure asset manage- 

ment ( Liesiö, Mild, & Salo, 2007; Mild, Liesiö, & Salo, 2015 ), strat- 

egy formation ( Vilkkumaa, Liesiö, Salo, & Ilmola-Sheppard, 2018 ) 
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and military applications ( Kangaspunta, Liesiö, & Salo, 2012 ; Harju, 

Liesiö, & Virtanen, 2019 ). 

Indeed, confidence in decision recommendations can be hin- 

dered if they are based on unrealistic assumptions about the ac- 

curacy of the process used to elicit risk-preferences. This opens 

up the important question of how robust the decision recommen- 

dations are relative to changes in the elicited risk-preference in- 

formation utilized in the analysis. Motivated by this questions, 

we consider the problem of providing support for portfolio deci- 

sions without requiring complete specification of risk-preference 

through a single utility function. In particular, we address the gen- 

eral questions of (i) which portfolios can be optimal if only in- 

complete information of risk-preferences is available, and (ii) what 

decision recommendation can be given on the level of individual 

assets based on incomplete preference information, e.g., are there 

projects whose selection/rejection is not contingent on exact shape 

of the utility function? 

Stochastic dominance (SD) offers an appealing tool to tackle 

these questions. SD can be used to compare portfolios without 

exact specification of risk-preferences and it has strong decision 

theoretic foundations in Expected Utility Theory (EUT; Neumann 

& Morgenstern, 1947 ). In particular, second-order stochastic domi- 

nance (SSD, Hadar & Russell, 1969 ) identifies if a portfolio is pre- 

ferred to another by any decision maker with a non-decreasing 
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concave utility function. Third-order stochastic dominance (TSD, 

Whitmore, 1970 ) further assumes that the decision maker prefers 

higher skewness of the outcome distribution, i.e., given two dis- 

tributions with equal expectations and variances, the DM would 

choose the one more skewed to the right. Plenty of research has 

been devoted to utilize SD in portfolio selection, diversification and 

resource allocation problems (see, e.g., Karsu, Morton, & Argyris, 

2017; Liesiö & Salo, 2012; Ringuest, Graves, & Case, 20 0 0 ). Perhaps 

the most widely used approach for incorporating SD into portfolio 

selection problems has been the deployment of SD constraints to 

ensure that the optimal portfolio stochastically dominates (weakly) 

some predefined benchmark (see, e.g., Dentcheva & Ruszczy ́nski, 

2003; Kallio & Deghan Hardoroudi, 2017; Kuosmanen, 2004; Liesiö, 

Xu, & Kuosmanen, 2020b; Post, 2003; Post & Kopa, 2013; Post & 

Kopa, 2017 ), although important work has also been carried-out 

to develop statistical tests for SD-efficiency (see, e.g., Arvanitis, 

Hallam, Post, & Topaloglou, 2019; Linton, Post, & Whang, 2014; 

Scaillet & Topaloglou, 2010 ) 

However, these existing approaches cannot fully address the 

two questions (i) and (ii) stated above. Firstly, even when com- 

pletely specifying a utility function is not possible, it may be still 

be possible — even desirable — to utilize limited preference infor- 

mation in providing portfolio and project recommendations. Be- 

tween the complete specification of a utility function and mere 

specification that the preferences are risk-averse lies a broad range 

of possibilities on information about preferences; it may be desir- 

able to arrive at recommendations by utilizing more information 

than only specifying a benchmark portfolio. Secondly, arriving at 

project level recommendations requires examination of the entire 

SD-efficient set of portfolios, so existing approaches cannot be used 

to that effect. 

Both of the above shortcomings can be addressed through the 

identification of the entire SD-efficient set of portfolios. Once this 

has been generated, it immediately becomes possible to provide 

project-level recommendations by examining the composition of 

all portfolios in the efficient set. In addition, it also becomes possi- 

ble — in a way that we specify later in the paper — to incorporate 

additional preference information to the mere specification of risk- 

attitude, and examine the effect of this on portfolio and project 

recommendations. In fact, as we will illustrate below, it even be- 

comes possible to arrive at recommendations through interactive 

decision support. 

In view of the above, the lack of tools for identifying the SD- 

efficient set might be seen as a shortcoming. Indeed, within the 

financial portfolio selection literature, the need for models to iden- 

tify the SD-efficient frontier was recognized explicitly by Levy 

(1992) : ”Ironically, the main drawback of the SD framework is found 

in the area of finance where it is most intensively used, namely in 

choosing the efficient diversification strategies. This is because as yet 

there is no way to find the SD efficient set of diversification strategies... 

Therefore, the next important contribution in this area will proba- 

bly be in this direction.” Subsequent work has made important ad- 

vances in this area, mainly focused on the SSD-efficient set (for a 

summary, see, e.g. Levy, 2016 ). First, Roman, Darby-Dowman, & Mi- 

tra (2006) establish a seminal result linking SSD-efficient portfolio 

to the Pareto optimal solutions of a multi-objective optimization 

problem in case of equally likely states, which can be viewed, as 

we will show, as a special case of the general equivalence con- 

sidered here. Second, Longarela (2016) showed that any portfo- 

lio that is optimal for some non-decreasing concave utility func- 

tion must satisfy a specific system of linear constraints involving 

both continuous and integer-valued variables. Although this for- 

mulation is theoretically interesting we do not utilize it in this 

paper because the number of binary variables it requires grows 

polynomially in the number of states and as a result the formu- 

lation quickly becomes computationally infeasible for larger prob- 

lems. Furthermore, there is no clear path to extending the formu- 

lation by Longarela (2016) from concave utility functions to those 

representing preferences consistent with TSD. Third, Arvanitis et al. 

(2019) invented the concept of stochastic spanning: an investment 

opportunity set is stochastically spanned by its subset if each port- 

folio in the set is weakly SSD dominated by some portfolio in 

the subset. Indeed, the smallest subset spanning the entire invest- 

ment opportunity set would correspond to the set of SSD efficient 

portfolios. However, Arvanitis et al. (2019) do not provide compu- 

tational approaches for generating the minimal spanning subset. 

While Longarela (2016) and Arvanitis et al. (2019) make important 

advances in the SD-literature, they do not consider approaches for 

identification of the efficient portfolios, because the focus of these 

articles is on the plethora of SD-applications in which the gener- 

ation of the entire efficient set is not needed. Thus, the current 

literature does not offer approaches for identification of the effi- 

cient set that are general in the sense that they can (i) incorporate 

preferences consistent with both SSD and TSD, (ii) be utilized for 

continuous and integer stochastic optimization problems, and (iii) 

can handle unequal state probabilities. 

This gap in the literature appears stark in contrast to the at- 

tention given to frontier identification in related fields. For exam- 

ple, within the multi-objective optimization literature the prob- 

lem of identifying the efficient frontier of multi-objective optimiza- 

tion problems has received considerable attention (see, e.g. Ehrgott, 

2005 ). Moreover, several approaches have been developed for port- 

folio selection and resource allocation under multiple objectives 

that make use of the identification and analysis of the efficient 

frontier (see, e.g., Stummer & Heidenberger, 2003, Liesiö et al., 

2007; Liesiö, Mild, & Salo, 2008, Kangaspunta et al., 2012, Mild 

et al., 2015, Mancuso, Compare, Salo, Zio, & Laakso, 2016, Liesiö, 

Andelmin, & Salo, 2020a ). 

This paper addresses this gap in the literature by develop- 

ing methods to identify the frontiers of SSD- and TSD-efficient 

portfolios. These methods build on the equivalence between the 

SD-efficient portfolios and the Pareto optimal solutions to multi- 

objective programming problems. We utilize this general equiv- 

alence to develop models for solving the SSD- and TSD-efficient 

portfolios when the uncertain returns are captured by a finite 

state-space. In particular, we develop linear and quadratic multi- 

objective optimization models and show how existing multi- 

objective methods that can be used to generate the SSD- and TSD- 

efficient frontiers. We demonstrate that in some applications it is 

possible to utilize the Benson algorithm (see, e.g., Löhne, 2011 ) 

to solve the finite number of polyhedral sets that form the SSD- 

efficient set. For other applications we utilize weighted sum and 

Tchebychef-norm methods to generate a finite number of SSD- and 

TSD-efficient portfolios by solving a series of single objective op- 

timization problems. Overall this paper contributes to the growing 

literature on the interfaces between stochastic and multi-objective 

optimization (for a survey, see, e.g., Gutjahr & Pichler, 2016 ). 

The developed models enable novel ways to analyze risk-averse 

portfolio diversification problems and to provide decision support 

for portfolio selection. First, identification of the efficient fron- 

tier makes it possible to address question concerning the common 

properties of efficient (or inefficient) portfolios: For instance, are 

there assets which are allocated resources in all or none of the effi- 

cient portfolios? Identification of such assets enables to determine 

which decisions are actually contingent on decision maker’s risk 

preferences, and to highlight the decisions that are not affected 

by risk-preferences. Second, our models enable the identification 

of potentially optimal portfolios, i.e. those that may be optimal for 

some utility function compatible with incomplete preference infor- 

mation elicited from the decision maker. Third, identification of the 

SD-efficient frontier makes it possible to utilize additional informa- 

tion on the decision maker’s risk-preferences to further reduce the 
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number of potentially optimal portfolios and thus offer more con- 

clusive decision recommendations on the level of individual assets. 

Specifically, identification of those portfolios that are potentially 

optimal in view of the additional preference information can be 

carried-out using linear programming or convex optimization. We 

demonstrate the developed models and their usage in project port- 

folio selection and financial portfolio diversification. 

The rest of the paper is structured as follows. Section 2 in- 

troduces the mathematical framework, and formalizes relevant 

SD concepts. Section 3 develops multi-objective optimization 

models for identifying the SSD- and TSD-efficient portfolios. 

Sections 4 and 5 presents applications in scenario-based project 

portfolio selection and financial portfolio diversification, respec- 

tively. Section 6 concludes. 

2. Portfolio selection under uncertainty 

Although our notation is in line with that generally used in 

financial portfolio selection, our assumptions do not rule out ap- 

plications that require the use of integer-valued decision variables 

(e.g. project portfolio selection) or applications in which portfolios 

are evaluated based on other measures than total returns. In par- 

ticular, the total returns of the m assets (projects) are modelled 

with real-valued random variables R 1 , . . . , R m 

on the set of mu- 

tually exclusive and collectively exhaustive states S = { s 1 , . . . , s n } 
with state probabilities P ({ s i } ) = p i . The total return of the jth as- 

set in the i th state is denoted by r i j = R j (s i ) , and we use r = (r i j ) ∈ 

R 

n ×m 

+ to denote a matrix consisting of the assets’ state-specific 

returns. The indices of the states and the assets belong to sets 

N = { 1 , . . . , n } and M = { 1 , . . . , m } , respectively, and e = (1 , . . . , 1) T 

denotes a sum vector. 

A portfolio is characterized by a vector of asset weights λ = 

(λ1 , . . . , λm 

) T . In financial portfolio selection these weights capture 

the share of initial capital allocated to each asset and hence sum 

up to one ( e T λ = 1 ). In project portfolio selection these weights 

take binary values λ ∈ { 0 , 1 } m indicating whether the jth project is 

selected ( λ j = 1 ) or not ( λ j = 0 ), and limited resources (e.g. bud- 

get) can be modelled by introducing linear constraints on these 

weights. Hence, in order to preserve the generality of the model 

we only assume that the bounded set of feasible weight vectors is 

given by 

� = { λ ∈ � | Aλ ≤ b} , (1) 

where � = R 

m or � = { 0 , 1 } m , and matrix A ∈ R 

h ×m and vector 

b ∈ R 

h contain the coefficients of the h linear constrains. The return 

of a portfolio λ is captured by random variable R λ = 

∑ 

j∈ M 

λ j R j , 

whose state-specific return vector is denoted by r λ = (r λ
i 
) = rλ ∈ 

R 

n . The lowest and highest state-specific returns across all portfo- 

lios are denoted by r and r , respectively. 

Establishing stochastic dominance between two portfolios is 

based on comparing the cumulative distribution functions (CDFs) 

of the portfolios’ returns. In particular, let F 1 
λ
(t) = P (R λ ≤ t) denote 

the CDF of portfolio return R λ, and F d 
λ

the function that is obtained 

when the CDF is integrated d − 1 times, i.e., F d 
λ
(t) = 

∫ t 
−∞ 

F d−1 
λ

(y ) dy . 

With this notation dth-order stochastic dominance can be defined 

as follows (see, e.g., Gotoh & Konno, 2010 ). 

Definition 1. Portfolio λ weakly dominates portfolio τ in the sense 

of dth-order stochastic dominance, denoted by λ �d τ , if 

F d λ (t) ≤ F d τ (t) ∀ t ∈ R . 

Strict dominance λ �d τ holds if λ �d τ and ¬ (τ �d λ) . 

We focus on second- and third-order stochastic dominance 

(SSD, TSD) as their economic interpretations are particularly ap- 

pealing from the view-point of portfolio diversification. Specifically, 

if a portfolio weakly dominates another in the sense of SSD ( d = 2 ), 

then any expected utility maximizing risk-averse or -neutral deci- 

sion maker would weakly prefer the former portfolio over the lat- 

ter ( Hanoch & Levy, 1969 ). Formally, this result can be stated as 

λ �2 τ ⇔ E [ u (R 

λ)] ≥ E [ u (R 

τ )] for all u ∈ U 

2 , 

where U 

2 is the set of all non-decreasing concave utility functions 

that are non-constant on the interval [ r , r ] . 

TSD ( d = 3 ) imposes a further restriction on the set of util- 

ity functions ( Whitmore, 1970 ). In particular, it requires a higher 

or equal expected utility across those concave utility functions 

that exhibit preference for higher skewness of the return distribu- 

tion.These restrictions result in utility functions u ∈ U 

3 ⊂ U 

2 such 

that the marginal utility u ′ (t) is a convex function in R . The set U 

3 

of utility functions satisfies the equivalence 

λ �3 τ ⇔ E [ u (R 

λ)] ≥ E [ u (R 

τ )] for all u ∈ U 

3 . 

Stochastic dominance relations can be used to identify those 

portfolios which are not strictly dominated by any other portfolio. 

The resulting set of SD-efficient portfolios is defined as follows. 

Definition 2. The set of dth-order SD-efficient portfolios is 

�d 
E = { τ ∈ � | � λ ∈ � s.t. λ �d τ } . 

If a portfolio is efficient for some order of SD, it is also efficient 

for any lower order of SD. In particular, the TSD-efficient portfo- 

lios form a subset of the SSD-efficient portfolios. This well-known 

result is formally stated by the following lemma. 

Lemma 1. �3 
E 

⊆ �2 
E 

. 

The set of efficient portfolios provides a frontier of defensible 

risk diversification strategies: If a portfolio is selected outside SSD- 

efficient set �2 
E 

, then there exists a portfolio in this set that yields 

a greater or equal expected utility for any utility function u ∈ U 

2 , 

and hence the latter portfolio would be (weakly) preferred by any 

risk-averse or -neutral decision maker. Similarity, if a portfolio is 

selected outside the TSD-efficient set �3 
E 

, then some portfolio in 

this set would be (weakly) preferred by all risk-averse ‘skewness 

loving’ decision makers. Moreover, for any decision maker with a 

utility function belonging to set U 

2 ( U 

3 ), the highest expected util- 

ity is offered by one of the SSD-efficient (TSD-efficient) portfolios. 

Instead of using efficient portfolios ( Definition 2 ) as the funda- 

mental solution concept, an alternative approach would be to fo- 

cus on the potentially optimal portfolios, i.e., those portfolios that 

maximize expected utility for some utility function in the set U 

d . 

The sets of efficient and potentially optimal portfolios are not nec- 

essarily the same. For instance, consider two portfolios such that 

the return distribution of one portfolio is a mean preserving spread 

of the return distribution of the other portfolio. Then it is possi- 

ble that both are potentially optimal as they yield the same ex- 

pected utility for the linear utility function. However, it is also pos- 

sible that one dominates the other in sense of SSD and hence both 

cannot be SSD-efficient. Indeed, our choice of focusing on efficient 

portfolios on the outset is motivated by the concepts’ robustness 

against such pathological cases. Note that this choice does not in- 

volve the risk of discarding some portfolios that could be seen as 

defensible choices. In particular, any potentially optimal portfolio 

outside the efficient set would be a poor selection as the domi- 

nating portfolio (i) is also potentially optimal, (ii) yields a greater 

or equal value for all utility functions in U 

d , and (iii) has a strictly 

greater expected utility for some utility function in U 

d . In addi- 

tion, the identification of the SSD-efficient portfolios that are also 

potentially optimal can be pursued after the SD-efficient set has 

been solved. 
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We utilize potential optimality in analyzing how additional in- 

formation preference information beyond that encoded in the SSD- 

criterion reduces the set admissible portfolio alternatives. In partic- 

ular, we propose an approach in which the decision maker states 

her preferences between pairs of uncertain returns or outcomes 

and identify the set of utility functions that are consistent with 

these preferences. Decision recommendations can then be based 

on identifying those efficient portfolios that yield maximal ex- 

pected utility for some utility function that is consistent with the 

given preference statements. Since the approach is based on using 

the efficient frontier as the set decision alternatives, any portfolio 

labeled as potentially optimal will also be efficient. 

Formally, suppose (X k , Y k ) , k ∈ { 1 , . . . , K } , are K pairs of real- 

valued random variables on the state-space S = { s 1 , . . . , s n } about 

which the DM has stated her (pairwise) preferences. These random 

variables can correspond to the returns of actual portfolios (i.e., 

X k = R λ for some λ ∈ �) or they can be lotteries structured only 

for the purposes of preference elicitation. Without loss of general- 

ity, suppose that the decision maker weakly prefers X k over Y k for 

each k ∈ { 1 , . . . , K} . The set of risk-averse utility functions that are 

compatible with these preferences is 

˜ U 

K = { u ∈ U 

2 | E [ u (X 

k )] ≥ E [ u (Y k )] ∀ k ∈ { 1 , . . . , K}} . (2) 

In the ensuing we will assume that DM’s elicited pairwise pref- 

erences are ‘rationalizable’ i.e. compatible with at least one util- 

ity function in U 

2 , implying that set ˜ U 

K is non-empty. In practice 

this can be ensured via incremental preference elicitation, where a 

pair X k +1 , Y k +1 is chosen such that either response from the DM is 

consistent with all previously elicited statements (i.e. there exists 

u, u ′ ∈ 

˜ U 

K such that E [ u (X K+1 )] ≥ E [ u (Y K+1 )] and E [ u ′ (Y K+1 )] ≥
E [ u ′ (X K+1 )] ). One way to generate such a pair is to identify port- 

folios that maximize expected utility for some utility function u ∈ 

˜ U 

K , as we will discuss subsequently in more detail. 

The SSD-efficient portfolio λ is potentially optimal with regard 

to this set of utility functions if 

λ ∈ arg max 
τ∈ �2 

E 

E [ u (R 

τ )] for some u ∈ 

˜ U 

K . (3) 

When the set of utility functions is of the form (2) , linear program- 

ming can be used to establish which of the SSD-efficient portfo- 

lios are potentially optimal (see, e.g., Argyris, Morton, & Figueira, 

2015; Armbruster & Delage, 2015; Liesiö & Salo, 2012; Post & Khan- 

jani Shiraz, 2019; Post & Kopa, 2013 ). 

Although in this paper we focus on analysing which SSD- 

efficient portfolios remain admissible decision alternatives when 

additional preference information is introduced, a similar analysis 

can be carried out for the TSD-efficient portfolios too. In this case, 

non-linear convex optimization ( Kallio & Dehghan Hardoroudi, 

2019 ) can be used to identify those TSD-efficient portfolios that are 

potentially optimal with regard to the subset of utility functions in 

U 

3 that are compatible with preferences. 

3. Identification of the SD-efficient frontiers 

Our approaches for identifying the set of SD-efficient portfolios 

are based on the observation that they have a one-to-one corre- 

spondence with the Pareto optimal solutions of a particular multiple 

objective optimization problem with an infinite number of objec- 

tive functions. In multi-objective optimization literature the terms 

‘Pareto optimal’ and ‘efficient’ are often used as synonyms, but to 

avoid confusion, this paper uses the term ‘efficient’ only to refer to 

portfolios that are not stochastically dominated (cf. Definition 2 ). A 

feasible solution to a multi-objective optimization problem is said 

to be Pareto optimal, if no other feasible solution provides (i) a 

better or equal value in each objective function, and (ii) a strictly 

better value in at least one objective function. 1 Hence, constructing 

the objective functions by evaluating the integrated CDF of port- 

folio returns F d 
λ
(t) for each return level t ∈ R directly results in 

the following proposition, which can thus be presented without a 

proof. 

Proposition 1. Portfolio λ ∈ � is efficient in the sense of d th-order 

SD, i.e., λ ∈ �d 
E 

, if and only if it is a Pareto optimal solution to the 

multi-objective programming (MOP) problem 

v–min λ∈ �
(
F d λ (t) 

)
t∈ R . (4) 

In the following sections we develop practical approaches for 

solving problem (4) when d = 2 and d = 3 to identify the SSD and 

TSD efficient frontiers. 

3.1. Identification of the SSD-efficient frontier 

In case of SSD, the objective function of problem (4) evaluated 

at t can be formulated as the LP problem 

F 2 λ (t) = 

∫ t 

−∞ 

= F 1 
λ
(t) ︷ ︸︸ ︷ ( ∑ 

i ∈ N 
r λ
i 

≤t 

p i 

)
dy = 

∑ 

i ∈ N 
r λ
i 

≤t 

p i (t − r λi ) 

= 

∑ 

i ∈ N 
p i max { t − r λi , 0 } = min 

φi ≥0 
{ ∑ 

i ∈ N 
p i φi | φi ≥ t − r λi } , (5) 

where the last equality holds because at optimum the value of 

each φi will be as low as possible, i.e., equal to maximum of the 

two lower bounds t − r λ
i 

and zero. 

For any portfolio the integrated CDF F 2 is zero below the low- 

est state-specific return r . Moreover, the integrated CDF increases 

at a unit rate for all return levels above the highest state-specific 

return r . Hence, it is sufficient to evaluate the objective function 

of problem (4) only for the return levels t ∈ [ r , r ] . This observation 

together with Eq. (5) implies that portfolio λ ∈ � is SSD-efficient if 

and only if ( λ, �) is a Pareto optimal solution to the MOP problem 

v–min 

λ, �

(∑ 

i ∈ N 
p i �i (t) 

)
t∈ [ r , r ] (6) 

�i (t) ≥ t − r λi ∀ i ∈ N, t ∈ [ r , r ] 

�i (t) ≥ 0 ∀ i ∈ N, t ∈ [ r , r ] 

λ ∈ �. 

The decision variables �i are functions on the interval [ r , r ] . 

Hence, implementing and solving this problem in practice requires 

choosing some discretization points { t 1 , . . . , t l } ⊂ [ r , r ] in which 

these functions are evaluated. By denoting φi,k = �i (t k ) problem 

(6) becomes 

v–min 

λ, �

(∑ 

i ∈ N 
p i φi,k 

)
k ∈{ 1 , ... ,l} (7) 

φi,k ≥ t k − r λi ∀ i ∈ N, k ∈ { 1 , . . . , l} 
φi,k ≥ 0 ∀ i ∈ N, k ∈ { 1 , . . . , l} 
λ ∈ �, 

which is a multi-objective linear programming problem with l ob- 

jective functions. 

In the case where the set of feasible asset weights � (1) is 

convex, Pareto optimal solutions to problem (7) can be obtained 

1 Formally, denoting the index set of the objectives functions by T , solution 

ω 

∗ ∈ � is Pareto optimal to the multi-objective problem v–min ω∈ �
(
h ω (t) 

)
t∈ T if 

there does not exist ω 

′ ∈ � such that h ω ′ (t) ≤ h ω ∗ (t) for all t ∈ T and h ω ′ (t) < h ∗ω (t) 

for some t ∈ T . 
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with the multi-objective simplex (see, e.g., Ehrgott, 2005 ), the Ben- 

son algorithm ( Benson, 1998, Löhne, 2011 ), or the weighted sum 

method. In case � is non-convex, Pareto optimal solutions can 

be obtained with the reference point method ( Wierzbicki, 1980 ), 

the weighted Tchebychef-norm method ( Bowman, 1976 ) or multi- 

objective mixed-integer linear programming algorithms (see, e.g., 

Przybylski & Gandibleux, 2017 ). 

3.2. SSD-efficient frontier for sample-generated state-space 

In practical applications the states often correspond to a sam- 

ple of returns obtained from historical observations, or from a joint 

distribution of forecasted future returns, and thus it is reasonable 

to assume that the states are equally likely. With equal state proba- 

bilities there exists a one-to-one correspondence between the SSD- 

efficient portfolios and the Pareto optimal solutions to a MOP prob- 

lem with a finite number of objective functions. Thus, we assume 

throughout the rest of this subsection that p i = 

1 
n for each i ∈ N. 

Under equal state probabilities the integrated CDF (5) of portfo- 

lio λ can be written as 

F 2 λ (t) = 

∑ 

i ∈ N 

1 

n 

max { t − r λi , 0 } 

= 

1 

n 

max 

{ 

0 , t − g 1 (λ) , 2 t − g 2 (λ) , . . . , nt − g n (λ) 
} 

, (8) 

where g k (λ) denotes the sum of the k smallest state-specific re- 

turns r λ
1 
, . . . , r λn . Suppose that portfolio λ does not dominate port- 

folio τ in SSD, i.e., F 2 τ (t) < F 2 
λ
(t) for some return level t . Then, ac- 

cording to Eq. (8) , there exists k ∈ N such that 

1 

n 

(kt − g k (λ)) = F 2 λ (t) > F 2 τ (t) ≥ 1 

n 

(kt − g k (τ )) ⇒ g k (λ) < g k (τ ) . 

In turn, if g k (λ) < g k (τ ) for some k ∈ N, then choosing t such that 

F 2 τ (t) = 

1 
n (kt − g k (τ )) gives 

F 2 τ (t) = 

1 

n 

(kt − g k (τ )) < 

1 

n 

(kt − g k (λ)) ≤ F 2 λ (t) ⇒ F 2 τ (t) < F 2 λ (t) . 

Together these observations imply that ¬ (λ �2 τ ) holds if and only 

if g k (λ) < g k (τ ) for some k ∈ N. In fact, the negation of this state- 

ment is the well-known result that g k (λ) ≥ g k (τ ) for all k ∈ N

if and only if λ �2 τ (see, e.g., Hardy, Littlewood, & Polya, 1934, 

Kuosmanen, 2004 ). Thus, under equal state probabilities the SSD- 

efficient portfolios can be identified by maximizing the sums of 

the k smallest state-specific portfolio returns g k (·) as stated by the 

following theorem. 

Theorem 1. Portfolio λ ∈ � is SSD-efficient if and only if it is a 

Pareto optimal solution to the MOP problem 

v–max 
λ∈ �

(
g k (λ) 

)
k ∈ N , (9) 

where g k (λ) is the sum of the k smallest state specific returns of port- 

folio λ. 

Roman et al. (2006) have established a multi-objective linear 

programming formulation whose Pareto optimal solutions have a 

similar one-to-one correspondence to the SSD-efficient portfolios. 

Deriving this linear problem from the MOP problem (9) requires 

formulating each g k (λ) as an LP problem in which the objective 

function is maximized, since a minimization LP would yield a max- 

min problem if substituted into problem (9) . Fortunately, LP duality 

can be harnessed to obtain 

g k (λ) = min 

νk ∈ R 1 ×n 
{ νk r 

λ | νk e = k, 0 ≤ νk ≤ e T } 
= max 

βk ∈ R , z k ∈ R n 
{

kβk − e T z k | rλ − βk e + z k ≥ 0 , z k ≥ 0 

}
. 

Substituting these maximization problems into (9) for each k ∈ N

gives multi-objective linear programming formulation by Roman 

et al. (2006) . This is formalised by the following corollary, which 

introduces the auxiliary decision variables β = (βk ) ∈ R 

n and z = 

(z ik ) ∈ R 

n ×n 
+ . 

Corollary 1. Portfolio λ ∈ � is SSD-efficient if and only if (λ, z, β) is 

a Pareto optimal solution to the multi-objective linear programming 

problem 

v–max 
λ,z,β

(
kβk − e T z k 

)
k ∈ N (10) 

rλ − βk e + z k ≥ 0 ∀ k ∈ N 

z k ≥ 0 ∀ k ∈ N 

λ ∈ �. 

Roman et al. (2006) also note that there exists an intutive inter- 

pretation for MOP problem (9) based on Conditional Value-at-Risk 

(CVaR π ) risk measures, which we will present here for the sake 

of completeness. Specifically, this interpretation can be derived by 

using the generally known fact that the objective functions of a 

MOP problem can be subjected to strictly increasing transforma- 

tions without affecting the set of Pareto optimal solutions. Choos- 

ing a transformation in which the k th objective of the MOP prob- 

lem (9) is multiplied by k −1 results in the objective function values 

g 1 (λ) / 1 , . . . , g n (λ) /n for each efficient portfolio λ ∈ �2 
E 

. In particu- 

lar, the k th objective function is equal to 

g k (λ) 

k 
= 

∑ k 
i =1 r 

λ
σ (i ) 

k 
= E [ R 

λ| R 

λ ≤ r λσ (k ) ] � −CVaR k 
n 
[ R 

λ] , 

where the permutation σ arranges the components of r λ in a non- 

decreasing order and, again, R λ = 

∑ 

j∈ M 

λ j R j denotes the random 

variable representing the returns of portfolio λ. Moreover, mul- 

tiplying the n th objective function with n −1 yields the expected 

portfolio return g n (λ) /n = 

∑ n 
i =1 r 

λ
i 
/n = E [ R λ] . Hence, the choice 

among the SSD-efficient portfolios is contingent on how the deci- 

sion maker values minimizing the CVaR π -measures with different 

confidence levels π ∈ { 1 n , 
2 
n , . . . , 

n −1 
n } on one hand, and maximizing 

the expected portfolio return on the other. Thus, portfolio λ ∈ � is 

SSD-efficient if and only if it is a Pareto optimal solution to the 

multi-objective linear programming problem 

v–min 

λ∈ �

[ (
CVaR k 

n 
[ R 

λ] 
)

k ∈ N\{ n } , −E [ R 

λ] 

] 
. (11) 

This result also helps establish a geometric intuition of the set 

of SSD-efficient portfolios and the corresponding efficient frontier 

in the objective function space. Since the set of SSD-efficient port- 

folios corresponds to the set of Pareto-optimal solutions to prob- 

lem (11) , the image of the SSD-efficient set is a connected, possi- 

bly non-convex set consisting of a finite union of polyhedra. These 

polyhedra lie in the n -dimensional space whose coordinates corre- 

spond to different CVaR-measures and expected return. As a result, 

also the set of SSD-efficient portfolios �2 
E is a connected, generally 

non-convex set consisting of a union of polyhedra in the (m − 1) - 

dimensional space { λ ∈ R 

m | ∑ m 

j=1 λ j = 1 } . 
In the case where the set of feasible asset weights (1) is convex, 

a portfolio is SSD-efficient if and only if it maximizes the weighted 

sum of all CVaR-measures for some positive weights. This is im- 

plied by the equivalence between the SSD-efficient portfolios and 

the Pareto optimal solutions established by Theorem 1 , and the 

fact that a solution to a continuous multi-objective linear program- 

ming is Pareto optimal if and only it maximizes the weighted sum 

of the objective functions for some positive weights. This result is 

formally established by the following corollary. 

Corollary 2. Assume � is convex. Then portfolio λ is SSD-efficient 

if and only if there exists α ∈ R 

n + , αi > 0 , such that (λ, z, β) is an 
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Fig. 1. Share of SSD- (light gray) and TSD-efficient portfolios (dark gray) that include each project. 

optimal solution to the linear programming (LP) problem 

max 
λ, z, β

∑ 

k ∈ N 
αk 

[ 
kβk − e T z k 

] 
(12) 

rλ − βk e + z k ≥ 0 ∀ k ∈ N 

z k ≥ 0 ∀ k ∈ N 

λ ∈ �. 

3.3. SSD-efficient frontier for convex sets of asset weights under 

unequal state probabilities 

An extension of linear programming problem (12) can be used 

to generate SSD-efficient portfolios also in situations where the 

state probabilities p = (p 1 , . . . , p n ) 
T are unequal. This requires that 

the set of feasible asset weights � (1) is convex. We also assume 

each scenario probability p i is a rational number. Note that this 

assumption is not necessary for the developed mathematical re- 

sults, but it makes the proofs simpler. Moreover, this assumption 

does not limit the applicability of the developed theory as in prac- 

tice any numerical estimates for the state probabilities are rational 

numbers. 

In particular, let Q = (Q 1 , . . . , Q n ) ∈ R 

n be a parameter vector 

and consider the extended version of the linear programming 

problem (12) 

max 
λ, z, β

∑ 

k ∈ N 
αk 

[ 
Q k βk − p T z k 

] 
(13) 

rλ − βk e + z k ≥ 0 ∀ k ∈ N 

z k ≥ 0 ∀ k ∈ N 

λ ∈ �, 

where α1 , . . . , αn are positive parameters as in Corollary 2 . Note 

that in case of equal probabilities p k = 

1 
n , choosing Q k = 

k 
n , for all 

k , the problems (12) and (13) are equivalent up to multiplication 

with the positive constant n . 

The optimal solutions (λ, β, z) for problem (13) with different 

parameter values α, Q ∈ R are closely linked to the SSD-efficient 

portfolios. However, this requires that the parameter values Q = 

(Q 1 , . . . , Q n ) satisfy a special consistency condition that roughly 

speaking requires higher values for states in which the optimal 

portfolio has a higher return. The precise formulation of this con- 

dition is given by the following definition. 

Definition 3. Parameter values Q = (Q 1 , . . . , Q n ) are consistent 

with portfolio λ if there exists a permutation σ : N → N such that 
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r λ
σ (1) 

≤ r λ
σ (2) 

≤ · · · ≤ r λ
σ (n ) 

and 

k −1 ∑ 

i =1 

p σ (i ) < Q k ≤
k ∑ 

i =1 

p σ (i ) ∀ k ∈ N. (14) 

If the components of vector r λ = rλ are distinct (i.e., r λ
i 

� = r λ
k 

for 

all i � = k ), then the permutation σ in Definition 3 is unique, and 

hence the bounds for parameters Q = (Q 1 , . . . , Q n ) correspond to 

the values of the CDF evaluated at the state-specific returns, i.e., ∑ k 
i =1 p σ (k ) = F 1 

λ
(r λ

σ (k ) 
) . With this consistency condition we can for- 

mulate the main result as follows. 

Theorem 2. Assume � is convex and state probabilities p = 

(p 1 , . . . , p n ) 
T are rational numbers. 

(i) If portfolio λ ∈ � is SSD-efficient, then there exists parameter 

values Q that are consistent with λ and parameter values α ∈ 

R 

n + such that λ is an optimal solution to problem (13) . 

(ii) Let portfolio λ ∈ � be an optimal solution to problem (13) for 

some parameter values Q that are consistent with λ and for 

some parameter values α ∈ R 

n + , then either λ is SSD-efficient 

or there exists an alternative optimal solution λ′ which is SSD- 

efficient. 

A detailed proof of the theorem is presented in Appendix A, 

but we summarize it here. In particular, note that if (λ, z, β) is 

an optimal solution to problem (13) , then p T z k = F 2 
λ
(βk ) holds for 

all k ∈ N. Note also that F 2 
λ
(t) is a piece-wise linear and increas- 

ing convex function for all return levels t exceeding the smallest 

state-specific return of portfolio λ and zero otherwise. Hence, the 

hypo-graph H 

λ of F 2 
λ

is a convex polyhedral set, and for all k ∈ N, 

the optimal βk in (13) is obtained as an optimal value of t in a 

2-dimensional linear program max t, v { Q k t − v | (t, v ) ∈ H 

λ} . Conse- 

quently, at the optimum we have for all k ∈ N, βk = r λ
i 

for some 

i ∈ N. Furthermore, if Q satisfies the condition of Definition 3 , then 

βk = r λ
σ (k ) 

, for all k ∈ N, and at the optimum each term Q k βk − p T z k 
of the objective function of problem (13) corresponds to the ex- 

pected return of portfolio λ over the Q k -quantile. The optimal port- 

folio thus maximizes a weighted sum of expected returns across 

different quantiles, which is effectively the same as minimizing the 

weighted sum of Conditional Value-at-Risk measures CVaR Q k 
[ R λ] = 

−(1 /Q k )(Q k βk − p T z k ) , k ∈ N. 

An important practical implication of Theorem 2 is that any 

efficient solution can be obtained as an optimal solution for 

(13) with suitably chosen parameter vectors α and Q . In Ap- 

pendix B, we introduce a simple procedure searching for such vec- 

tors Q . We tested this procedure for 120 randomly generated prob- 

lem instances with the number of scenarios n ranging from 10 

to 10 0 0 and the number of stocks m from 5 to 100 (for details 

see Appendix B). In these tests the procedure never failed and the 

number of iterations needed for finding parameter values Q that 

meet the condition of Definition 3 varied from 1 to 9 with an av- 

erage of 3.9 iterations. 

3.4. Identification of the TSD-efficient Frontier 

In the case of TSD ( d = 3 ), the MOP problem (4) is somewhat 

more challenging. In particular, TSD cannot be established by eval- 

uating the twice integrated CDF ( F 3 
λ

) for all return levels between 

the lowest r and highest r state-specific returns. This is since the 

twice integrated CDFs of two portfolios may intersect for some re- 

turn level above r , even though one is strictly higher for all re- 

turn levels between r and r . However, it is sufficient to consider 

the values of F 3 
λ
(t) only for return levels t on the interval [ r , r ] if 

the expected portfolio return is included as an additional objective 

function to be maximized (see Appendix A for a detailed proof). 

Fig. 2. Impact of preference information. 

Lemma 2. Portfolio λ ∈ � is TSD-efficient if and only if it is a Pareto 

optimal solution to the MOP problem 

v–min 

λ∈ �

[ (
F 3 λ (t) 

)
t∈ [ r , r ] , −E [ R 

λ] 

] 
. 

The second challenge is that the twice integrated CDF is piecewise 

quadratic rather than piecewise linear. Fortunately, for a fixed t , F 3 
λ
(t ) 

can be evaluated by solving a convex quadratic minimization problem 

(see, e.g., Post & Kopa, 2017 ). Combining this observation with Lemma 

2 yields the following theorem (see Appendix A for a detailed proof). 

Theorem 3. Portfolio λ ∈ � is TSD-efficient if and only if ( λ, �) is a 

Pareto optimal solution to the MOP problem 

v–min 

λ, �

[ (∑ 

i ∈ N 
p i �

2 
i (t) 

)
t∈ [ r , r ] , −

∑ 

i ∈ N 
p i r 

λ
i 

] 
(15) 

�i (t) ≥ t − r λi ∀ i ∈ N, t ∈ [ r , r ] 

�i (t) ≥ 0 ∀ t ∈ [ r , r ] 

λ ∈ �. 

Practical implementation of problem (15) requires evaluat- 

ing the functions �i only at a finite set of points { t 1 , . . . , t l } ⊂
[ r , r ] . By denoting L = { 1 , . . . , l} and φk,i = �i (t k ) for all k ∈ L , this 

discretization yields the multi-objective quadratic programming 

(MOQP) problem 
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Fig. 3. Share of potentially optimal portfolios that include each of the m = 50 projects. 

v–min 

λ,φ

[ (∑ 

i ∈ N 
p i φ

2 
i,k 

)
k ∈ L , −

∑ 

i ∈ N 
p i r 

λ
i 

] 
(16) 

φi,k ≥ t k − r λi , ∀ i ∈ N, k ∈ L 

φi,k ≥ 0 , ∀ i ∈ N, k ∈ L 

λ ∈ �, 

which has l + 1 objective functions. 

Using standard multi-objective programming methods to gener- 

ate Pareto optimal solutions to problem (16) is relatively straight- 

forward because the objective functions are convex and quadratic 

and the constraints are linear. Thus, deploying, for instance, the 

reference point or the weighted Tchebychef-norm method to prob- 

lem (16) requires only solving a series of single-objective quadratic 

programming problems. Clearly, if the set of feasible asset weights 

� in (1) is non-convex, then these problems will include binary 

decision variables. The weighted sum method can be used if � is 

convex because in this case problem (16) is convex, i.e., it has con- 

vex objective functions and a convex feasible region. The weighted 

sum method is particularly attractive choice as it does not require 

the introduction of additional decision variables or constraints. It 

should be noted that even for convex problems there can exist bor- 

der points of the Pareto optimal set that the method cannot iden- 

tify (see, e.g., Ehrgott, 2005 ). Nevertheless, all interior points of a 

convex Pareto optimal set can be found with the weighted sum 

method, which seems sufficient for practical applications. 

4. Efficient frontiers in scenario-based project portfolio 

selection 

In this section we demonstrate the use of the developed meth- 

ods in project portfolio selection. We utilize the real-world appli- 

cation context reported in Liesiö & Salo (2012) in which scenario- 

based portfolio models were used to identify combinations of 

projects expected to prove most valuable in the future. However, 

the real data set contains only 24 projects, which makes it possible 

to identify SSD- and TSD-efficient portfolio through complete enu- 

meration of all project combinations. Hence, we randomly generate 

a larger data set consisting m = 50 projects (see Appendix C). Oth- 

erwise the problem attributes are kept intact. In particular, there 

are n = 8 scenarios, binary decision variables λ j indicating whether 

or not each project is included in the portfolio (i.e., � = { 0 , 1 } 50 ), 

and a single budget constraint that limits the total portfolio cost to 

be no greater than one third of the sum of all project candidates’ 

costs. 

The SSD- and TSD-efficient frontiers were generated by solv- 

ing the multi-objective programming problems (7) and (16) , re- 

spectively, with the Tchebychef-norm method ( Bowman, 1976 ). For 

problem (7) this approach results in a series of single objective 

MILP problems, the average solution time of which was some 

0.14 s when using Gurobi running on a standard laptop. For prob- 

lem (16) this approach requires solving single objective quadratic 

mixed-integer programming problems and the average solution 

time with Gurobi was some 0.22 s. 

Fig. 1 shows the share of the 341 SSD-efficient and the 290 

TSD-efficient portfolios that include each of the 50 projects. Some- 

what surprisingly there are 19 projects included in all of the SSD- 

efficient portfolios. These projects should be selected by any risk- 

averse or neutral decision maker. Moreover, there are 14 projects 

that are not included in any of the SSD-efficient portfolios and 

should not be selected by any risk-averse or -neutral decision 

maker. 

To demonstrate how preference information affects which effi- 

cient portfolios remain potentially optimal (cf. Eq. (3) ), we utilize 
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Fig. 4. SSD-efficient portfolios (light gray) and TSD-efficient portfolios (dark gray) projected onto six mean-risk planes. The crosses correspond to the underlying m = 10 

industry portfolios serving (cf. base assets). 

preference statements given by a simulated decision maker. This 

decision makers is asked repeatedly to state her preferences be- 

tween return distributions of two SSD-efficient portfolios named 

the incumbent portfolio and the challenger portfolio. Decision 

maker’s preference for the incumbent portfolio ˆ λk over the chal- 

lenger ˜ λk on the k th elicitation question is modelled by setting 

X k = R 
ˆ λk 

and Y k = R 
˜ λk 

in Eq. (2) , while preference for the chal- 

lenger yields X k = R 
˜ λk 

and Y k = R 
ˆ λk 

. For the first elicitation ques- 

tion the incumbent portfolio is the one with the median expected 

value across the SSD-efficient frontier. If in the k th elicitation ques- 

tion the challenger is preferred to the incumbent then the chal- 

lenger becomes new incumbent ( ̂ λk +1 = ̃

 λk ) and otherwise the in- 

cumbent remains unchanged ( ̂ λk +1 = ̂

 λk ) . The challenger is chosen 

as the portfolio that maximizes the expected utility difference to 

the current incumbent portfolio across all compatible utility func- 

tion, i.e., 

˜ λk ∈ arg max 
λ∈ �2 

E 
,u ∈ ̃ U k 

(
E [ u (R 

λ)] − E [ u (R 

ˆ λk 

)] 

)
. (17) 

Fig. 2 shows the how preference information affects the set 

of potentially optimal portfolios when the decision maker’s true 

risk-preferences are captured by the exponential utility function 

u e (t) = 1 − e −0 . 018 t . Checking for potential optimality of a portfo- 

lio (cf. Eq. (3) ) took approximately 0.06 s on Gurobi. 

The first panel shows the number of potentially optimal port- 

folios as a function of the number of preference statements given 

by the decision maker, while the second panel shows the share 

of the m = 50 projects that are included in all, some or none of 

the potentially optimal portfolios. Already with two preference 

statements we observe a substantial reduction in the number of 
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Fig. 5. Share of capital invested in each industry across SSD-efficient portfolios 

(light gray) and TSD-efficient portfolios (dark gray). 

potentially optimal portfolios, and these portfolios differ with 

regard to decision concerning only 8 projects. However, it takes 

19 preference statements to reach a situation with a single poten- 

tially optimal portfolio. Together these results suggest that there 

are several portfolios with very similar outcome distributions, 

although their project composition is slightly different. This is 

exemplified by Fig. 3 which visualizes the project level decision 

recommendations obtained at specific points of the preference 

elicitation process. 

The third panel of Fig. 2 visualises the expected utilities of the 

potentially optimal portfolios evaluated using the exponential util- 

ity function u e . The dashed line shows the minimum expected util- 

ity across all potentially optimal portfolios and the solid line cor- 

responds to the expected utility of the incumbent portfolio. These 

are shown relative to the potentially optimal portfolio with the 

highest expected utility ( = 100%). After only two preference state- 

ments selecting any one of the potentially optimal portfolios would 

yield over 99% of the expected utility of the true optimal portfo- 

lio. Moreover, at this point the incumbent portfolio is in fact an 

optimal portfolio, i.e., it maximizes expected utility E [ u e (·)] . 

In practice the information conveyed in the third panel of 

Fig. 2 is unknown, since the true utility function is not known. 

However, decision support can be provided on the basis of com- 

puting the decision maker’s opportunity cost. For any portfolio that 

the decision maker might be considering to select, we can compute 

an upper bound on the ‘lost’ potential expected utility associated 

with that particular portfolio choice. In the context of the inter- 

active preference elicitation discussed above, this opportunity cost 

is obtained as the maximum expected utility difference across all 

feasible utility functions. 

The bottom panel illustrates the opportunity cost of selecting 

the incumbent portfolio. Specifically, for each feasible utility func- 

tion u ∈ 

˜ U 

k we compare expected utility of the optimal portfolio 

(i.e., max λ∈ �2 
E 

E [ u (R λ)] ) to that of the incumbent ( E [ u (R 
ˆ λk 

)] ). Op- 

portunity cost is then obtained as the maximum expected utility 

difference across all feasible utility functions, i.e., 

max 
λ∈ �2 

E 
,u ∈ ̃ U k 

(
E [ u (R 

λ)] − E [ u (R 

ˆ λk 

)] 

)
. (18) 

Note that the portfolio that optimizes (18) is always potentially op- 

timal. The opportunity costs in Fig. 2 are shown relative to the 

opportunity cost of selecting the incumbent portfolio without any 

preference information. Already with 6 preference statements the 

maximum loss in expected utility from selecting the incumbent 

portfolio is reduced by 90%. 

Overall, these results show that incorporating even a minimal 

amount of preference information can have a dramatic effect on 

providing conclusive recommendations and, crucially, on providing 

associated assurances to the decision maker (via the upper bound 

on the opportunity cost). As we will demonstrate in the following 

section, this finding is apparent even when the decision maker’s 

preferences are not simulated via a specific utility function. 

5. Efficient frontiers of industry portfolios 

In this section we apply the developed models to open data on 

returns of financial assets. In particular, we present two applica- 

tions that analyze the risk-return profile and the composition of 

portfolios that are efficiently diversified across different industries 

in the sense of SSD and TSD. The assets in the model correspond 

to the industry portfolios from the Kenneth R. French data library 

which have been constructed by classifying each NYSE, AMEX, and 

NASDAQ stock based on its SIC code 2 The first and second applica- 

tion utilize data sets in which the stocks have been divided in to 

m = 10 and m = 49 industry portfolios, respectively. In both appli- 

cations we use the set of asset weights � = { λ ∈ [0 , 1] m | ∑ 

j λ j = 

1 } , which prohibits short selling of industry portfolios. It is perhaps 

important to highlight that the developed models can handle more 

complex sets of feasible asset weights, but we seek to demonstrate 

properties of the SSD- and TSD-efficient frontiers under the stan- 

dard assumptions. 

5.1. SSD- and TSD-efficient diversification among 10 industries 

In the first model we use the annual returns of the m = 10 in- 

dustry portfolios from 2007–2016 resulting in a state-space with 

n = 10 states. The MOLP problem (10) thus contains 10 objective 

functions, 101 constraints and 120 decision variables. The set of all 

SSD-efficient portfolios was obtained by solving this problem with 

the Benson algorithm ( Löhne & Weißing, 2014 ) that produces a fi- 

nite number of polyhedral sets the union of which is equal to the 

set �2 
E . The computation time was approximately 67 s on a stan- 

dard laptop. The 500 TSD-efficient portfolios were solved by using 

the weighted sum approach on the MOQP problem (16) . We used 

200 evenly spaced discretization points t ∈ [ r , r ] between mini- 

mum and maximum state-specific assets returns, and thus problem 

(16) contained 201 objective functions, 2010 decision variables, and 

2001 constraints. The resulting quadratic programming (QP) prob- 

lems took on average 0.07 s to solve on Gurobi. 

Fig. 4 illustrates the frontiers of efficient diversification strate- 

gies among the 10 industries. In particular, it shows the projections 

of the SSD- and TSD-efficient frontiers onto five 2-dimensional 

planes, in which the vertical axis corresponds to the expected 

return and the horizontal axis corresponds to a specific CVaR- 

measure or the standard deviation of returns. Recall that the 

CVaR k 
10 

-measure is equal to the k th objective function value of the 

MOLP problem (10) , and the expected return is equal to the n th 

objective function up to multiplication with a constant (cf. prob- 

lem (11) ). Hence, the first five projections also illustrate the image 

of the Pareto optimal set of MOLP problem (10) , which consists 

of a union of polyhedral sets. The figure also highlights that SSD- 

efficient portfolios satisfying some prespecified target-level for a 

particular risk measure (e.g., CVaR 10% ≤ 20% ) can have significantly 

different expected returns (e.g., 10.6%-11.5%). Similarly, there exists 

a TSD-efficient portfolio yielding expected returns of 11% with a 

17% standard deviation, even though it is possible to obtain 12% 

expected return with the same standard deviation. 

2 For details see https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data _ 

library.html . 
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Fig. 6. Hypervolume of the SSD-dominated set as a function of the number of generated SSD-efficient portfolios. 

Fig. 7. SSD- (light gray) and TSD-efficient portfolios (dark gray) projected onto six different mean-risk planes. Black crosses correspond to the underlying m = 49 industry 

portfolios (cf. base assets). 

Fig. 5 shows the minimum and maximum share of capital allo- 

cated to each industry across the SSD- and TSD-efficient frontiers. 

In particular, for industry j ∈ { 1 , . . . , 10 } , the bars show the inter- 

val [ min 

λ∈ �d 
E 
λ j , max 

λ∈ �d 
E 
λ j ] for d ∈ { 2 , 3 } . In this data set there 

are no industries to which investments are made in each SSD- 

efficient or TSD-efficient portfolio. However, there are three indus- 

tries, namely ‘Health’, ’High Tech’ and ‘Consumer Non-Durables’, 

such that investing all capital to any one of these would consti- 

tute a TSD-efficient (and hence also a SSD-efficient) diversifica- 

tion. In contrast, the three industries ‘Other’, ‘Manufacturing’ and 

‘Consumer Durables’ are not included in any of the SSD- or TSD- 

efficient portfolios: Investing into any one of these will lead to an 
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inefficient portfolio, meaning that there would exist another port- 

folio which is preferred by all expected utility maximizing risk- 

averse or -neutral decision makers. 

Between these two extremes there are industries that are in- 

cluded in some but not all SSD-efficient portfolios. For instance, 

investing more than 39% of initial capital into ‘Shops’ would lead 

to a portfolio that is dominated in the sense of SSD, no matter how 

the remaining 61% of capital is diversified. Moreover, any skewness 

preferring decision maker with a utility function u ∈ U 

3 should in- 

vest at most 2% of capital to ‘Utils’ and diversify the rest of the 

capital between ‘Health’, ‘High Tech’ and ‘Consumer Non-Durables’. 

5.2. SSD- and TSD-efficient diversification among 49 industries 

The second model uses a more detailed stock classification con- 

sisting of m = 49 industry portfolios, which serve as the base as- 

sets. The state-space is constructed using the monthly returns of 

these portfolios from 20 0 0 to 2016 resulting in n = 204 states. The 

MOLP problem (10) thus contains 204 objective functions, 41,617 

constraints and 41,869 decision variables. This problem is far too 

large to be solved with exact MOLP algorithms and hence we 

deployed the weighted sum method ( Corollary 2 ). We generated 

some 40,0 0 0 SSD-efficient portfolios, and it took on average 0.26 s 

to solve a single weighted sum LP problem. For generating the 

TSD-efficient portfolios we used a 250 point discretization of the 

return levels resulting in a MOQP problem with 251 objective func- 

tions, 51,049 decision variables and 51,001 constraints. Some 1500 

TSD-efficient portfolios were generated using the weighted sum 

method, and solving a single QP problem took approximately 5 s 

on Gurobi. 

Although each of the generated portfolios is efficient, we con- 

ducted an additional analysis to examine how representative these 

portfolios are of the efficient frontier. Specifically, we used Monte 

Carlo simulation to estimate the hypervolume, which we define as 

the relative volume of the set of those portfolios that are dom- 

inated by at least one of the generated portfolios, i.e., Vol ({ λ ∈ 

� | ∃ λ′ ∈ �d 
E 

s.t. λ′ �d λ} ) / Vol (�) , where �d 
E 

is the set of gen- 

erated SSD- ( d = 2 ) or TSD-efficient ( d = 3 ) portfolios. Fig. 6 shows 

the hypervolume of the SSD-dominated set as a function of the 

number of SSD-efficient portfolios generated. For instance, with 

500 SSD-efficient portfolios the hypervolume of the dominated set 

is almost 99.8%. In case of TSD the convergence is even faster since 

the TSD-efficient set is a subset of the SSD-efficient set and as a re- 

sult the hypervolume exceeds 99.99% already with four generated 

TSD-efficient portfolios. 

Fig. 7 illustrates the risk-return profiles of the SD-efficient port- 

folios and the 49 industry portfolios. These results exemplify that 

SD-efficient portfolios that are equally risky according to a single 

risk measure can have large differences in their expected returns. 

For instance, the expected returns of SSD-efficient portfolios with 

equal CVaR 10% values can vary between 0.7% and 1.5%. This ob- 

servation seems to imply that expected returns can be doubled 

without increasing risk, but this is an artefact resulting from the 

use of a single risk measure: Since all of these portfolios are SSD- 

efficient, increasing expected returns from 0.7% to 1.5% increases 

CVaR π for at least some confidence level π (see problem (11) ). In- 

deed, the SSD-efficient frontier needs to be understood as a fron- 

tier in the multi-dimensional objective space spanned by all CVaR 

measures and the expected return. Projections of this frontier onto 

a 2-dimensional mean-risk plane result in an SSD-efficient ‘band’. 

Fig. 8 shows the share of capital allocated to each industry 

across the SSD- and TSD-efficient portfolios. This data set includes 

one industry (‘Smoke’ consisting of tobacco companies) that alone 

constitutes an SSD- and a TSD-efficient portfolio. This industry of- 

fers the highest expected return, and thus a pure risk-neutral deci- 

sion maker should invest 100% of her capital into it. Perhaps more 

Fig. 8. Share of capital invested in each industry across SSD-efficient portfolios 

(light gray) and TSD-efficient portfolios (dark gray). 

surprising is the observation that over a half of the industries are 

not included in any of the SSD-efficient portfolios (e.g., ‘Toys’ and 

‘Fun’ which include stocks of recreation and entertainment compa- 

nies). This means that maximizing expected utility for any concave 

or linear utility function would result in a portfolio in which no 

capital is allocated to these industries. 

In this data set about two thirds of the industries are not in- 

cluded in any TSD-efficient portfolio. Hence, any risk-averse deci- 

sion maker with preferences for higher skewness should diversify 

only among the remaining 15 industries. Moreover, such a deci- 

sion maker should always allocate more than 5% of her capital to 

‘Smoke’ as otherwise the resulting portfolio will be dominated in 

the sense of TSD no matter how the remaining capital is allocate. 

5.3. Additional preference information 

To demonstrate how preference information affects which ef- 

ficient portfolios remain potentially optimal (cf. Eq. (3) ) we will 

again consider the incremental preference elicitation schema dis- 

cussed in Section 4 . Here, however, we will conduct a more com- 

plete investigation, which is not contingent on simulating the re- 
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Fig. 9. Share of capital invested in each industry across the potentially optimal portfolios for decision maker who prefers the incumbent over the challenger in the 2nd, 3rd, 

5th and 7th elicitation question. 

sponses of the DM via the use of a specific utility function. We do 

this because we want to specifically investigate the effect of utiliz- 

ing preference information irrespective of the specific preferences 

one DM may provide. In other words we want to consider the ef- 

fect of utilizing preference information in reducing the set of po- 

tentially optimal portfolios across different DMs (i.e. with different 

preferences). 

Our investigation involves generating all potential response se- 

quences that could be observed in the application of the incremen- 

tal preference elicitation schema of Section 4 after 10 iterations. 

This generation is a dynamic problem, since the generation of a 

challenger distribution/portfolio at any iteration is contingent on 

the previous responses of a DM. We thus construct the complete 

response tree via exhaustive enumeration. More specifically, when 

problem (17) is solved for the k th elicitation question, we consider 

two scenarios for ˜ U 

k +1 . In one scenario we construct ˜ U 

k +1 by mod- 

elling a preference of the incumbent ˆ λk over the challenger ˜ λk , in 

which case we set X k = R 
ˆ λk 

and Y k = R 
˜ λk 

in Eq. (2) and the incum- 

bent is unchanged ( ̂ λk +1 = ̂

 λk ) . In the other scenario we construct 
˜ U 

k +1 by modelling a preference of the challenger ˜ λk over the in- 

cumbent ˆ λk , in which case we set X k = R 
˜ λk 

and Y k = R 
ˆ λk 

and the 

incumbent is updated ( ̂ λk +1 = ̃

 λk ). These two scenarios for defining 
˜ U 

k +1 define two branches of the potential response tree, and each 

is explored further (leading to further branching). The complete 

response tree is constructed in this fashion to a depth of k = 10 

questions. It should be noted that, across 10 questions, the total 

number of possible answer combinations is 2 10 = 1024 . Moreover, 

after k elicitation questions there are 2 k alternative sets of feasi- 

ble utility functions ( Eq. (2) ) and corresponding sets of potentially 

optimal portfolios ( Eq. (3) ). Due to this exponential number of al- 

ternative preferences, this analysis is carried out using 500 port- 

folios randomly chosen from the total set of 40,0 0 0 SSD-efficient 

portfolios generated. 

As an example, Fig. 9 demonstrates the decision recommenda- 

tions obtained throughout the 10 step preference elicitation pro- 

cess by a decision maker who prefers the challenger to the incum- 

bent in the 2nd, 3rd, 5th and 7th elicitation question. With these 

preference, there are 31 assets not included in any potentially op- 

timal portfolio after 6 elicitation questions, and the widths of the 

weight ranges of the remaining assets vary between 0.0 0 07 and 

0.4475. 

Fig. 10 illustrates the weight ranges’ widths across all possible 

answer combinations. In particular, for each asset we first compute 

the width of the weight range (i.e., difference between the min- 

imum and maximum weight across all potentially optimal port- 

folios) for every alternative set of potentially optimal portfolios. 

Hence, after k elicitation questions, there is a distribution of widths 

across the m = 49 assets and the 2 k alternative sets of potentially 

optimal portfolios. Fig. 10 illustrates the spread in this distribution 

by showing the 80th, 90th, 95th and 100th percentiles of this dis- 

tribution as well as its median. Overall, assets’ weight ranges be- 

come narrower as more preference information is elicited and for 

instance after nine preference statements 80% of the assets have a 

point-estimate weight. 

Fig. 11 visualizes the impact additional preference informa- 

tion has on the reduction in the opportunity cost. Specifically, for 

each alternative set of potentially optimal portfolios the opportu- 

nity cost is obtained by maximizing the expected utility differ- 
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Fig. 10. Width of the assets’ weight ranges across potentially optimal portfolio as 

a function of the number preference statements. The dashed lines show the 100th, 

95th, 90th and 80th percentiles. The median width is zero for any number of pref- 

erence statements. 

Fig. 11. Maximum expected utility difference to incumbent portfolio across all po- 

tentially optimal portfolios and utility functions compatible with the given prefer- 

ence statements. Solid line corresponds to the median expected utility difference 

across different preferences, and the dashed lines show the minimum and maxi- 

mum. 

ence to the incumbent portfolio across all portfolios in this this 

set and across all compatible utility functions. Hence, with k elic- 

itation questions, there is a distribution of opportunity costs, one 

for each of the 2 k alternative sets of potentially optimal portfolios. 

Fig. 11 shows the minimum, maximum and median of these costs 

relative to the opportunity cost in case no preference information 

is given ( = 100 %). For instance, after three preference elicitation 

questions the opportunity cost is reduced by over 90% regardless 

of what the answers to these question are. 

As in the previous application, these results show that even 

small amounts of preference information can substantially im- 

prove portfolio recommendations and providing the associated as- 

surances. Crucially, in this second application this finding is inde- 

pendent of the specific form of the underlying utility function (i.e. 

independent of the underlying decision maker preferences). 

6. Implications and conclusions 

The models developed in this paper can be readily deployed to 

support portfolio selection in practical applications. In particular, 

the equivalence between SSD/TSD-efficient portfolios and Pareto 

optimal solutions makes it possible to use exact and approximate 

MOP algorithms to generate the efficient frontier. This frontier can 

then be used to identify those individual assets that do not be- 

long to any efficient portfolio, and thus investing in them would 

lead to a sub-optimal diversification regardless of the level of risk 

aversion. Indeed, in the data sets analyzed in this paper about half 

of the base assets were not included in any of the SSD-efficient 

portfolios, which means that no concave (or linear) utility function 

rationalizes investments into these assets. Moreover, the share of 

the assets not included in any of the TSD-efficient portfolios was 

even higher. 

Once the SD-efficient frontier has been identified, additional in- 

formation on the decision maker’s risk-preference can be readily 

utilized to reduce the set of admissible portfolio alternatives. Our 

results show that this can have a dramatic effect on obtaining con- 

clusive recommendations for the individual assets and on reduc- 

ing the opportunity cost. For instance, in our application already 

a few preference statements comparing pairs SSD-efficient portfo- 

lios could be enough to conclude that capital should be allocated 

among only six of the 49 assets. 

It is important to highlight some aspects of the developed ap- 

proaches. First, these approaches identify those portfolios that are 

SSD- or TSD-efficient for the specified state-space. In financial ap- 

plications, for instance, if the state-space does not capture the true 

stochastic process through which future uncertain returns are gen- 

erated, then there are no guarantees that the identified portfo- 

lios are efficient ex-post after observing the empirical return dis- 

tribution. Second, the computational burden of the developed ap- 

proaches depends on both the underlying portfolio selection prob- 

lem as well as the MOP method used to solve the Pareto optimal 

solutions. For instance, if the portfolio selection problem involves 

binary decision variables, then the utilization of weighted sum or 

Tchebychef-norm methods also involves solving optimization prob- 

lems with binary variables. Moreover, in case of TSD, these prob- 

lems would be non-linear. Third, in many cases the entire (possi- 

bly infinite) efficient frontier cannot be identified, but instead one 

must rely on MOP methods that generate a finite subset of the ef- 

ficient portfolios. From a computational perspective these methods 

are appealing since they often rely on solving several single ob- 

jective optimization problems that are not linked to each other, 

which makes it possible to utilise parallel computation with mul- 

tiples cores. 

We believe that this paper opens up several interesting avenues 

for future research. In terms of methodological development, re- 

search efforts are needed to examine if similar links can be estab- 

lished between multi-objective optimization problems and other 

stochastic dominance criteria such as the first-order stochastic 

dominance (FSD; Quirk & Saposnik, 1962 ) or the almost stochastic 

dominance ( Tsetlin, Winkler, Huang, & Tzeng, 2015 ). For instance, 

FSD relaxes the assumption of risk aversion, and hence any deci- 

sion maker preferring more returns to less should make choices 

that are consistent with FSD. Methods for identifying the FSD- 

efficient frontier could thus be valuable to behavioral research that 

does not assume decision makers are fully rational expected utility 

maximizers (cf. Starmer, 20 0 0 ). Furthermore, some project portfo- 

lio selection models use scenario trees to capture dynamic decision 

settings (see, e.g., Gustafsson & Salo, 2005 ). These models often re- 

sult in mixed-integer linear programming formulations and thus 

the models developed in this paper could be used to identify the 

frontiers of SSD- and TSD-efficient project portfolios in such multi- 

period settings. 

In terms of empirical finance applications, the next obvious step 

is analyzing the sets of SSD- and TSD-efficient portfolios implied by 

market data to build an understanding on the general structure of 

SD-efficient frontiers. Such studies should systematically study the 

effects of factors such as the covariance structure or the numbers 
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of assets and states, and also include analysis of the differences be- 

tween in-sample and out-of-sample efficient frontiers (cf. Hodder, 

Jackwerth, & Kolokolova, 2014 ). 

Supplementary material 

Supplementary material associated with this article can be 

found, in the online version, at doi: 10.1016/j.ejor.2022.04.043 . 
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