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Abstract: A novel filtering magic-T (FMT) with a compact size, a broad bandwidth, and a wide
stopband rejection based on the dielectric-covered L-shaped groove (DCLSG) half-mode substrate
integrated waveguide and the spoof surface plasmon polariton (HMSIW-SSPP) structure is proposed
for the first time. A HMSIW magic-T (HMT) based on dual-layer substrates is first designed. Then,
we construct the proposed FMT by periodically etching the subwavelength DCLSG SSPP structure
into the HMT. The proposed FMT achieves a bandpass filtering response and a nearly 50% reduction
of longitudinal dimension attributed to the bandpass characteristics and strong slow-wave property
of the DCLSG HMSIW-SSPP structure. In addition, beneficial from the regulable cut-off frequencies of
the DCLSG HMSIW-SSPP structure, the proposed FMT provides a wide impedance bandwidth and
independently adjustable lower and upper cut-off frequencies of the passband. Finally, a prototype
of the proposed FMT is fabricated to validate this design idea. The measured results illustrate that
the FMT has a 3-dB fractional bandwidth of 40.23% and a 20-dB stopband rejection up to 2.12 f 0

(f 0: center frequency of the passband).

Keywords: filtering magic-T; spoof surface plasmon polaritons (SSPPs); half-mode substrate inte-
grated waveguide (HMSIW); wide bandwidth; wide stopband; compact size

1. Introduction

The Magic-T is the vital four-port passive component in the RF front-end system. It
has been used in various scenarios, such as mixer and monopulse antennas [1–3]. For a
magic-T, the input port of the structure that operates as the power divider (PD) is named
the sum port, while the input port of the structure that acts as the reverse-phase PD (balun)
is called the difference port. Owing to the substrate integrated waveguide (SIW) with
the advantages of easy integration with planar structures, high power capacity, and low
insertion loss, researchers present multiple SIW and half mode SIW (HMSIW) magic-Ts
by using slotline-to-SIW transition [4,5] and stripline-to-SIW transition techniques [6].
However, these SIW magic-Ts do not integrate with bandpass filters (BPFs), so it is hard to
exclude unwanted signals. Since the direct link between the BPF and magic-T increases
the footprint and the insertion loss [7], researchers propose filtering magic-T (FMT) by
integrating magic-T and BPF into one joint-function component. To date, there are mainly
two popular approaches to designing the SIW FMTs [8–14].

One approach is to use orthogonal degenerate modes of the SIW resonators to accom-
plish the input ports’ isolations and the functions of filtering PD and balun [8–11]. Another
approach is to design the two output channels of the filtering balun (PD) with opposite
coupling coefficients while maintaining that of the filtering PD (balun) with identical cou-
pling coefficients [12–14]. Nevertheless, the above papers have not discussed or optimized
the stopband performance of the SIW FMTs, while the wide stopband rejection is often
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necessary for microwave devices with filtering functions. Although researchers propose
a frequency-tunable FMT using HMSIW evanescent-mode (EVA) cavity resonators [15],
whose stopband rejection achieves 10.2 f 0 (f 0: center frequency of the passband), it operates
at a relatively low frequency, and its insertion loss needs to improve. In addition, all the
FMTs in [8–15] can only provide a fractional bandwidth (FBW) smaller than 8.62%, which
is not appropriate for wideband applications. Moreover, using high-order resonators to
meet wideband applications may lead to a large size [16]. A recent study in [17], reports an
FMT based on hybrid SIW and coplanar waveguide (CPW) resonators to implement the
compactness and 3rd-order filtering response, but its FBW is just 7.58%. Thus, designing
a SIW FMT with compact size, wide bandwidth, and wide stopband rejection remains
a challenge.

In recent years, spoof surface plasmon polaritons (SSPPs) have been proven to be a
valuable technique in the designs of passive microwave devices, attributing to its merits
of a slow-wave (SW) characteristic and strong field confinement [18–22]. These things
considered, various filtering devices, including BPFs [23,24], dual-band BPFs [25,26], fil-
tering power dividers [27,28], and diplexers [29,30], have been proposed by combining
the high-pass property of SIW (or HMSIW) and the low-pass property of SSPP structure.
Nevertheless, to the best of the authors’ knowledge, the FMT based on the hybrid SIW and
SSPP (SIW-SSPP) or HMSIW-SSPP structure has not been explored.

This paper proposes a novel FMT with a compact size, a wide bandwidth, and a wide
stopband rejection using the dielectric-covered L-shaped groove (DCLSG) HMSIW-SSPP
structure for the first time. The dispersion properties of the DCLSG HMSIW-SSPP unit cell
are investigated first. Then, an HMSIW magic-T (HMT) based on dual-layer substrates is
designed. Finally, we create the proposed FMT by periodically inserting the subwavelength
DCLSG SSPP structure into the HMT. The DCLSG HMSIW-SSPP unit cell with gradient
groove length is utilized to realize the momentum matching and mode conversion from the
HMSIW to the required HMSIW-SSPP structure. The numerical simulations are conducted
using the CST Microwave Studio [31].

The paper is organized as follows. In Section 2, the dispersion properties of the
DCLSG HMSIW-SSPP unit cell are investigated. The detailed design procedures of the
HMT and FMT are presented in Sections 3 and 4, respectively. The experimental results of
the proposed FMT are discussed in Section 5. Section 6 gives the conclusions.

2. Dispersion Characteristics Analysis of Unit Cells

Figure 1a illustrates the configuration of the SIW, which consists of two copper layers
(yellow part) and one dielectric layer (pink part). Two rows of vias connect the lower
and upper copper layers. Figure 1b is the structure of the HMSIW, whose lateral size
reduces by 50% compared to the SIW. Its lateral width is w = 6.4 mm. Figure 1c shows
the configuration of the DCLSG SSPP unit cell. It is composed of two copper layers and
two dielectric layers. The L-shape groove is inserted into the upper copper layer. The
groove’s lateral and longitudinal lengths are denoted as h and hl, respectively, and the
groove’s width is denoted as g. Combining the DCLSG SSPP unit cell with the HMSIW,
we obtain the proposed DCLSG HMSIW-SSPP unit cell, as illustrated in Figure 1d. The
thickness of the copper layer is t0 = 0.018 mm. The dielectric layer is selected as the Rogers
4350B substrate (εr = 3.48 and tanδ = 0.004) with a thickness of h0 = 0.508 mm. The detailed
dimensions of the four models are given in Figure 1.

The dispersion curves of the models in Figure 1 are compared and plotted in Figure 2a,
which are calculated using the eigenmode solver in CST Microwave Studio. The light’s
dispersion curve is also plotted in Figure 2a. As shown in Figure 2a, the lower cut-
off frequencies of the HMSIW and SIW are approximately equal and exhibit high-pass
properties. The DCLSG SSPP structure operates in the SW region and enables low-pass
characteristics. The DCLSG HMSIW-SSPP structure features dispersion properties of both
the HMSIW and SSPP structures. It provides a bandpass property with a lower frequency
(6.3 GHz) and an upper cut-off frequency (10.91 GHz), which offers theoretical support to
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the implementation of bandpass filtering devices. As illustrated by the red dash curve in
Figure 2a, the normalized propagation constant of the DCLSG HMSIW-SSPP structure is
larger than two times that of HMSIW at 8.7 GHz, which means that the proposed DCLSG
HMSIW-SSPP structure has a >50% size reduction.
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Figure 2b,c illustrate the impacts of the transverse groove length (h) and longitudinal
groove length (hl) on the cut-off frequencies of the DCLSG HMSIW-SSPP structure. As the
h (hl) increases from 2.74 mm (0.9 mm) to 3.14 mm (1.1 mm), the upper cut-off frequency
decreases from 11.55 GHz (11.20 GHz) to 10.36 GHz (10.59 GHz), while the lower one is
almost unchanged, remaining at around 6.3 GHz (6.3 GHz). Figure 2d demonstrates the
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dispersion curves of the DCLSG HMSIW-SSPP unit cell versus diverse values of w. As w
increases from 5.9 to 6.9 mm, the lower cut-off frequency decreases from 6.82 to 5.86 GHz,
while the upper one keeps almost constant, remaining at around 10.9 GHz. Thus, we can
independently regulate the lower and upper cut-off frequencies of the DCLSG HMSIW-
SSPP structure by altering its geometric dimensions, which offers the feasibility of designing
the bandpass filtering device with an independently controllable wide bandwidth.

3. Design of HMT

Figure 3a,b show that we first designed an HMT based on dual-layer Rogers 4350B
substrates and three copper layers. In this design, Port 4 on substrate 2 is served as the sum
port and excites SIW through the tapered microstrip line (ML). Then, the longitudinal slot
with a width of g1 = 1.8 mm divides the SIW into two symmetrical HMSIWs. The tapered
MLs with a length of l2 realize the mode and impedance transition from the HMSIWs to the
output uniform MLs ports. Figure 3c shows the simulated S-parameters of the sum port
driven. It exhibits a high-pass transmission response from 6.9 to 10.5 GHz, and the |S24|
is approximately equal to the |S34|. Figure 3d is the simulated phases of the S24 and S34,
showing a maximum phase difference of 2.4◦ between Ports 2 and 3 within 6 to 10.5 GHz.
Thus, the function of PD is achieved.
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Port 1 on substrate 1 is served as the difference port and excites symmetric HMSIWs
through the slot coupling. Herein, the width of the slot under Port 1′s feed line is reduced
to g0 = 1.2 mm, which improves the impedance matching of input and the isolation between
the sum and difference ports. Substrate 1 is extended along the x-axis direction to cover the
HMSIW parts. Figure 3e shows the simulated S-parameters of the difference port driven. It
achieves the high-pass transmission response from 6.85 to 10.5 GHz, and the input power
is equally divided at Ports 2 and 3. Figure 3f illustrates the simulated phases of the S21
and S31, which demonstrate that Ports 2 and 3 achieve a maximum phase difference of
181.6◦ from 6 to 10.5 GHz. Therefore, the balun function is obtained. The structures in the
HMT served as the PD and balun functions share the output ports. Moreover, the results in
Figure 3d,f indicate that the fields excited by the sum and difference ports possess different
symmetry, which enables the natural physical isolation between the sum and difference
ports [32].

Herein, we introduce two perturbation vias to enhance the reflection performance of
the difference and sum ports. The diameter of the perturbation via is 0.6 mm. Figure 4 shows
the simulated S-parameters of the HMT with or without perturbation vias. The lower end
of the |S11| at 7.8 GHz decreases from−12.16 to−19.22 dB, and that of |S44| reduces from
−13.90 to −28.85 dB, indicating the perturbation vias can effectively enhance the reflection
performance of the HMT’s two input ports. The role of the perturbation vias is equivalent
to the narrow-to-wide SIW transition in [33]. The perturbation vias reduce the width of the
HMSIW, raising the lower cut-off frequency of the HMT’s passband. In addition, the widths
of input and output MLs in the HMT are set as 1.1 mm (corresponding to the characteristic
impedance of 50 Ω), which facilitates connecting with the SMA connectors to test.
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4. Design of FMT

As shown in Figure 5, the proposed FMT is constructed by symmetrically inserting
the subwavelength DCLSG SSPP structures into each branch of HMT’s HMSIWs without
altering other dimensions. The proposed FMT’s structural parameters are given in Figure 5.
The HMSIW-SSPP structures in the proposed FMT are mainly divided into three parts.

Part I consists of three HMSIW-SSPP unit cells (M1, M2, and M3) with different groove
lengths. Part II comprises two identical HMSIW-SSPP unit cells (M4) whose dimensions
are identical to that in Figure 1a. The role of Part I is to implement the mode conversion
and momentum matching from the HMSIW to the HMSIW-SSPP structures in Part II. Its
operating principle can be explicated by the matching theory [34]. The dispersion curves
of the HMSIW and the HMSIW-SSPP unit cells in Part I and Part II are analyzed and
portrayed in Figure 6. As the unit cell changes from M1 to M3, the dispersion curve of the
HMSIW-SSPP unit cell is far away from the HMSIW and approximates the unit cell M4.
Thus, good momentum matching is achieved. Part II can determine the desired passband
with lower and upper cut-off frequencies. The role of Part III is inverse to that of Part I.
Figure 7 illustrates the simulated S-parameters of the proposed FMT. The 3-dB FBW of the
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difference port driven is 36.44% (7.07–10.22 GHz), and that of the sum port driven is 35.16%
(7.15–10.20 GHz). Thus, a wideband FMT based on the HMSIW-SSPP structure is obtained.

Electronics 2022, 11, x FOR PEER REVIEW 6 of 14 
 

 

As shown in Figure 5, the proposed FMT is constructed by symmetrically inserting 
the subwavelength DCLSG SSPP structures into each branch of HMT’s HMSIWs without 
altering other dimensions. The proposed FMT’s structural parameters are given in Figure 
5. The HMSIW-SSPP structures in the proposed FMT are mainly divided into three parts. 

 
Figure 5. Configurations of FMT. The detailed dimensions are h = 2.94 mm, hl = 1 mm, h1 = 0.77 mm, 
h2 = 1.55 mm, h3 = 2.50 mm, h4 = 2.42 mm, h5 = 1.58 mm, and h6 = 0.77 mm. 

Part I consists of three HMSIW-SSPP unit cells (M1, M2, and M3) with different 
groove lengths. Part II comprises two identical HMSIW-SSPP unit cells (M4) whose di-
mensions are identical to that in Figure 1a. The role of Part I is to implement the mode 
conversion and momentum matching from the HMSIW to the HMSIW-SSPP structures in 
Part II. Its operating principle can be explicated by the matching theory [34]. The disper-
sion curves of the HMSIW and the HMSIW-SSPP unit cells in Part I and Part II are ana-
lyzed and portrayed in Figure 6. As the unit cell changes from M1 to M3, the dispersion 
curve of the HMSIW-SSPP unit cell is far away from the HMSIW and approximates the 
unit cell M4. Thus, good momentum matching is achieved. Part II can determine the de-
sired passband with lower and upper cut-off frequencies. The role of Part III is inverse to 
that of Part I. Figure 7 illustrates the simulated S-parameters of the proposed FMT. The 3-
dB FBW of the difference port driven is 36.44% (7.07–10.22 GHz), and that of the sum port 
driven is 35.16% (7.15–10.20 GHz). Thus, a wideband FMT based on the HMSIW-SSPP 
structure is obtained. 

 
Figure 6. Dispersion curves of HMSIW and HMSIW-SSPP unit cells in Part I and Part II. 

Figure 5. Configurations of FMT. The detailed dimensions are h = 2.94 mm, hl = 1 mm, h1 = 0.77 mm,
h2 = 1.55 mm, h3 = 2.50 mm, h4 = 2.42 mm, h5 = 1.58 mm, and h6 = 0.77 mm.

Electronics 2022, 11, x FOR PEER REVIEW 6 of 14 
 

 

As shown in Figure 5, the proposed FMT is constructed by symmetrically inserting 
the subwavelength DCLSG SSPP structures into each branch of HMT’s HMSIWs without 
altering other dimensions. The proposed FMT’s structural parameters are given in Figure 
5. The HMSIW-SSPP structures in the proposed FMT are mainly divided into three parts. 

 
Figure 5. Configurations of FMT. The detailed dimensions are h = 2.94 mm, hl = 1 mm, h1 = 0.77 mm, 
h2 = 1.55 mm, h3 = 2.50 mm, h4 = 2.42 mm, h5 = 1.58 mm, and h6 = 0.77 mm. 

Part I consists of three HMSIW-SSPP unit cells (M1, M2, and M3) with different 
groove lengths. Part II comprises two identical HMSIW-SSPP unit cells (M4) whose di-
mensions are identical to that in Figure 1a. The role of Part I is to implement the mode 
conversion and momentum matching from the HMSIW to the HMSIW-SSPP structures in 
Part II. Its operating principle can be explicated by the matching theory [34]. The disper-
sion curves of the HMSIW and the HMSIW-SSPP unit cells in Part I and Part II are ana-
lyzed and portrayed in Figure 6. As the unit cell changes from M1 to M3, the dispersion 
curve of the HMSIW-SSPP unit cell is far away from the HMSIW and approximates the 
unit cell M4. Thus, good momentum matching is achieved. Part II can determine the de-
sired passband with lower and upper cut-off frequencies. The role of Part III is inverse to 
that of Part I. Figure 7 illustrates the simulated S-parameters of the proposed FMT. The 3-
dB FBW of the difference port driven is 36.44% (7.07–10.22 GHz), and that of the sum port 
driven is 35.16% (7.15–10.20 GHz). Thus, a wideband FMT based on the HMSIW-SSPP 
structure is obtained. 

 
Figure 6. Dispersion curves of HMSIW and HMSIW-SSPP unit cells in Part I and Part II. Figure 6. Dispersion curves of HMSIW and HMSIW-SSPP unit cells in Part I and Part II.

Electronics 2022, 11, x FOR PEER REVIEW 7 of 14 
 

 

  
(a) (b) 

Figure 7. Simulated S-parameters of the proposed FMT. (a) The difference port is driven. (b) The 
sum port is driven. 

Figure 8 demonstrates the simulated S-parameters of the proposed FMT under the 
impacts of geometric parameters h, hl, and w in Part II. Owing to the structural symmetry 
between Ports 2 and 3, we only give the simulated results of S21 and S24. As illustrated in 
Figure 8a–d, as the h (hl) increases from 2.74 mm (0.9 mm) to 3.14 mm (1.1 mm), the upper 
cut-off frequency of the |S21| decreases from 10.75 GHz (10.47 GHz) to 9.64 GHz (9.95 
GHz) and that of the |S24| decreases from 10.85 GHz (10.44 GHz) to 9.61 GHz (9.93 GHz). 
However, the lower cut-off frequencies of the |S21| and |S24| remain unchanged. As illus-
trated in Figure 8e,f, as the w increases from 5.9 to 6.9 mm, the lower cut-off frequency of 
the |S21| (|S24|) decreases from 7.62 GHz (7.68 GHz) to 6.6 GHz (6.74 GHz). Nevertheless, 
the lower cut-off frequencies of the |S21| and |S24| are almost unchanged. The rule of the 
simulated S-parameters affected by h, hl, and w coincides well with the dispersion analysis 
in Figure 2b–d. Thus, we can independently control the lower and upper cut-off frequen-
cies of the proposed FMT’s passband by tuning several structural parameters. 

  
(a) (b) 

  
(c) (d) 

Figure 7. Simulated S-parameters of the proposed FMT. (a) The difference port is driven. (b) The sum
port is driven.

Figure 8 demonstrates the simulated S-parameters of the proposed FMT under the
impacts of geometric parameters h, hl, and w in Part II. Owing to the structural symmetry
between Ports 2 and 3, we only give the simulated results of S21 and S24. As illustrated in
Figure 8a–d, as the h (hl) increases from 2.74 mm (0.9 mm) to 3.14 mm (1.1 mm), the upper
cut-off frequency of the |S21| decreases from 10.75 GHz (10.47 GHz) to 9.64 GHz (9.95 GHz)
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and that of the |S24| decreases from 10.85 GHz (10.44 GHz) to 9.61 GHz (9.93 GHz).
However, the lower cut-off frequencies of the |S21| and |S24| remain unchanged. As
illustrated in Figure 8e,f, as the w increases from 5.9 to 6.9 mm, the lower cut-off frequency of
the |S21| (|S24|) decreases from 7.62 GHz (7.68 GHz) to 6.6 GHz (6.74 GHz). Nevertheless,
the lower cut-off frequencies of the |S21| and |S24| are almost unchanged. The rule of the
simulated S-parameters affected by h, hl, and w coincides well with the dispersion analysis
in Figure 2b–d. Thus, we can independently control the lower and upper cut-off frequencies
of the proposed FMT’s passband by tuning several structural parameters.
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Figure 8. Passband controllability analysis of the FMT. (a) |S11| and |S21| with different values
of h. (b) |S44| and |S24| with varying values of h. (c) |S11| and |S21| with different values of
hl. (d) |S44| and |S24| with varying values of hl. (e) |S11| and |S21| with different values of w.
(f) |S44| and |S24| with varying values of w.

Figure 9a,b demonstrate the configures of proposed FMT with three and four HMSIW-
SSPP unit cells in Part II, respectively. The perturbation vias are located in the middle of
Part II. Their simulated S-parameters of difference and sum ports driven are shown in
Figure 10a,b, respectively. The increase of the unit cells in Part II slightly improves the
selectivity and bandwidth of the FMT.
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5. Measurement and Discussion

To validate the above analysis, the FMT prototype with two-unit cells in Part II is
fabricated, and its photograph is displayed in Figure 11. Its dual-layer substrates are
fabricated separately using the printed circuit board (PCB) process. Then, seven screws
are utilized to fix the dual-layer substrates. The SMA connectors are welded to the four
MLs ports before testing by the Agilent Technologies E8363B network analyzer. Figure 12a
illustrates the simulated and measured S-parameters of the difference port driven. It
exhibits a measured 3-dB FBW of 40.23% from 6.95 to 10.45 GHz. In the passband, the
measured minimum insertion loss (IL) is 1.09 dB (excluding intrinsic 3 dB loss of the balun),
and the measured return loss (RL) is higher than 11.35 dB. In addition, its measured 20-dB
stopband rejection reaches 2.12 f 0.

Electronics 2022, 11, x FOR PEER REVIEW 9 of 14 
 

 

5. Measurement and Discussion 
To validate the above analysis, the FMT prototype with two-unit cells in Part II is 

fabricated, and its photograph is displayed in Figure 11. Its dual-layer substrates are fab-
ricated separately using the printed circuit board (PCB) process. Then, seven screws are 
utilized to fix the dual-layer substrates. The SMA connectors are welded to the four MLs 
ports before testing by the Agilent Technologies E8363B network analyzer. Figure 12a il-
lustrates the simulated and measured S-parameters of the difference port driven. It exhib-
its a measured 3-dB FBW of 40.23% from 6.95 to 10.45 GHz. In the passband, the measured 
minimum insertion loss (IL) is 1.09 dB (excluding intrinsic 3 dB loss of the balun), and the 
measured return loss (RL) is higher than 11.35 dB. In addition, its measured 20-dB stop-
band rejection reaches 2.12 f0. 

The simulated and measured S-parameters of the sum port driven are demonstrated 
in Figure 12b. As can be observed, it exhibits a 3-dB FBW of 38.96% from 7.11 to 10.55 
GHz, a minimum IL of 1.27 dB (excluding the 3-dB PD loss), and an RL of better than 15.01 
dB. It produces a wide stopband rejection of 20 dB up to 2.08 f0. The measured 3-dB FBW 
of the sum and difference ports driven are wider than their simulated ones, which are 
mainly caused by the air gap between the two layers of PCBs from machining and assem-
bling tolerance. Although three resonances at 11.78, 14.2, and 17.36 GHz and two reso-
nances at 13.15 and 17.09 GHz are observed in the stopband of the difference and sum 
ports driven, respectively, which radiate power to the space, their bandwidth is very nar-
row. They hardly affect the overall stopband performance of the FMT. 

 

 
Figure 11. Photograph of the proposed HMSIW-SSPP FMT. 

 
(a) 

Figure 11. Photograph of the proposed HMSIW-SSPP FMT.



Electronics 2022, 11, 2699 9 of 14

Electronics 2022, 11, x FOR PEER REVIEW 9 of 14 
 

 

5. Measurement and Discussion 
To validate the above analysis, the FMT prototype with two-unit cells in Part II is 

fabricated, and its photograph is displayed in Figure 11. Its dual-layer substrates are fab-
ricated separately using the printed circuit board (PCB) process. Then, seven screws are 
utilized to fix the dual-layer substrates. The SMA connectors are welded to the four MLs 
ports before testing by the Agilent Technologies E8363B network analyzer. Figure 12a il-
lustrates the simulated and measured S-parameters of the difference port driven. It exhib-
its a measured 3-dB FBW of 40.23% from 6.95 to 10.45 GHz. In the passband, the measured 
minimum insertion loss (IL) is 1.09 dB (excluding intrinsic 3 dB loss of the balun), and the 
measured return loss (RL) is higher than 11.35 dB. In addition, its measured 20-dB stop-
band rejection reaches 2.12 f0. 

The simulated and measured S-parameters of the sum port driven are demonstrated 
in Figure 12b. As can be observed, it exhibits a 3-dB FBW of 38.96% from 7.11 to 10.55 
GHz, a minimum IL of 1.27 dB (excluding the 3-dB PD loss), and an RL of better than 15.01 
dB. It produces a wide stopband rejection of 20 dB up to 2.08 f0. The measured 3-dB FBW 
of the sum and difference ports driven are wider than their simulated ones, which are 
mainly caused by the air gap between the two layers of PCBs from machining and assem-
bling tolerance. Although three resonances at 11.78, 14.2, and 17.36 GHz and two reso-
nances at 13.15 and 17.09 GHz are observed in the stopband of the difference and sum 
ports driven, respectively, which radiate power to the space, their bandwidth is very nar-
row. They hardly affect the overall stopband performance of the FMT. 

 

 
Figure 11. Photograph of the proposed HMSIW-SSPP FMT. 

 
(a) 

Electronics 2022, 11, x FOR PEER REVIEW 10 of 14 
 

 

 
(b) 

Figure 12. Simulated and measured results of the FMT. (a) |S11|,|S21|, and |S31|. (b) |S44|,|S24|, and 
|S34|. 

The isolation performances of the FMT are shown in Figure 13. In the operating band, 
the measured isolation between Ports 2 and 3 is >15.87 dB, and that between Ports 1 and 
4 is >27.17 dB. Moreover, the FMT’s simulated and measured balance performances are 
demonstrated in Figure 14. When the sum port is driven, the measured worst amplitude 
imbalance (AI) and phase imbalance (PI) between Ports 2 and 3 are 0.25 dB and 3.5°, re-
spectively. When the difference port is driven, the measured worst AI and PI between 
Ports 2 and 3 are 0.39 dB and 4.7°, respectively. The measured performance is in good 
consistency with the simulated ones. 

 
Figure 13. Simulated and measured isolation performances of the proposed FMT. 

Figure 12. Simulated and measured results of the FMT. (a) |S11|,|S21|, and |S31|. (b) |S44|,|S24|,
and |S34|.

The simulated and measured S-parameters of the sum port driven are demonstrated
in Figure 12b. As can be observed, it exhibits a 3-dB FBW of 38.96% from 7.11 to 10.55 GHz,
a minimum IL of 1.27 dB (excluding the 3-dB PD loss), and an RL of better than 15.01 dB.
It produces a wide stopband rejection of 20 dB up to 2.08 f 0. The measured 3-dB FBW of
the sum and difference ports driven are wider than their simulated ones, which are mainly
caused by the air gap between the two layers of PCBs from machining and assembling
tolerance. Although three resonances at 11.78, 14.2, and 17.36 GHz and two resonances at
13.15 and 17.09 GHz are observed in the stopband of the difference and sum ports driven,
respectively, which radiate power to the space, their bandwidth is very narrow. They hardly
affect the overall stopband performance of the FMT.

The isolation performances of the FMT are shown in Figure 13. In the operating band,
the measured isolation between Ports 2 and 3 is >15.87 dB, and that between Ports 1 and
4 is >27.17 dB. Moreover, the FMT’s simulated and measured balance performances are
demonstrated in Figure 14. When the sum port is driven, the measured worst amplitude
imbalance (AI) and phase imbalance (PI) between Ports 2 and 3 are 0.25 dB and 3.5◦,
respectively. When the difference port is driven, the measured worst AI and PI between
Ports 2 and 3 are 0.39 dB and 4.7◦, respectively. The measured performance is in good
consistency with the simulated ones.
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Figure 14. Simulated and measured balance performances of the FMT. (a) Amplitude imbalance.
(b) Phase difference.

Figure 15a,b show the simulated electric-field distributions of the proposed FMT at
various frequencies. When the difference port is driven, the two-channel reverse-phase
signals equally transmit to Ports 2 and 3 at 8.7 GHz because it operates within the dual
cut-off frequencies of the HMSIW-SSPP’s passband. The signals at 5.4 GHz and 11 GHz
are prohibited since they are below the HMSIW-SSPP’s lower cut-off frequency and above
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the HMSIW-SSPP’s upper one, respectively. On the other hand, the two-channel in-phase
signals are efficiently guided to the output ports in the passband (8.7 GHz) when the
sum port is driven. However, the signals operating at the out-of-band, such as 5.4 and
11 GHz, are blocked gradually. The simulated electric-field distributions in Figure 15a,b
exhibit a good consistency with the simulated S-parameters of the FMT shown in Figure 7.
Moreover, the simulated electric-field distributions of the HMT at 8.7 GHz are plotted in
Figure 16a,b. At 8.7 GHz, the FMT achieves a nearly 50% longitudinal size reduction and
higher electric-field constraints than the HMT, which verifies the propagation constant’s
properties of the HMSIW and DCLSG HMSIW-SSPP structure described in Figure 2a.
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Table 1. Comparisons with previously reported SIW magic-Ts and FMTs. 

Ref. 
f0 

(GHz) 
FBW 
(%) 

IL 
(dB) 

AI. (dB) 
/PI. (°) FR 

Rej. (dB) 
/S.B. (f0) 

Size 
(λg × λg) Tech. Type. 
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Table 1 compares our design with other reported SIW magic-Ts and FMTs. Com-
pared to the designs in [4,5], the proposed FMT realizes bandpass filtering response and
miniaturization attributed to the bandpass characteristic and SW effect of the HMSIW-
SSPP structure, and we can easily control the upper and lower cut-off frequencies of the
passband by altering the structural parameters. Moreover, compared to the reported state-
of-the-art FMT based on SIW technology [8–10,12–14,17], our proposed FMT exhibits the
unique advantages of the wide operating bandwidth and wide stopband performance
while maintaining a relatively compact size.
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Table 1. Comparisons with previously reported SIW magic-Ts and FMTs.

Ref. f 0
(GHz)

FBW
(%)

IL
(dB)

AI. (dB)
/PI. (◦) FR Rej. (dB)

/S.B. (f 0)
Size

(λg × λg) Tech. Type.

[4] 8.9 11.24 0.7 0.2/1.5 No - 3.98 × 2.46 SIW
[5] 14.5 17.93 0.43 0.23/1.5 No - 4.64 × 2.99 SIW
[8] * 24.1 8.59 2.24 0.25/6 Yes No. 1.19 × 1.26 LTCC
[8]
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6. Conclusions

This paper proposes a novel FMT based on the DCLSG HMSIW-SSPP structure for
the first time. First, the dispersion properties of the DCLSG HMSIW-SSPP unit cell were
investigated. The results show that the DCLSG HMSIW-SSPP structure has a >50% size
reduction than HMSIW and we can independently regulate its lower and upper cut-
off frequencies by changing structural dimensions. Then, an HMT based on dual-layer
substrates was designed, and the proposed FMT was constructed by inserting the DCLSG
SSPP structures into the HMT. The proposed FMT exhibits independently adjustable lower
and upper cut-off frequencies of the passband. Finally, a prototype of the proposed FMT
was fabricated to verify this design idea. The experimental results are in good consistency
with the simulated ones. Compared with SIW magic-Ts in [4,5] and FMTs in [8–10,12–14,17],
this design achieves the superiorities of compactness, wide filtering bandwidth, wide
stopband rejection, and ease to design. It could be a capable candidate for future wireless
communication systems.
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