
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or 
part of any of the repository collections is not permitted, except that material may be duplicated by you for 
your research use or educational purposes in electronic or print form. You must obtain permission for any 
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not 
an authorised user.

Shrestha, Raj; Leinonen, Juho; Zavgorodniaia, Albina; Hellas, Arto; Edwards, John
Pausing While Programming: Insights From Keystroke Analysis

Published in:
2022 IEEE/ACM 44th International Conference on Software Engineering: Software Engineering Education and
Training (ICSE-SEET)

DOI:
10.1109/ICSE-SEET55299.2022.9794163

Published: 13/06/2022

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY

Please cite the original version:
Shrestha, R., Leinonen, J., Zavgorodniaia, A., Hellas, A., & Edwards, J. (2022). Pausing While Programming:
Insights From Keystroke Analysis. In 2022 IEEE/ACM 44th International Conference on Software Engineering:
Software Engineering Education and Training (ICSE-SEET) (pp. 187-198). IEEE. https://doi.org/10.1109/ICSE-
SEET55299.2022.9794163

https://doi.org/10.1109/ICSE-SEET55299.2022.9794163
https://doi.org/10.1109/ICSE-SEET55299.2022.9794163
https://doi.org/10.1109/ICSE-SEET55299.2022.9794163


Pausing While Programming: Insights From Keystroke Analysis

Raj Shrestha
raj.shrestha@usu.edu

Utah State University

Logan, Utah

Juho Leinonen
juho.2.leinonen@aalto.fi

Aalto University

Espoo, Finland

Albina Zavgorodniaia
albina.zavgorodniaia@aalto.fi

Aalto University

Espoo, Finland

Arto Hellas
arto.hellas@aalto.fi

Aalto University

Espoo, Finland

John Edwards
john.edwards@usu.edu

Utah State University

Logan, Utah

ABSTRACT

Pauses in typing are generally considered to indicate cognitive pro-

cessing and so are of interest in educational contexts. While much

prior work has looked at typing behavior of Computer Science

students, this paper presents results of a study specifically on the

pausing behavior of students in Introductory Computer Program-

ming. We investigate the frequency of pauses of different lengths,

what last actions students take before pausing, and whether there is

a correlation between pause length and performance in the course.

We find evidence that frequency of pauses of all lengths is nega-

tively correlated with performance, and that, while some keystrokes

initiate pauses consistently across pause lengths, other keystrokes

more commonly initiate short or long pauses. Clustering analysis

discovers two groups of students, one that takes relatively fewer

mid-to-long pauses and performs better on exams than the other.

CCS CONCEPTS

• Social and professional topics→ Computing education.

KEYWORDS

pauses, pausing, breaks, keystroke data, digraphs, programming
process data
ACM Reference Format:

Raj Shrestha, Juho Leinonen, Albina Zavgorodniaia, Arto Hellas, and John 
Edwards. 2022. Pausing While Programming: Insights From Keystroke Anal-
ysis. In 44nd International Conference on Software Engineering: Software 
Engineering Education and Training (ICSE-SEET ’22), May 21–29, 2022, Pitts-
burgh, PA, USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/ 
3510456.3514146

1 INTRODUCTION

Pausing during work is a natural behaviour for a person which
allows them to reflect on their task, plan what they are going to do
next, revise, or take a rest. Pauses, however, can also be initiated
by distraction and lead to hindering one’s working process. In
this paper we aim to study pauses that students take while doing

This work is licensed under a Creative Commons Attribution International 4.0 
License.
ICSE-SEET ’22, May 21–29, 2022, Pittsburgh, PA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9225-9/22/05.
https://doi.org/10.1145/3510456.3514146

programming projects in Introductory Computer Programming

(CS1). In a typical CS1 course instructors and graders look at the

final program a student has produced for assessment, but there

is no indication from the code as to how the student wrote it. It

is possible that information on the number and types of pauses

students take could be mined to shed more light on processes that

underlie programming in CS1.

Since pauses can be products of various activities (e.g., thinking,

disengaged), we investigate whether pause lengthmay hold insights

into these activities. Our study features four types of pauses. Micro

pauses (2-15 seconds) which may indicate the student is thinking

about the code on a low level or “locally” (e.g. syntax). Short pauses

(15 seconds to 180 seconds) may indicate that the student is involved

in a higher-level process such as planning or revision. Mid pauses

(3-10 minutes) may indicate that the student is disengaged or that

they are going to an outside resource for help (e.g. YouTube, Stack

Overflow, or course materials). Finally, long pauses (greater than

10 minutes) may indicate disengagement from the task.

In this paper, we look at relative number of pauses over the course

and correlate with outcomes (exam score). That is, if a student takes

more or fewer pauses relative to their total number of keystrokes,

could it suggest their better or worse course performance? Many

pauses that are very small may indicate that the student is planning

their typing carefully rather than writing without a clear direc-

tion and may have a positive correlation with performance. Many

medium-sized pauses may indicate the same thing, but the mea-

surement may be confounded by students who are easily distracted.

Many long pauses may indicate distraction.

The research questions we investigate in this paper are:

RQ1 Is there a correlation between the relative number of pauses

a student takes and their performance (exam score)?

RQ2 What groups of students exist when clustering on pausing

behavior?

RQ3 What events initiate a pause and how does this correlate

with the performance of the student?

We seek to answer these research questions using analysis of

keystroke data collected in two CS1 courses at different universities

on different continents. The closest matches to our work come from

two different research streams. One of the research streams has stud-

ied syntax errors and identified pauses or breaks when correcting

such errors (e.g. [2, 10, 16, 30, 59]). The other research stream has

focused on the analysis of keystroke data, which has been shown

to be effective at gaining insights into student behavior [26, 32, 37]

187

2022 IEEE/ACM 44th International Conference on Software Engineering: Software Engineering Education and Training (ICSE-
SEET)

http://creativecommons.org/licenses/by/4.0/


as well as predicting student outcomes [19, 40, 55]. However, little

work exists at the intersection of these research streams, where

our work lies. The novelty of our analysis is that we are looking

less at typing behavior and more at pausing behavior, which might

indicate more or less of a student’s cognitive processing, examining

of external resources, or disengagement.

In this paper, we report on several findings: those students who

pause more often generally show worse performance in the course;

students who take more shorter pauses perform better than stu-

dents who take more longer pauses; mid pauses have the strongest

negative correlation with exam scores; specific events that precede

pauses have a more evident correlation with performance and thus

allow conjecture about the underlying processes.

2 RELATEDWORK

2.1 Pausing behavior

In the research literature, pauses are prevalently discussed in re-

lation to language production – written or oral speech/narration

[13, 21, 49], language translation [33] and editing [43]. Relying

on cognitive psychology, researchers associate pauses with cog-

nitive processing of various types [43]. For example, in writing,

it is thought that pauses at higher-level text units (e.g. between

sentences) are likely to be conditioned by higher-level subprocesses,

such as planning and organization of the content, whereas pauses

at lower-level units (e.g. between and inside words) – by lower-level

subprocesses, such as morphology encoding and retrieval of items

from one’s memory [54].

A pause is also considered to signify cognitive effort imposed by

language production mental processes [33, 34]. Butterworth [11]

hypothesised that the more cognitive operations are needed for

output production, the more pauses arise. Damian and Stadthagen-

Gonzalez [14] and Révész et al. [48] argued that the length of a

pause taken before a textual unit reflects the mental effort made

with respect to production of this forthcoming unit. Reflecting

on pausing in post-editing, O'Brien [43] concluded that pausing

patterns do, to an extent, indicate cognitive processing. However,

they are ultimately subject to individual differences.

Pausing has also gained attention in the medical training do-

main. Lee et al. [35] studied pauses and their relation to cogni-

tive load. Students had to complete a medical game that simulated

emergency medicine under two conditions: pause-available and

pause-unavailable. In the study, pauses of two types were identified:

reflection and relaxation. The first type is argued to enhance task-

related cognitive processes and therefore increase mental effort (or

cognitive load). The second type reflects the opposite process when

the load lowers due to the resting state.

That being said, pauses during problem-solving can signify not

only ongoing mental work but a suspension of it caused by various

things. Gould [23] defines three types of interruptions: those that

are relevant to the task and reinforce processes in the working

memory, those that are relevant to the task and interrupt processes

in the working memory, and those that are not relevant to the task.

The author states that how these interruptions affect the following

resumption and productivity depends on “contextual factors at the

moment of interruption”. Borst et al. [9] also relate the length of

interruption to the time of subsequent resumption and number of

possible errors in a task.

2.2 Pausing behavior in CER

Pausing behavior has been studied in Computing Education Re-

search (CER) both directly and indirectly in the context of computer

programming. Similar to written language, where pauses between

and within sentences are likely conditioned by different subpro-

cesses [54], code writing has its own milestones and units of differ-

ent level of complexity. When considering the mental effort needed

to write code, one stream of research has focused on identifying and

discussing plans and schemas for programming [15, 51]. It has been

suggested that programmers who know the solution to a problem

write their solution in a linear manner, while solving a new problem

is done using means-ends analysis with the use of existing related

schemas [15, 51]. Over time and through practice, accumulation

and evolution of schemas allow programmers to solve problems

more fluently, and also to learn to solve new problems with more

ease [51, 58].

As discussed in Section 2.1, pauses can signify cognitive effort

and are a natural part of the learning process. In programming

however, an additional contributor to pauses, especially for novice

programmers, are syntactic and semantic errors related to writing

computer programs with the chosen programming language. These

errorsmay be highlighted by the programming environment in use—

similar to a word processing engine that shows spelling errors—as

programming environments often highlight errors in program code,

but they may be also visible through specific actions such as compil-

ing the source code. These errors have been discussed especially in

the context of Java programming, where researchers have studied

the frequency of different types of errors [2, 10, 16, 30, 59] and the

amount of time that it takes to fix such errors [3, 16]. Denny et

al. [16] and Altamdri and Brown [2], for example, have noticed

that there are significant differences in the time that it takes to fix

specific errors, and that over time students learn to avoid specific

errors [2]. At the same time, the granularity of the data used in the

analysis has an influence on the observed errors [59] – different

data granularity will lead to different observed syntax errors. In

practice, collecting typing data with timestamps can provide more

insight into the programming process over snapshot or submission

data [60].

When considering syntax errors, pauses, and performance, the

ability to fix syntax errors between successive compilation events

has been linked with students’ performance in programming [31],

although it is unclear what the underlying factors that contribute

to the observation are [46]. Including an estimate on the amount

of time that individual students spend on fixing specific errors can

increase the predictive power of such models [1, 64], highlighting

the effect of time (or pause duration) on the learning process.

While the previous examples are specific to syntax errors and

time, little effort has been invested into looking into pauses in pro-

gramming. Perhaps the closest prior work to our work is that of

Leppänen et al. [41] who studied students’ pausing behavior in two

courses, and identified that a larger quantity of short (1-2 second)

pauses was positively correlated with course outcomes, while a

larger quantity of longer (over 1 minute) pauses was negatively

188



correlated with course outcomes. Our work builds on this by—in

addition to correlation analysis—looking at pausing behavior over

different contexts and also by investigating which characters pre-

cede pauses. Leppänen et al. hypothesized that one explanation for

the correlation between long pauses and poorer course outcomes

could be related to task switching between reading the course ma-

terials and solving the programming problems, but noted also that

the pauses from writing code could be construed as instances of the

student engaging in planning, reviewing, and translating the next

ideas into code. Another possible hypothesis is related to differences

in cognitive flexibility, i.e. the ability to fluently switch between two

tasks; for example, Leinikka et al. [36] observed that students with

better cognitive flexibility are faster at solving programming errors,

although they did not observe links between cognitive flexibility

and introductory programming course exam outcomes.

2.3 Typing and performance in programming

In CER, a multitude of data sources has been used for identification

of factors and behaviors that contribute to course outcomes [25]

– clicker-data [42, 47], programming process snapshots [1, 12, 31,

39, 64], background questionnaires and survey data [7, 8, 53, 57,

65], and so on, but our focus is on keystroke data collected from

programming environments [27, 28].

Keystroke data, or typing data, has been used, for example, for

predicting academic performance [19, 40, 55], for detecting emo-

tional states such as stress [20, 32], and for identifying possible

plagiarism [26].

Much of the analyses of typing data that relate to students’ per-

formance has focused on between-character latencies, i.e. the time

that it takes for the student to type two subsequent characters. This

analysis has often focused on small latencies, as pauses have been

considered as noise. For example, both Leinonen et al. [40] and

Edwards et al. [19] used 750 milliseconds as an upper boundary

for the between-character latencies. In general, these studies have

found that faster typing correlates with previous programming

experience and performance in the ongoing programming course.

Not all characters are equally important, however. For example,

Leinonen et al. [40] identified differences in the time that moving

from ‘i‘ to ‘+‘ took for novices andmore experienced students, while

differences in some other character pairs were more subtle. Simi-

larly, Thomas et al. [55] noted that the use of control functionality

(e.g. using control and C keys) in general was slower than the use

of e.g. alphanumeric keys, and the use of special keys such as delete

and space was also slower than alphanumeric keys. Acknowledging

that some of these latencies may be also influenced by the keyboard

layout, they hypothesised that some of the latencies may be influ-

enced by the thought processes related to the ongoing problem

solving [55]. Our work builds on this prior work by examining

which characters precede pauses, i.e. whether all characters are

equally important when analyzing pausing behavior.

3 METHODOLOGY

3.1 Context and data

Our study was conducted in two separate contexts for purposes of

generalization of the results.

3.1.1 University A. University A is a mid-sized public university

in the Western United States. In a 2019 CS1 course, students used

a custom, web-based Python IDE called Phanon [17] for their pro-

gramming projects. Phanon logged keystrokes and compile/run

events. Five programming projects, one per week, were assigned

to the students during the study period. Each project consisted of

two parts: a text-based mathematical or logical problem, such as

writing an interest calculator; and a turtle graphics-based portion

requiring students to draw a picture or animation, such as a snow-

man. A midterm exam was administered between the fourth and

fifth project. There were three sections of the course all taught by

the same instructor. Projects and instruction were the same for all

three sections. In-person instruction was conducted three times

per week. At the beginning of the semester students were given

the opportunity to opt into the study according to our Institutional

Review Board protocol, and this paper uses data only from students

who opted in. The course was identical for students who chose to

participate in the study and those who chose not to.

Gender information on participants was not collected, but in

the course participants were recruited from, 19% self-identified as

women and 81% self-identified as men. No information on previous

programming experience, race or ethnicity was available for this

study.

3.1.2 University B. University B is a research-oriented university

in Northern Europe. The data for this study was collected from a

7-week introductory programming course in the Fall of 2016. The

introductory programming course is given in Java and it covers

the basics of programming, including procedural programming,

object-oriented programming and functional programming. During

each week of the course, there was a 2-hour lecture that introduced

the core concepts of the week using live coding. The emphasis

in live coding was in providing examples of how programming

problems were solved with the concepts learned during the week,

and in helping to create a mental model of an abstraction of the

internals of the computer as programs are executed (introduction of

variables, changing variable values, objects, call stack in a line-by-

line fashion). In addition to the lectures, 25 hours of weekly support

was available in reserved computer labs with teaching assistants

and faculty.

The programming assignments in the course are completed us-

ing a desktop IDE accompanied with an automated assessment

plugin [61] that provides students feedback as they are working

on the course assignments. Combined with an automatic assess-

ment server, the plugin also provides functionality for sending

assignments for automatic assessment. In addition to the support

and assessment, the plugin collects keystroke data from the stu-

dents’ working process, which allows fine-grained plagiarism de-

tection [26] and makes it possible to provide more fine-grained

feedback on students’ progress. Students can opt out of the data

collection if they wish to do so; the data collection was conducted

according to the ethical protocols of the university.

Out of the 244 students at University B included in the study,

approximately 40% self-identified as women and 60% as men. No

information on previous programming experience nor race or eth-

nicity was available for this study.

189



Attribute University A University B

Instruction Lectures w/sections Lectures, sessions

Language (prog.) Python Java

Language (inst.) English Finnish

Participants 231 244

Prog. Environment Web-based Desktop

Table 1: Summary of contexts.

Similar to the University A, University B had a midterm exam in

the course. For the analyses conducted in this article, we focus on

students’ performance in the midterm examination. The contexts

are summarized in Table 1.

3.2 Event and pause categories

Keystroke data was collected in both contexts. In the analysis, every

keystroke of a student was categorized to an event. We consider

eight event categories: (1) Alphanumeric keystroke, (2) Delete key-

stroke, (3) Return keystroke, (4) Spacebar keystroke, (5) Special

character keystroke, (6) Tab keystroke, (7) Successful compile/run,

and (8) Failed compile/run. Since the US context uses Python, in

this paper we will call a compile/run event a “Run”. The reasoning

behind these categories is that they represent different tasks of

the student: Alphanumeric events represent typing, Delete events

indicate the student is preparing to make a correction, Run events

represent a completion point where the student is ready to test the

code, etc. The European context does not have information on tabs

or the status of run events, so analyses relating to the status of run

events or tabs will only use data from the US context.

For the analysis of pauses, we chose to use four types of pauses.

While pausing analyses in the context of programming have been

exploratory [41], research in pausing in language production varies

in terms of pause thresholds. A lower bound of 1-2 seconds appears

to be the most common [5, 44, 62], and thus, we adopted a 2-second

lower bound for our study. Taking into account research onworking

(short-term) memory time capacity [50], a meaningful upper bound

is at 15 seconds – pauses between 2 and 15 seconds may reflect

thinking about the code on a low, “local” level, including thinking

about the syntax, and could be tied to working memory. We call

these pauses micro pauses.

Short pauses may reflect higher-level processing like planning

the following code segment, setting the next sub-goal, and revising

code similar to the production stage of written language or some

kind of distraction. We chose 180 seconds to be the upper bound

for short pauses.

Mid pauses, up to 10 minutes, may reflect voluntary or problem-

solving related breaks. We hypothesise that students who have

difficulties may consult learning materials or visit other resources

in search for help or for refreshing their memory. Such a contin-

uous pause would cause longer task resumption [9]. Finally, long

pauses, greater than 10 minutes, are most likely to stand for task

disengagement as noted by prior work [38]. We expect such pauses

to take place after finished code segments or compilation.

For simplicity, we also refer to pauses initiated by a certain event

type using the name of the event type. For example, a delete pause

events/ pauses/

Context Students student student

Python (US) 231 25186 ± 11243 2183 ± 1009

Java (Europe) 244 54698 ± 25538 6774 ± 3189

Table 2: Descriptive statistics of the study.

is a pause initiated by the student pressing the delete key; the last

event before a failed run pause is a failed run event. Pauses preceded

by other event types are named similarly.

Because of data availability, we use a single measure of outcome

– exam score. In the US context we use the score of a exam that falls

just before the last project in the study. In the European context, we

use the exam score from the first out of three programming exams.

The first exam was organized on the third week of the seven-week

course.

3.3 Statistical tests

We report 𝑝 values of all statistical significance tests, of which

there are 95. We follow the American Statistical Association’s

recommendations to use 𝑝 values as one piece of evidence of

significance, to be used in context [63], though we do suggest

𝑝 < 0.05/95 ≈ 0.0005 = 5𝑒−4 as a reasonable guideline for credible
𝑝 values [24]. When considering the claims in our work, we suggest

taking into account the additional supports beyond single p-values.

For example, claiming that delete pauses are negatively correlated

with exam score is based on consistent negative correlation across

pause types in both studied contexts. For distribution comparisons

we use the t-test (as the data appears normal) with Cohen’s 𝑑 effect
sizes and for correlation we use the Pearson 𝑟 statistic.

4 RESULTS

4.1 Descriptive statistics

Table 2 shows descriptive statistics of our study and Figure 1 shows

the distribution of event types for each of the two contexts. Al-

phanumeric keystrokes are the most common event, with space

(spacebar) and special characters also being common. Run events

and the tab keystroke are less common. Both contexts use an edi-

tor that automatically indents the next line of code after a return

key press, which likely contributes to the observed lack of tab

keystrokes.

A difference between the contexts is the relative frequency of

run events – students in the Java context run their code far more

often than those in the Python context. This is likely not due to

the language, but the way the courses are organized. In the Python

context, students had one large assignment due each week, while

Java students had tens of smaller assignments due each week. We

conjecture that the smaller assignments induced the students to

run/compile their code more often.

4.2 Frequency of pauses

We calculated a measure of pause frequency as
𝑝𝑙
𝑛 where 𝑝𝑙 is

the number of pauses of length 𝑙 and 𝑛 is the total number of

events. In the Python context, on average, student pause frequency

190



(a) US/Python (b) European/Java

Figure 1: Log-scale bar chart showing the total number of

events for each type. (a) Number of events in the US/Python

context. (b) Number of events in the European/Java context.

is 0.09 ± 0.02, meaning, on average, students execute 11 events
before pausing for two seconds or more. Most pauses are micro

pauses, which have a frequency of 0.07, followed by short, mid, and

long pauses with frequencies of 0.02, 0.001, and 0.001, respectively.
The Java context was somewhat different: on average, student

pause frequency is 0.13 ± 0.03, meaning, on average, students exe-
cute 8 events before pausing for two seconds or more. Most pauses

aremicro pauses, which have a frequency of 0.09, followed by short,
mid, and long pauses with frequencies of 0.03, 0.002, and 0.001,
respectively.

As might be expected, Figure 2 shows a negative correlation

between pause frequency and exam score, meaning students who

are pausing more often are performing worse on the exams. In

the Python context, this correlation is consistent across micro (𝑟 =
−0.30, 𝑝 = 3.16e-6), short (𝑟 = −0.35, 𝑝 = 5.57e-8), and mid (𝑟 =
−0.38, 𝑝 = 3.71e-9) pause lengths, with a weaker correlation for long
(𝑟 = −0.18, 𝑝 = 0.0061) pauses. The Java context, in contrast, has a
weaker correlation for the micro pause (𝑟 = −0.11, 𝑝 = 0.0654) than
for the short (𝑟 = −0.20, 𝑝 = 0.0013), mid (𝑟 = −0.23, 𝑝 = 0.0003), or
long (𝑟 = −0.22, 𝑝 = 0.0006) pauses. In general, the correlations for
the Python context are stronger than for the Java context, although

as seen in Figure 2, the Java context has a noticeable ceiling effect

in the exam.

Figure 3 shows correlations between the number of different

type of pauses that students take, i.e., whether students who are

pausing for short amounts of time are also taking longer pauses.

All types of pauses are at least moderately correlated with all other

types of pauses (see Figure 4). Interestingly, the correlations weaken

as the pause lengths grow for the Python context, while the Java

context shows a strong correlation for the mid/long pause pair.

4.3 Student types

To characterize students, we represent each student using a vector

that contains the relative proportions of each pause type. For exam-

ple, a student represented with a vector [0.80, 0.15, 0.03, 0.02] has
80% micro pauses, 15% short pauses, 3% mid pauses, and 2% long

pauses. Since the vector is a partition of unity, the feature vector

has only three degrees of freedom, though, for clarity, we represent

it here with all four coordinates.

To identify student types based on the vector representations,

we use 𝑘-means clustering to cluster students into student types.
Using the elbow method (visually finding the “elbow” of a line chart

of number of clusters against explained variance [56]) to identify a

good number of clusters, we chose 𝑘 = 2 for interpretability, though,

as we will see in Section 5.2, the choice of 𝑘 is not particularly

important in this case.

We see in Table 3 and Figure 5 that one group of students in

each context took relatively more short, mid, and long pauses than

the other group, although in the Java context, the difference is

less pronounced. We call the clusters the longer pause and shorter

pause groups, respectively. When examining the groups and exam

scores, we observe that the students in the shorter pause group had

higher exam scores than those students who took longer pauses.

The distributions of pause frequencies are approximately normal

and t-tests suggest that there is a difference between short,mid, and

long distributions.

4.4 Initiating pauses

In Figure 6 we see relative frequencies of event types by pause

length. We define relative frequency for an event type E as the per-

centage of pauses of a given length initiated by an event of type E.

For example, in Figure 6 we see that in the Python context, alphanu-

meric keystrokes initiate 27% of all micro pauses (2-15 seconds) and

15% of long pauses (> 10 minutes) while accounting for 57% of all

events, regardless of whether the events initiated a pause or not. In

the Java context, the distribution related to alphanumeric events

that start a pause is very similar. Roughly 29% of micro pauses and

18% of long pauses are initiated by the events while they account

for 28% of all events.

Certain types of events in both contexts decrease in frequency

with increasing pause length. Alphanumeric, return, space and spe-

cial characters seem to follow this trend preceding to a greater

extent shorter pauses.

In Table 4 we see that alphanumeric events initializing micro

pauses have a positive correlation with exam score, but that the

correlation weakens until it is not detectable for long pauses. Con-

versely, pausing after special characters is not necessarily correlated

with success. In fact, a weak negative correlation exists with special

characters initializing micro pauses.

In the Python context, the percentage of pauses preceded by the

delete, return, and space keystroke events remains roughly the same

across pause lengths (Figure 6). The return keystroke is unique

among the three in that, despite being so infrequent in the data, it

precedes so many pauses (11-13%). This tendency does not repeat

in case of delete and space events.

In the Java context, the situation is different. Return and space

events show steady decline in percentages of preceding pauses. The

longer the pause, the less common it is for those event to precede it.

The opposite applies to the delete events. This could be accounted

for differences in programming languages and their relations to

students’ native languages [18]. Even though the deleting behaviour

differs across the contexts, correlation of most delete pauses with

exam scores remains negative in both cases.

191



(a) US/Python

(b) European/Java

Figure 2: Frequency of the different type of pause correlated with exam score. Frequency is calculated as number of pauses

divided by total number of events.

(a) US/Python (b) European/Java

Figure 3: Correlations of total pauses with each other per student. As expected, the number ofmicro pauses a student takes has

a strong positive correlation with the number of short pauses. While there are still strong and medium correlations between

shorter and longer pauses, the correlations become weaker.

192



Centroid Average Average Average

Context Cluster Micro Short Mid Long Students keystrokes ×104 pauses ×103 exam

Python (US) shorter 0.81 0.17 0.010 0.0060 71% (164) 2.6 ± 1.1 2.3 ± 1.0 80.2 ± 11.3
Python (US) longer 0.75 0.23 0.016 0.0077 29% (67) 2.4 ± 1.3 2.1 ± 1.1 76.2 ± 11.5

Java (Europe) shorter 0.79 0.20 0.01 0.01 57% (139) 5.2 ± 2.1 6.2 ± 2.8 9.59 ± 0.90
Java (Europe) longer 0.72 0.26 0.01 0.01 43% (105) 5.8 ± 3.0 7.6 ± 3.5 9.35 ± 0.88

Table 3: Statistics of the clusters for the two contexts, US and European. For the Cluster column, “shorter” means “shorter

pause” and similar with longer. A t-test for the two distributions of exam scores yields (𝑡 = 2.2, 𝑝 = 0.026, 𝑑 = 0.35) in the US

context and (𝑡 = 2.1, 𝑝 = 0.034, 𝑑 = 0.28) in the European context.

(a) US/Python (b) European/Java

Figure 4: Similar to Fig. 3, this figure shows correlation coef-

ficients for the different pause lengths.

Both successful and failed run attempts have disproportionate

prominence among events preceding pauses relative to their overall

frequency.

5 DISCUSSION

5.1 Frequency of pauses

Before answering the first research question, Is there a correlation

between the relative number of pauses a student takes and their per-

formance (exam score)?, we checked whether our bucketing was

sensible by performing a correlation test. As we can see from Figs. 3

and 4, there are correlations between all types of pauses which is

not surprising since the pauses lengths are on the time continuum.

However, neighbouring types of pauses do not show a very high

degree of similarity, which justifies our choice. Moreover, micro

and short pauses, having the highest correlation coefficient, yield

quite different correlation coefficients in terms of relationships with

exam scores (see Figure 2).

In general, we observe that students who pause more often per-

form more poorly on exams (Figure 2), which is in line with the

results observed by Leppänen et al. [41]. This effect is not large,

but it is consistent across pause types and contexts. We note that

this measurement is frequency of pauses, so it is normalized across

students regardless of the number of total events they execute. In

this paper we do not make any claims regarding what students were

doing during their pauses, whether they were thinking, drawing on

other resources, or disengaged. But the correlations in our data in-

dicate that regardless of pause activity, pauses correlate negatively

with exam score, at least in the aggregate. We note that certain ac-

tivities may not cause negative correlation with achievement, but it

appears that these activities are in the minority and are dominated

by negative-effect activities.

Frequency ofmid pauses (3-10minutes) in both contexts have the

strongest negative correlationwith exam score of all the pause types.

Comparing to the long pause which does not have an upper bound,

it is clear that after at most 10-minutes long mid pause students

get back to typing. We conjecture that mid pause may be the most

harmful because it potentially can cause the longest resumption. If

the activity taking place during the pause is not related to the task,

the pause may be treated as irrelevant interruption [23]. According

to Altmann and Trafton [4] and many others (for example, see

[6, 22, 29]), the length of interruption correlates with the time of

task resumption and numbers of possible errors.

5.2 Student types

Our second research question is:What groups of students exist when

clustering on pausing behavior? We clustered students into two

types, longer pause students and shorter pause students. Shorter

pause group tends to take proportionallymoremicro pauses, whereas

longer pause students take fewer micro but more of short, mid, and

long pauses. The shorter pause students appear to perform better in

the exam in the both contexts.

In a sense, grouping students into clusters is arbitrary: Figure 2

shows that pauses of all lengths are negatively correlated with

exam score, indicating that the 4-dimensional feature vectors are

not linearly independent, effectively making our clustering single-

dimensional and not particularly interesting regardless of choice

of 𝑘 . Nevertheless, the analysis reveals one difference between the
contexts that may be of interest: in Table 3, we see that more events

correspond to more pauses across the contexts. However, groups

which produce more events are not the same. In the US/Python con-

text, the shorter pause group tends to type and pause more, whereas

in the European/Java context the opposite applies. Additionally,

proportions of pauses in the US/Python context remain roughly

consistent across the groups and equal to 0.09 and in the Euro-
pean/Java context similarly, being 0.12 and 0.13. This observation
could be due to a number of context-specific factors, such as the

way how each context uses programming assignments.

5.3 How pauses are initiated

Our third research question is: What events initiate a pause and

how does this correlate with the performance of the student? The

first thing to note is that the distributions of event types, for each

193



(a) US/Python

(b) European/Java

Figure 5: Clustering. In the Python context, t-test statistics (𝑡, 𝑝) and effect sizes (𝑑) between the two distributions are: Micro

(𝑡 = 1.5, 𝑝 = 0.12, 𝑑 = 0.23), Short (𝑡 = −6.9, 𝑝 = 3.6𝑒−11, 𝑑 = −1.01), Mid (𝑡 = −6.4, 𝑝 = 8.4𝑒−10, 𝑑 = −0.93), and Long (𝑡 =
−3.2, 𝑝 = 0.0014, 𝑑 = −0.47). In the Java context, t-test statistics (𝑡, 𝑝) and effect sizes (𝑑) between the two distributions are:

Micro (𝑡 = 1.7, 𝑝 = 0.08, 𝑑 = −0.22), Short (𝑡 = −10.8, 𝑝 = 2.4𝑒−22, 𝑑 = −1.35), Mid (𝑡 = −9.3, 𝑝 = 1.1𝑒−17, 𝑑 = −1.15), and Long

(𝑡 = 2.1, 𝑝 = 2.6𝑒−9, 𝑑 = −0.77).

Pause Enter Alphanum Delete Special Space Tab (Success) run Fail run
length 𝑟 𝑝 𝑟 𝑝 𝑟 𝑝 𝑟 𝑝 𝑟 𝑝 𝑟 𝑝 𝑟 𝑝 𝑟 𝑝

P
y
th
o
n

Micro 0.27 1e–5 0.28 1e–5 –0.33 1e–7 –0.23 4e–4 0.21 0.001 0.058 0.41 –0.17 0.015 –0.38 1e–7
Short 0.11 0.1 0.19 0.004 –0.245 1e–4 0.01 0.81 0.19 3e–3 0.062 0.42 –0.05 0.45 –0.38 1e–7
Mid 0.076 0.29 0.14 0.04 –0.13 0.05 0.13 0.07 0.14 0.08 0.22 0.23 –0.007 0.91 –0.22 8e–4
Long –0.022 0.80 0.005 0.95 –0.12 0.11 –0.03 0.74 0.037 0.73 0.13 0.57 0.067 0.32 –0.06 0.37
All 0.2687 3e–5 0.29 5e–6 –0.36 1e–6 –0.20 0.002 0.22 5e–4 0.073 0.30 –0.13 0.04 –0.43 1e–6

Ja
v
a

Micro 0.18 4e–3 0.31 0.0 –0.20 9e–4 –0.18 3e–3 –0.029 0.64 –0.034 0.58
Short –0.012 0.84 0.21 5e–4 –0.16 0.010 0.055 0.36 0.021 0.73 –0.024 0.69
Mid -0.028 0.66 0.23 2e–4 –0.23 2e–4 0.023 0.72 0.034 0.60 0.079 0.19
Long –0.012 0.86 0.033 0.62 0.067 0.28 –0.24 2e–4 0.014 0.86 0.070 0.25
All 0.082 0.18 0.23 1e–4 –0.24 1e–4 0.21 5e–4 0.12 0.042 –0.088 0.15

Table 4: Pearson 𝑟 correlations with 𝑝 values between a student’s tendency to initiate a given length of pause with a given event

type and exam score. “All” indicates percentage across all events (both those initiating pauses and not). We do not have data

on tabs or whether a run was successful or not in the Java context, so tab values are not included for the Java context and the

(Success) run column should be interpreted as a successful run for the Python context and all runs for the Java context.

of the four pause lengths, do not match the overall distribution

of events (Figure 6). This confirms, as one might expect, that, in

general, students are not pausing at arbitrary times, meaning that

pauses are generally purposeful and not taken at random times

while typing.

5.3.1 Deletes and failed runs. There is some abruptness regarding

what initiates a long pause. Long pauses, those of 10 minutes or

more, may indicate that the student is disengaged from working on

the project [38]. One would expect the most natural way to take

a break would be a successful run. Yet, in the Python context, only

30% of long pauses are initiated as such. Another intuitive, natural

break would be a failed run, as the student might need a break or

an extended session of reviewing external materials after a failure.

Yet failed runs account for only 4% of long pauses. This means

that 66% of long pauses are initiated with a keystroke. The most

common event for long pauses, the delete keystroke, initiates 25%

194



(a) US/Python (b) European/Java

Figure 6: Grouped bar chart showing normalized/relative

frequencies of keystrokes by pause length. “All” are all

events, whether they precede a pause or not.

of the pauses. The Java context is similar, with 22% of long pauses

initiated by delete. This seems remarkable. A delete press often

indicates an error and so, after the delete press, the student needs to

execute keystrokes to replace the incorrect code. At times, however,

students are taking a break instead of completing the correction. If

this happens it could indicate that the student may lack motivation,

diligence, or the corrective know-how without consulting external

help. Other types of pauses were also rather often preceded by a

delete event (26-27%). From Table 4, we can see that the correlations

of the exam score with such pauses are negative. This may signify

that deletes are used less often for removing unneeded code (e.g.,

print statements or comments) and more often when students are

confused and do not know how to proceed. This same reasoning

could be used to explain the negative correlation of failed runs

initiating pauses, i.e., that an extended pause after a failed run

indicates the student does not know how to fix the problem and has

to take time to either consult other materials or take a break. Indeed,

the correlations of failed runs with exam score closely mirror those

of delete key presses.

One could suggest that the consistent negative correlations of

delete and failed run events initiating pauses with exam score simply

reflect the overall correlation of these event types with exam score.

We note, however, that distributions of the two events are different

and they demonstrate different degree of involvement in a long

pause initiation. While deletes, constituting 20%/24% of all events

and preceding 25%/22% of long pauses, failed runs account for only

0.5% of all events but precede 4% of long pauses. Thereby, it is six

times more likely that failed run event will initiate a long pause than

a delete keystroke. A plausible interpretation of this observation

is that students are deliberately pausing after failed runs, at least

more often than after deletes.

5.3.2 Events decreasing in frequency with pause length. Alphanu-

meric keystrokes are what we might call “middle” events – they

are the most common while being somewhat less significant in

terms of reflecting thinking processes. The fact that the frequency

of alphanumeric events preceding a pause decreases with increasing

pause length as much as it does (Figure 6) suggests that students

are completing their lower-level processing thoughts before taking

longer breaks. Indeed, it appears that students are deliberate in

taking longer breaks rather than getting interrupted, as would be

the case if alphanumeric pauses were more common.

In Python, statements generally do not end with a special char-

acter as they do in Java (e.g. semicolon for a single-line statement

and closing brace for a block). So it is not surprising that pauses

initiated by special characters decrease in frequency with increasing

pause length in the Python context. What is surprising, however, is

that the Java context has a very similar phenomenon. We expected

longer pauses to be frequently initiated by special characters in

the Java context, as ending a line with a semicolon seems like a

natural stopping point. We do not know why this is not the case,

but we suspect that this is, again, a consequence of the difference in

instructional methods between the two contexts. The Java students

work on smaller projects and run more often, and so they may be

more likely to complete their thought or work session with a run

event.

In Table 4 we see that, in both the Python and Java contexts,

alphanumeric micro pauses are positively correlated with exam

score while special character micro pauses are negatively correlated.

As these two event types behave similarly in other respects, we

discuss a possible explanation for this difference. Roughly half of

special characters require further processing: an open parenthesis

expects formal parameters for a function call; quotes expect a string;

an open bracket expects list/array indices; etc. It may be that amicro

pause, which may last as many as 15 seconds, indicates student

hesitancy and lack of fluency with Python or Java syntax. This

lack of fluency with a fundamental aspect of programming may

be why the student exam scores are lower. Problems with special

characters being indicative of struggling has been hypothesized also

in previous work [19, 40]. If special character pauses do indicate an

uncertainty with syntax then instructors may consider an increased

focus on syntax fluency for students initiating pauses with special

characters.

5.3.3 Events constant across pause length. In the Python context,

the percentage of pauses initiated by the return event remains

roughly the same across pause lengths (Figure 6). This makes sense

in the context of both shorter and longer pauses: pressing return

requires short-term planning for the next line, so its prevalence

among micro and short pauses is logical; pressing return is also

a natural stopping point before taking a break, so it is frequent

among mid and long pauses. Being every 33rd event in the Python

data and every 7th in Java data, return initiates approximately 12%

of any type pauses in the Python context and as much as 12-24% of

of any type pauses in the Java context. This seems to confirm the

return keypress being a natural stopping point.

5.3.4 Run events. Being rather rare in the typing data in both

contexts, run events are notably evident among events preceding

pauses, especially short, mid and long. This is not unexpected: it

would be highly unusual for a run event to take fewer than two

seconds, so the great majority of run events would precede at least

a micro pause. A large proportion of long pauses are initiated by

successful runs in the Python context and runs in the Java context. It

195



is instructive to consider why students would pause after a success-

ful run. It is possible that a student takes a pause to consult external

resources (e.g., internet, textbook, another person) regarding how

to proceed with their program, but it seems more likely that the stu-

dent would have at least an idea of what to do next after a successful

run. Therefore, we suggest that the more likely scenario is that the

student is instead disengaging from working on their assignment.

If this is the case, then we could possibly use the percentage of

successful run long pauses in the Python context as a lower bound

for the number of long pauses in which students are disengaging. In

our data, this indicates that students are disengaging during at least

30% (roughly) of long pauses. We expect that this is a conservative

lower bound.

5.4 Threats to validity

Internal validity. As is natural in educational studies, our study

comes with an inherent self-selection bias. It is possible that the

way the studied courses were organized and the way the student

population at both universities is formed influences the observed

outcomes. It is unclear, for example, whether similar results would

be observed if the study would have been conducted in the context

of primary or secondary education, or in life-long learning. When

considering the outcome of the courses, we used exam score as a

proxy for performance, which can be affected by factors such as

exam stress. In addition, the European/Java context had a noticeable

ceiling effect in the exam outcomes. It is possible that this also

influenced some of our findings and that lifting the ceiling effect

would affect the correlations.

External validity. We studied keystrokes in two contexts to in-

crease the degree to which our findings can be generalized to other

contexts (see Section 3.1). The strength of the correlations and the 𝑝
values varied somewhat between the contexts and we cannot state

which context-specific factors contributed to the differences.

6 CONCLUSIONS

In this article, we presented an analysis of keystrokes with an

eye toward understanding pausing behavior of CS1 students and

its implications on academic outcomes. In this section we draw

conclusions from our results in each of our three research questions.

RQ1 Is there a correlation between the relative number of pauses

a student takes and their performance (exam score)? We observe that

negative correlations between pause frequency and exam score

exist as illustrated in Fig. 2. The most illustrative is the frequency of

mid pauses – those of length 3-10 minutes. We suggest that these

pauses indicate that a student may be distracted easily, but it could

also indicate students who are spending time using external re-

sources for help on their projects. Révész et al. [48] suggests, since

keystroke logs alone do not allow us to “make inferences about

the specific cognitive processes that underlie pausing behaviors”,

that combining event logs with “other techniques such as verbal

reports and eyetracking” could be helpful in obtaining more de-

tailed information. Further study could help us understand what

these students are doing during pauses and what they were work-

ing on when they paused. But in the meantime, the pause/exam

score correlation appears actionable. We suggest that a tool that

allows practitioners to visualize students’ pausing behavior could

be particularly useful. In addition, as previous studies that have

used keystroke data for predicting course outcomes have mainly

focused on latencies smaller than 750ms [19, 40], future research

should seek to combine such keystroke data with pausing data and

study whether these phenomena have the same underlying tacit

factors.

RQ2What groups of students exist when clustering on pausing be-

havior? We found in a cluster analysis that students whose pausing

behavior tended toward short pauses performed better in general

on exams. The cluster analysis primarily indicated a correlation

between typical pause length for a student and exam score. When

considering the identified student types in the light of CER studies

that have identified student types such as the tinkerers, stoppers,

and movers [30, 45], most of the students in the studied contexts

could be categorized as movers, despite the differences in their

pausing behavior. As pausing is linked with cognition and thought

processes, and as writing code is linked with a multitude of factors

including understanding syntax and the given problem [52, 66],

further research is needed to understand the lack of stopping and

the differences in pausing.

RQ3 What events initiate a pause and how does this correlate

with the performance of the student? We have presented evidence

that pauses do not occur randomly while a student is program-

ming – students tend to finish their thoughts and pause after a

natural stopping point. This observation is in line with the studies

on student cognition and programming and how students solve

programming problems [15, 51], where students write constructs

informed by schemas that engage procedural memory. Fully 25%

(Python) and 22% (Java) of long pauses (>10 minutes) are initiated
by delete events. We suggest that students who pause after delete are

possibly less engaged (taking a break instead of writing the code to

replace the deleted characters) or they lack the knowledge to write

a fix (consulting external resources to learn how to fix the problem).

This presents interesting questions for future research, such as what

percentage of delete pauses indicate a disengaged student. Beyond

identification of at-risk students, the negative correlations of special

character and failed compile pauses suggest possible pedagogical

and material innovations to improve student fluency after special

characters and minimize the number of failed runs.

In addition to the directions for future research discussed above,

there are additional avenues for further research. As an example,

while previous research in syntax errors has noted that there are

differences in the time that it takes to fix syntax errors [2, 16], our

study highlights that pause durations are related to the pressed

keys. Combining information on present syntax errors (or the lack

of them) with information on pauses could create more in-depth

understanding of students knowledge and actions – for example,

pauses preceded by a syntax error likely indicates different thought

processes than pauses not preceded by a syntax error. Similarly,

looking at what syntactic construct was just typed or is being typed

could affect pausing behavior. While our definitions of pauses were

based on related literature (e.g., [41]), future work could explore al-

ternative bins, including higher resolution bins for the micro pause,

which spans lengths from 2 to 15 seconds in the work reported

in this paper. Language specific differences should also be stud-

ied further – as an example, we noted that in the European/Java

context students took a micro pause on average after 8 keystrokes,

196



while students in the US/Python context took a micro pause on

average after 11 keystrokes. It would be meaningful to understand

where this difference stems from. If it is simply the language, then

one possible implication is that the relative verbosity of Java when

compared to Python would not only require the students to type

more, but also to pause to think more. On the other hand, if it is

a product of a contextual factor, then it could be something that

could be sought to disseminate to other contexts as well. Future

studies could also focus on differences between the beginning and

end of the course to see if programming behavior changes with

experience.

REFERENCES
[1] Alireza Ahadi, Raymond Lister, Heikki Haapala, and Arto Vihavainen. 2015.

Exploring machine learning methods to automatically identify students in need
of assistance. In Proceedings of the eleventh annual international conference on
international computing education research. 121–130.

[2] Amjad Altadmri and Neil C.C. Brown. 2015. 37 Million Compilations: Investigat-
ing Novice Programming Mistakes in Large-Scale Student Data. In Proceedings of
the 46th ACM Technical Symposium on Computer Science Education (Kansas City,
Missouri, USA) (SIGCSE ’15). Association for Computing Machinery, New York,
NY, USA, 522–527. https://doi.org/10.1145/2676723.2677258

[3] Amjad Altadmri, Michael Kolling, and Neil CC Brown. 2016. The cost of syntax
and how to avoid it: Text versus frame-based editing. In 2016 IEEE 40th Annual
Computer Software and Applications Conference (COMPSAC). IEEE, 748–753.

[4] Erik M Altmann and J Gregory Trafton. 2007. Timecourse of recovery from
task interruption: Data and a model. Psychonomic Bulletin & Review 14, 6 (2007),
1079–1084.

[5] Rui AAlves, São Luís Castro, Liliana de Sousa, and Sven Strömqvist. 2007. Chapter
4: Influence of Typing Skill on Pause–Execution Cycles in Written Composition.
InWriting and Cognition. BRILL, 55–65.

[6] Mark B. Edwards and Scott D Gronlund. 1998. Task interruption and its effects
on memory. Memory 6, 6 (1998), 665–687.

[7] Jens Bennedsen andMichael E Caspersen. 2006. Abstraction ability as an indicator
of success for learning object-oriented programming? ACM Sigcse Bulletin 38, 2
(2006), 39–43.

[8] Susan Bergin and Ronan Reilly. 2005. Programming: factors that influence
success. In Proceedings of the 36th SIGCSE technical symposium on Computer
science education. 411–415.

[9] Jelmer P Borst, Niels A Taatgen, and Hedderik van Rijn. 2015. What makes
interruptions disruptive?: A process-model account of the effects of the problem
state bottleneck on task interruption and resumption. In Proceedings of the 33rd
annual ACM conference on human factors in computing systems. ACM, 2971–2980.

[10] Neil Christopher Charles Brown, Michael Kölling, Davin McCall, and Ian Utting.
2014. Blackbox: a large scale repository of novice programmers’ activity. In
Proceedings of the 45th ACM technical symposium on Computer science education.
ACM, 223–228.

[11] Brian L. Butterworth. 1980. Evidence from pauses in speech. New York: Academic
Press.

[12] Adam S Carter, Christopher D Hundhausen, and Olusola Adesope. 2015. The nor-
malized programming state model: Predicting student performance in computing
courses based on programming behavior. In Proceedings of the eleventh annual
international conference on international computing education research. 141–150.

[13] Jasone Cenoz. 2000. Pauses and hesitation phenomena in second language
production. ITL - International Journal of Applied Linguistics 127-128 (Jan. 2000),
53–69.

[14] Markus F Damian and Hans Stadthagen-Gonzalez. 2009. Advance planning of
form properties in the written production of single and multiple words. Language
and Cognitive Processes 24, 4 (2009), 555–579.

[15] Simon P Davies. 1991. The role of notation and knowledge representation in the
determination of programming strategy: a framework for integrating models of
programming behavior. Cognitive Science 15, 4 (1991), 547–572.

[16] Paul Denny, Andrew Luxton-Reilly, and Ewan Tempero. 2012. All Syntax Errors
Are Not Equal. In Proceedings of the 17th ACM Annual Conference on Innovation
and Technology in Computer Science Education (Haifa, Israel) (ITiCSE ’12). ACM,
New York, NY, USA, 75–80. https://doi.org/10.1145/2325296.2325318

[17] John Edwards, Joseph Ditton, Dragan Trninic, Hillary Swanson, Shelsey Sullivan,
and Chad Mano. 2020. Syntax exercises in CS1. In Proceedings of the 16th An-
nual Conference on International Computing Education Research (Dunedin, New
Zealand) (ICER ’20).

[18] John Edwards, Juho Leinonen, Chetan Birthare, Albina Zavgorodniaia, and Arto
Hellas. 2020. Programming Versus Natural Language: On the Effect of Context
on Typing in CS1. In Proceedings of the 2020 ACM Conference on International

Computing Education Research. 204–215.
[19] John Edwards, Juho Leinonen, and Arto Hellas. 2020. A Study of Keystroke

Data in Two Contexts: Written Language and Programming Language Influence
Predictability of Learning Outcomes. In Proceedings of the 51st ACM Technical
Symposium on Computer Science Education. 413–419.

[20] Clayton Epp, Michael Lippold, and Regan LMandryk. 2011. Identifying emotional
states using keystroke dynamics. In Proceedings of the sigchi conference on human
factors in computing systems. 715–724.

[21] Jean-Noël Foulin. 1995. Pauses et débits : les indicateurs temporels de la produc-
tion écrite. L'année psychologique 95, 3 (1995), 483–504.

[22] Tony Gillie and Donald Broadbent. 1989. What makes interruptions disruptive?
A study of length, similarity, and complexity. Psychological research 50, 4 (1989),
243–250.

[23] Alexander JJ Gould. 2014. What makes an interruption disruptive? Understanding
the effects of interruption relevance and timing on performance. Ph.D. Dissertation.
UCL (University College London).

[24] Winston Haynes. 2013. Bonferroni Correction. Springer New York, New York, NY,
154–154. https://doi.org/10.1007/978-1-4419-9863-7_1213

[25] Arto Hellas, Petri Ihantola, Andrew Petersen, Vangel V Ajanovski, Mirela Gutica,
Timo Hynninen, Antti Knutas, Juho Leinonen, Chris Messom, and Soohyun Nam
Liao. 2018. Predicting academic performance: a systematic literature review.
In Proceedings companion of the 23rd annual ACM conference on innovation and
technology in computer science education. 175–199.

[26] Arto Hellas, Juho Leinonen, and Petri Ihantola. 2017. Plagiarism in take-home
exams: Help-seeking, collaboration, and systematic cheating. In Proceedings of the
2017 ACM conference on innovation and technology in computer science education.
238–243.

[27] C. D. Hundhausen, D. M. Olivares, and A. S. Carter. 2017. IDE-Based Learning
Analytics for Computing Education: A Process Model, Critical Review, and Re-
search Agenda. ACM Trans. Comput. Educ. 17, 3, Article 11 (Aug. 2017), 26 pages.
https://doi.org/10.1145/3105759

[28] Petri Ihantola, Arto Vihavainen, Alireza Ahadi, Matthew Butler, Jürgen Börstler,
Stephen H. Edwards, Essi Isohanni, Ari Korhonen, Andrew Petersen, Kelly Rivers,
Miguel Ángel Rubio, Judy Sheard, Bronius Skupas, Jaime Spacco, Claudia Szabo,
and Daniel Toll. 2015. Educational Data Mining and Learning Analytics in
Programming: Literature Review and Case Studies. In Proc. of the 2015 ITiCSE on
Working Group Reports (Vilnius, Lithuania) (ITICSE-WGR ’15). ACM, 41–63.

[29] Shamsi T Iqbal and Brian P Bailey. 2006. Leveraging characteristics of task struc-
ture to predict the cost of interruption. In Proceedings of the SIGCHI conference
on Human Factors in computing systems. 741–750.

[30] Matthew C Jadud. 2005. A first look at novice compilation behaviour using BlueJ.
Computer Science Education 15, 1 (2005), 25–40.

[31] Matthew C Jadud. 2006. Methods and tools for exploring novice compilation
behaviour. In Proceedings of the second international workshop on Computing
education research. ACM, 73–84.

[32] Agata Kołakowska. 2016. Towards detecting programmers’ stress on the basis
of keystroke dynamics. In 2016 Federated Conference on Computer Science and
Information Systems (FedCSIS). IEEE, 1621–1626.

[33] Minna Kumpulainen. 2015. On the operationalisation of ‘pauses’ in translation
process research. Translation & Interpreting 7, 1 (2015), 47–58.

[34] Isabel Lacruz and Gregory M. Shreve. 2014. Pauses and Cognitive Effort in
Post-Editing. In Post-editing of Machine Translation: Processes and Applications.
Cambridge Scholars Publishing.

[35] Joy Yeonjoo Lee, Jeroen Donkers, Halszka Jarodzka, Géraldine Sellenraad, and
Jeroen J.G. van Merriënboer. 2020. Different effects of pausing on cognitive load
in a medical simulation game. Computers in Human Behavior 110 (Sept. 2020),
106385.

[36] Marianne Leinikka, Arto Vihavainen, Jani Lukander, and Satu Pakarinen. 2014.
Cognitive flexibility and programming performance. In Psychology of program-
ming interest group workshop. 1–11.

[37] Juho Leinonen. 2019. Keystroke Data in Programming Courses. Ph.D. Dissertation.
University of Helsinki.

[38] Juho Leinonen, Francisco Enrique Vicente Castro, and Arto Hellas. 2021. Fine-
Grained Versus Coarse-Grained Data for Estimating Time-on-Task in Learning
Programming. In Proceedings of The 14th International Conference on Educational
Data Mining (EDM 2021). The International Educational Data Mining Society.

[39] Juho Leinonen, Leo Leppänen, Petri Ihantola, and Arto Hellas. 2017. Comparison
of time metrics in programming. In Proceedings of the 2017 ACM Conference on
International Computing Education Research. ACM, 200–208.

[40] Juho Leinonen, Krista Longi, Arto Klami, and Arto Vihavainen. 2016. Automatic
inference of programming performance and experience from typing patterns. In
Proceedings of the 47th ACM Technical Symposium on Computing Science Education.
132–137.

[41] Leo Leppänen, Juho Leinonen, and Arto Hellas. 2016. Pauses and spacing in learn-
ing to program. In Proceedings of the 16th Koli Calling International Conference
on Computing Education Research. ACM, 41–50.

[42] Soohyun Nam Liao, Daniel Zingaro, Kevin Thai, Christine Alvarado, William G.
Griswold, and Leo Porter. 2019. A Robust Machine Learning Technique to Predict

197



Low-Performing Students. ACM Trans. Comput. Educ. 19, 3, Article 18 (Jan. 2019),
19 pages. https://doi.org/10.1145/3277569

[43] Sharon O'Brien. 2006. Pauses as Indicators of Cognitive Effort in Post-editing
Machine Translation Output. Across Languages and Cultures 7, 1 (June 2006),
1–21.

[44] Thierry Olive, Rui Alexandre Alves, and São Luís Castro. 2009. Cognitive pro-
cesses in writing during pause and execution periods. European Journal of
Cognitive Psychology 21, 5 (Aug. 2009), 758–785.

[45] David N Perkins, Chris Hancock, Renee Hobbs, FayMartin, and Rebecca Simmons.
1986. Conditions of learning in novice programmers. Journal of Educational
Computing Research 2, 1 (1986), 37–55.

[46] Andrew Petersen, Jaime Spacco, and Arto Vihavainen. 2015. An exploration
of error quotient in multiple contexts. In Proceedings of the 15th Koli Calling
Conference on Computing Education Research. 77–86.

[47] Leo Porter, Daniel Zingaro, and Raymond Lister. 2014. Predicting Student Success
Using Fine Grain Clicker Data. In Proceedings of the Tenth Annual Conference on
International Computing Education Research (Glasgow, Scotland, United Kingdom)
(ICER ’14). Association for Computing Machinery, New York, NY, USA, 51–58.
https://doi.org/10.1145/2632320.2632354

[48] Andrea Révész, MarijeMichel, andMinJin Lee. 2017. Investigating IELTS Academic
Writing Task 2: Relationships between cognitive writing processes, text quality, and
working memory. British Council, Cambridge English Language Assessment and
IDP.

[49] Andrea Révész, Marije Michel, and Minjin Lee. 2019. EXPLORING SECOND
LANGUAGE WRITERS’ PAUSING AND REVISION BEHAVIORS. Studies in
Second Language Acquisition 41, 3 (July 2019), 605–631.

[50] Russell Revlin. 2013. Cognition : theory and practice. Worth Publishers, New York,
NY.

[51] Robert S Rist. 1989. Schema creation in programming. Cognitive Science 13, 3
(1989), 389–414.

[52] Robert S Rist. 1995. Program structure and design. Cognitive science 19, 4 (1995),
507–562.

[53] Nathan Rountree, Janet Rountree, Anthony Robins, and Robert Hannah. 2004.
Interacting factors that predict success and failure in a CS1 course. ACM SIGCSE
Bulletin 36, 4 (2004), 101–104.

[54] Joost Schilperoord. 1996. It’s about time: Temporal aspects of cognitive processes
in text production. Vol. 6. Rodopi.

[55] Richard C Thomas, Amela Karahasanovic, and Gregor E Kennedy. 2005. An
investigation into keystroke latency metrics as an indicator of programming
performance. In Proceedings of the 7th Australasian conference on Computing
education-Volume 42. 127–134.

[56] Robert L Thorndike. 1953. Who belongs in the family? Psychometrika 18, 4 (1953),
267–276.

[57] Markku Tukiainen and Eero Mönkkönen. 2002. Programming Aptitude Testing
as a Prediction of Learning to Program.. In PPIG. 4.

[58] Jeroen JG Van Merrienboer and Fred GWC Paas. 1990. Automation and schema
acquisition in learning elementary computer programming: Implications for the
design of practice. Computers in Human Behavior 6, 3 (1990), 273–289.

[59] Arto Vihavainen, Juha Helminen, and Petri Ihantola. 2014. How Novices Tackle
Their First Lines of Code in an IDE: Analysis of Programming Session Traces.
In Proceedings of the 14th Koli Calling International Conference on Computing
Education Research (Koli, Finland) (Koli Calling ’14). ACM, New York, NY, USA,
109–116. https://doi.org/10.1145/2674683.2674692

[60] Arto Vihavainen, Matti Luukkainen, and Petri Ihantola. 2014. Analysis of source
code snapshot granularity levels. In Proceedings of the 15th annual conference on
information technology education. 21–26.

[61] Arto Vihavainen, Thomas Vikberg, Matti Luukkainen, and Martin Pärtel. 2013.
Scaffolding students’ learning using test my code. In Proceedings of the 18th ACM
conference on Innovation and technology in computer science education. 117–122.

[62] Luuk Van Waes and Peter Jan Schellens. 2003. Writing profiles: the effect of the
writing mode on pausing and revision patterns of experienced writers. Journal
of Pragmatics 35, 6 (June 2003), 829–853.

[63] Ronald L Wasserstein and Nicole A Lazar. 2016. The ASA statement on p-values:
context, process, and purpose.

[64] Christopher Watson, Frederick WB Li, and Jamie L Godwin. 2013. Predicting
performance in an introductory programming course by logging and analyzing
student programming behavior. In 2013 IEEE 13th international conference on
advanced learning technologies. IEEE, 319–323.

[65] Laurie Honour Werth. 1986. Predicting student performance in a beginning
computer science class. ACM SIGCSE Bulletin 18, 1 (1986), 138–143.

[66] Leon E Winslow. 1996. Programming pedagogy—a psychological overview. ACM
Sigcse Bulletin 28, 3 (1996), 17–22.

198


