
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by you for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

Monshizadeh, Mehrnoosh; Khatri, Vikramajeet; Kantola, Raimo; Yan, Zheng
A deep density based and self-determining clustering approach to label unknown traffic

Published in:
Journal of Network and Computer Applications

DOI:
10.1016/j.jnca.2022.103513

Published: 01/11/2022

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY-NC-ND

Please cite the original version:
Monshizadeh, M., Khatri, V., Kantola, R., & Yan, Z. (2022). A deep density based and self-determining clustering
approach to label unknown traffic. Journal of Network and Computer Applications, 207, Article 103513.
https://doi.org/10.1016/j.jnca.2022.103513

https://doi.org/10.1016/j.jnca.2022.103513
https://doi.org/10.1016/j.jnca.2022.103513

Journal of Network and Computer Applications 207 (2022) 103513

Available online 14 September 2022
1084-8045/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

Contents lists available at ScienceDirect

Journal of Network and Computer Applications

journal homepage: www.elsevier.com/locate/jnca

A deep density based and self-determining clustering approach to label
unknown traffic
Mehrnoosh Monshizadeh a,b,∗, Vikramajeet Khatri c, Raimo Kantola b, Zheng Yan b,d

a Nokia Bell Labs, France
b Department of Comnet, Aalto University, Finland
c Nokia Bell Labs, Finland
d The State Key Lab of ISN, Xidian University, China

A R T I C L E I N F O

Keywords:
Intrusion detection
Data mining
Machine Learning
Network security
Network traffic

A B S T R A C T

Analyzing non-labeled data is a major concern in the field of intrusion detection as the attack clusters are
continuously evolving which are unknown for the system. Many studies have been conducted on different
techniques such as clustering to solve this issue. Consequently, in this paper the clustering techniques are
applied based on the packets’ similarity to categorize unknown traffic. After clustering is done by the proposed
architecture, the security investigator analyzes one packet from each cluster (instead of thousands of packets)
and generalize the result of analysis to all packets belonging to the cluster. The proposed architecture, namely
Associated Density Based Clustering (ADBC) applies multiple unsupervised algorithms and a co-association
matrix to detect attack clusters of any shape as long as they have density-connected elements. Furthermore,
the architecture automatically determines the best number of clusters in order to categorize non-labeled data.
The performance of proposed architecture is evaluated based on the various metrics, while its generalization
capability is tested with three publicly available datasets.

1. Introduction

In order to protect networks against cyber-attacks, Intrusion De-
tection Systems (IDS) are designed to detect malicious traffic. The
IDS monitors network traffic, compares it with predefined patterns,
identifies suspicious activities and informs security investigator about
deviations. The IDSs mainly rely on static signature from known attacks
or the fixed pattern of the safe traffic. Even though some of current IDS
techniques look promising with comprehensive features, still they lack
intelligent and dynamic mechanism to detect unknown attacks (Top 10,
2022).

The signature-based methods build a model of normal traffic behav-
ior and compare the input data with the expected normal traffic; if the
input is different, a signature would be generated for the attack class to
train the model with new information and for the next time detection.
Yet, this approach may have high false positive rate since it compares
the input traffic with an expected model (Pietro et al., 2016). Other
IDSs are more intelligent and apply ML algorithms in their structures.
Some of these studies combine the ML algorithms with honeypot to
collect labeled malicious traffic. However, these techniques only rely
on the received attacks by honeypot; in addition, there is a risk that
honeypot node is identified to the attacker (Yadav et al., 2016).

∗ Corresponding author at: Department of Comnet, Aalto University, Finland.
E-mail addresses: mehrnoosh.monshizadeh@nokia-bell-labs.com, mehrnoosh.monshizadeh@aalto.fi (M. Monshizadeh),

vikramajeet.khatri@nokia-bell-labs.com (V. Khatri), raimo.kantola@aalto.fi (R. Kantola), zheng.yan@aalto.fi (Z. Yan).

Furthermore, studies that utilize ML for intrusion detection, rarely
evaluate the unknown traffic analysis and even if the issue is addressed,
a high detection rate is not achieved (Yousefi-Azar et al., 2017; Sun
et al., 2020; Fred and Jain, 2005; Wang et al., 2020; Xue-yong et al.,
2010; Dong et al., 2019; Shakya and Makwana, 2017; Turner and
Joseph, 2017; Yang et al., 2020; Bedi et al., 2021). These solutions
may improve the detection rate in overall and only for a specific dataset
while their performance varies considerably for another dataset and per
each type of attack (Muhlenbach and Lallich, 2009; Kim et al., 2004;
Jongsuebsuk et al., 2013; Lin et al., 2014). On the other hand, they
present limited evaluation rather than a detailed analysis (Sun et al.,
2018; Yang et al., 2019; Wei et al., 2020).

On the other hand, Machine Learning (ML) techniques are intro-
duced as a complementary to the IDS to dynamically identify the
relevant data of interest and intelligently figure out the security threats.
Based on the learning process, ML algorithms are divided in different
categories such as supervised and unsupervised techniques (Phadke
et al., 2019).

In supervised techniques, the labeled data is used to train the model;
classification methods belong to this category. For IDS application,

https://doi.org/10.1016/j.jnca.2022.103513
Received 22 July 2022; Received in revised form 24 August 2022; Accepted 6 September 2022

http://www.elsevier.com/locate/jnca
http://www.elsevier.com/locate/jnca
mailto:mehrnoosh.monshizadeh@nokia-bell-labs.com
mailto:mehrnoosh.monshizadeh@aalto.fi
mailto:vikramajeet.khatri@nokia-bell-labs.com
mailto:raimo.kantola@aalto.fi
mailto:zheng.yan@aalto.fi
https://doi.org/10.1016/j.jnca.2022.103513
https://doi.org/10.1016/j.jnca.2022.103513
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2022.103513&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Journal of Network and Computer Applications 207 (2022) 103513

2

M. Monshizadeh et al.

Fig. 1. MAWILab-2018 data distribution.

these algorithms can classify various types of known cyber-attacks. The
classifiers are first trained with labeled network traffic including benign
and attack packets whereas they can be used later for testing and to
identify malicious packets based on the trained model. In unsupervised
techniques, the training data is not labeled; the clustering algorithms
belong to this category. In the ML-based IDS, where the algorithms have
no prior information about input traffic the clustering methods will
be employed to categorize unknown traffic. These algorithms divide
unknown traffic in distinct clusters in such that packets with similar
properties go to the same group. These clusters will be further used
by a security investigator to detect malicious packets and generalize
the investigation to the entire cluster (Mehmood and Md Rais, 2016;
Portela et al., 2019).

It should be noted that a data set (e.g., network traffic data set) may
include several features that cause performance degradation in detec-
tion process. To overcome this problem, feature selection or extraction
methods such as Support Vector Machine (SVM) and Variational Auto
Encoders (VAEs) are used to select a smaller number of features and
reduce the dimension of the dataset. The selected or extracted features
will be provided to the classification and clustering algorithms in order
to help them in classifying the known attacks and clustering unknown
traffic (Yousefi-Azar et al., 2017; Monshizadeh et al., 2018; Li et al.,
2020).

However, in the field of machine learning, non-labeled data analysis
is one of the well-known challenges and many studies have been
conducted on different techniques to solve this issue. On the other
hand, with the emergence of unknown attacks, current intrusion de-
tection systems suffer from a low detection rate. In real-life scenarios
as shown in Fig. 1 for MAWILab-2018 dataset, a considerable amount
of incoming data does not belong to any known class and subsequently,
leads to class imbalance and high false positive and negative ratios.

On the other hand, annotating large datasets is very costly and
hence only a few examples can be labeled manually. In addition, for
unknown traffic, dividing data into classes without having information
on the nature of the traffic is challenging. Therefore, clustering methods
are employed to gain some insight into the structure of the data.
However, clustering techniques also have some drawbacks. In intru-
sion detection, clusters can appear with different sizes, shapes, data
sparseness, and overlapping degrees. Even if there are many clustering
algorithms, none of them is able to identify all the cluster forms and
structures encountered in real-life scenarios. Therefore, a more sophisti-
cated unsupervised approach, which automatically determines the best
number of clusters would be a major goal in analyzing non-labeled
data.

In general, the main challenge of clustering algorithms is that
clusters can appear with different sizes, density, and degree of sep-
aration (Fred and Jain, 2005). It is therefore difficult to select an
algorithm that performs well on a particular dataset, but also to adjust
the different hyperparameters of that same algorithm so that it can be
generalized.

Following the mentioned challenges and in order to efficiently
detect unknown attacks, this paper proposes a density-based method,
namely Associated Density Based Clustering (ADBC).

The method utilizes several unsupervised algorithms in conjunction
with a Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) in order to categorize unknown traffic in various clusters.
The hypothesis is that if two packets belong to the same attack type, it
is more likely that they fall into the same cluster when any clustering
algorithm is applied with any hyperparameters. In other words, when
several clustering algorithms are applied, the more two samples fall into
the same cluster, the more likely they belong to the same attack type.
Specifically, given a set of packets, a new distance measure between
data points is calculated based on the mentioned assumption and is
represented in a co-association matrix, which is later used for DBSCAN
clustering.

Overall, the contribution of this paper is to introduce an efficient
method for clustering unknown traffic with the following characteris-
tics:

• Categorizing unknown data into distinct clusters in such the pack-
ets belong to one cluster are similar to each other and dissimilar
to the packets belong to other clusters. This model achieves
a good homogeneity score for various datasets with different
attacks, which proves that each cluster contains mainly members
of a single attack class, and a high silhouette coefficient score
which shows that the clusters are well defined and have minimal
overlap.

• Introducing a new metric that helps to achieve high silhouette
score by changing the feature space. The new similarity metric
is different from Euclidean distance, where the distance between
data points reflects the similarity between packets. The new
similarity matrix will be used to create a co-association matrix
that will be fed to DBSCAN as input.

• Evaluating proposed architecture performance robustness against
three datasets that have different attacks and sizes.

• Cluster analysis generalization in a way that few packets from
each generated cluster are analyzed, the malicious packets are
identified, and the result of analysis is generalized to the en-
tire cluster. This approach saves security investigator time and
resources.

The rest of the paper is organized as follows. Section 2 provides
motivation for the paper and reviews some studies that applied un-
supervised techniques such as DBSCAN mainly for intrusion detection
application and briefly addresses their short comes. Section 3 intro-
duces the ADBC architecture as well the algorithms that are required for
the experimental results. In Section 4, the implementation settings that
are needed for further experiments are presented. Section 5 discusses
the experimental results for ADBC architecture as well for other cluster-
ing methods that are implemented by authors for comparison purpose.
In Section 6, the paper provides a comparison between ADBC and
the state-of-the-art methods along with the scope of future research.
Finally, the conclusion is drawn in Section 7.

2. Motivation and related work

Several studies applied unsupervised techniques to analyze unla-
beled datasets and to cluster the datapoints based on their similar-
ities. Even though, these studies applied various optimized version
of DBSCAN to provide a good silhouette score, yet their achieved

Journal of Network and Computer Applications 207 (2022) 103513

3

M. Monshizadeh et al.

performance considerably depends on the datasets. In addition, hy-
perparameter settings are changing based on the different datasets.
Furthermore, majority of the prior art methods are applied for different
application than IDS and their employed datasets are dissimilar to
network traffic dataset. On the other hand, their testing conditions
are distinct and their presented results lack a thorough evaluation of
clusters quality and analysis. Therefore, this paper proposes an efficient
density-based method to categorize unknown traffic into various clus-
ters. The purpose of this architecture is to provide a high silhouette
score regardless of applied dataset. Furthermore, the architecture aims
to provide insights based on the created clusters to a cybersecurity
investigator and assist in detecting unknown attacks with reduction of
time and computation resources during analysis.

In order to analyze unknown data or detect anomalies, several
studies have applied various clustering techniques such as DBSCAN
and its variants. DBSCAN do not need to have number of clusters
predefined, in addition it has the advantage of finding clusters of any
shape, as long as their elements are density-connected. This advantage
is important when dealing with a clustering problem of unknown data
where the shape of the clusters is uncertain.

In order to divide data into the groups based on the similarity of
characteristics, several studies have applied various clustering tech-
niques such as DBSCAN or a combination of unsupervised algorithms.
DBSCAN do not need to have number of clusters predefined, in addition
it has the advantage of finding clusters of any shape, as long as their
elements are density-connected. This advantage is important when
dealing with a clustering problem of unknown data where the shape
of clusters is uncertain. In order to evaluate DBSCAN performance
in related articles, mainly the silhouette score is presented to show
the level of clusters distinction. However, in these studies achieved
silhouette score is considerably depends on the applied dataset.

Muhlenbach and Lallich (2009) proposed a graph-based clustering
(GBC) method that defines the best number of clusters and detects
anomalies. This study is based on a neighborhood graph and regions
of influence approach. The method is evaluated based on the Dunn’s,
Silhouette, and the Davies–Bouldin metrics and for five datasets from
the University of California Irvine (UCI) Repository, three artificial
data sets (test-2c-2o, test-random, yin-yang), and Ruspini dataset. This
method is limited to hard clustering and fails if there is recovery
between the different clusters. On the other hand, the maximum sil-
houette score depends on the dataset (achieved values are between
0.584 and 0.910 depending on the dataset). Similarly, for Dunn’s and
Davies–Bouldin’s indices, the maximum value depends on the dataset.

Turner and Joseph (2017) combined static rule extraction mech-
anism with machine learning in order to detect intrusion. The study
performs cluster analyses applying a k-means algorithm, a hierarchi-
cal agglomerative clustering algorithm, and a density-based clustering
algorithm independently and for each ruleset. The silhouette metric is
used to evaluate the method performance. However, few data and a
small number of clusters (simple clusters) have been used to test the
method’s performance. And consequently, the authors achieved a good
silhouette score, since this metric depends considerably on the nature
of the data.

Sun et al. (2020) applied DBSCAN algorithm to cluster unknown
protocol messages into classes with different formats. The performance
of the method is evaluated under the direction of supervised and
unsupervised cluster quality metrics such as the Silhouette Coefficient
and Dunn Index in order to decrease manual intervention. However,
the maximum reached by the Silhouette Coefficient and Dunn Index is
0.67 and 0.77.

Xue-yong et al. (2010) introduced an improved DBSCAN algorithm
to detect intrusion. The proposed model improves the formula for cal-
culating distances. The presented clusters merging experimental results
proves that this method reduces the false-negative rate and improves
the performance of intrusion detection systems. For the experiment,
the study applies a feature selection method with cross-validation on

KDD Cup 1999 dataset. In order to evaluate the model, metrics such
as false ratio (FR) and detection rates have been used in this paper.
Though, the model applied clustering technique and discussed about
hyperparameter (such as epsilon and MinPts) setting, the study did
not provide any analysis on clusters and unsupervised metric such as
silhouette score.

Dong et al. (2019) proposed a model combining k-means with
DBSCAN for intrusion detection. The combination solves the k-means’
sensitivity to initial clustering centers and noise points and reduces the
influence of fixed neighborhood radius in DBSCAN. The experiments
are done on the NSL-KDD dataset applying false positive ratio and
supervised validation. Though, the model applied clustering technique,
the study did not provide any analysis on clusters and unsupervised
metric such as silhouette score.

Shakya and Makwana (2017) presented a combination of Sequential
minimal Optimization Classifier (SMO), k-means clustering, and DB-
SCAN to improve detection rate. However, DBSCAN is only used for
noise reduction and not for clustering. The study used KDD dataset,
feature selection method and chose accuracy as an evaluation metric.

Sabottke et al. (2019) applied DBSCAN clustering for detecting at-
tacks in web server logs. Three months of web server logs are collected
for this study. Potentially malicious sessions lie either in the DBSCAN
noise or in the territory of a malicious activity cluster. If samples
that are labeled as noise in the DBSCAN clustering are intended to be
analyzed as potential threats by human analysts, then it is consequently
important to parametrize DBSCAN clustering in order to reduce the
number of noise samples. To evaluate clustering performance, the
authors calculate the silhouette score. A high silhouette score indicates
that the clusters are compact (each point is similar to the other points in
its cluster) and well separated (each point is unlike the points in other
clusters). The authors manually examined whether those clusters cor-
responded to keywords associated with attacks (i.e., ‘‘login’’, ‘‘admin’’,
and database insertion keywords). These keywords were chosen based
on feedback from the human experiment. Finally, they manually ana-
lyze the clusters to identify normal and attack behaviors. The clustering
achieves a silhouette score of 0.99. However, the obtained clusters are
composed of different types of attacks (mixed clusters) which makes
the analysis difficult for security investigator. Furthermore, with this
method the result of packet (per cluster) analysis cannot be generalized
to the entire cluster.

Dockhorn et al. (2015) presented an algorithm based on the com-
bination of two hierarchical versions of DBSCAN (HDBSCAN) for au-
tomatically determining locally optimal parameter settings, which is
achieved by fixing one parameter and iterating through possible val-
ues of the second parameter. The study compares the measures of
edge-correlation and silhouette coefficient. The silhouette coefficient
and edge correlation reported few noise points and scored not as
high as the density-based silhouette coefficient (whose formula is not
mentioned). The authors compared the use of silhouette coefficient
and edge correlation as two such measures. However, both measures
prefer convex-shaped clusters and cannot adapt to all cluster shapes
produced by DBSCAN. Therefore, they proposed a density-based in-
terpretation of the silhouette coefficient, which rates the density of
a cluster as the minimal value and sets it in relation to the minimal
𝜀 distance to the next cluster. In contrast to the original silhouette
coefficient, this optimization criterion can adapt to clusters of arbitrary
shapes. The comparison of internal validation measures revealed that
the density-based silhouette coefficient performed best in most exper-
iments. However, in the search for convex-shaped clusters, silhouette
coefficient and edge correlation perform better than the proposed
density-based silhouette coefficient.

Fred and Jain (2005) proposed a method based on the concept
of evidence accumulation clustering. They combine various clustering
partitions of a given dataset to define a partition that is better than
the original partitions. This method either applies different clustering
algorithms or the same clustering algorithm with different parameters.
However, the model is applied on image datasets and not for intrusion
detection application. The current study is motivated by this concept.

Journal of Network and Computer Applications 207 (2022) 103513

4

M. Monshizadeh et al.

Fig. 2. Architecture of Associated Density Based Clustering (ADBC).

3. Architecture

The proposed architecture is a complementary part of the Hybrid
Anomaly Detection Model (HADM) platform, which has been explained
and previously published in three papers (Monshizadeh et al., 2018,
2019, 2021). The HADM comprises various machine learning (ML)
algorithms to filter network traffic and identity malicious activities
on the network. The HADM applies classification algorithms to de-
tect predefined known attacks and clustering algorithms to identify
unknown attacks. Consequently, current paper focuses on applying
clustering techniques for unknown traffic analysis. As shown in Fig. 2,
the architecture comprises several algorithms and a co-association
matrix.

As it was discussed in Section 2, in order to analyze non labeled
datasets in an unsupervised way, several studies have employed clus-
tering algorithms such as DBSCAN or a combination of DBSCAN with
other linear algorithms namely SVM or deep learning algorithms such
as VAEs. Therefore, in order to prove the proposed architecture su-
periority to prior art, current paper, compares performance of ADBC
against prior art algorithms. For this purpose, the prior art methods
are implemented by authors in the same testing environment and by
employing similar datasets that are applied to ADBC. Consequently, in
this section the prior art algorithms beside the applied algorithms in
ADBC are described. Furthermore, the evaluation metrics are presented.

3.1. Applied algorithms

The applied algorithms, their internal architecture and parameters
are explained below.

VAE. This is an unsupervised Latent-variable-based deep generative
model. VAE comprises two neural networks: an encoder network and a
decoder network. VAE architecture can be seen in Fig. 3.

The encoder is a neural network that inputs a data point x and
outputs a latent representation z. This latent variable z belongs to a
latent space of lower dimension than the input space. The encoder has
weights and biases 𝜙. The distribution of the latent variable z and the
encoder are denoted as q(z|x;𝜙).

The decoder is a neural network that receives the latent variable z
as input and reconstructs x̂ from the probability distribution p(x|z;𝜃)
with 𝜃 expressing the weights and biases of the decoder.

The loss function is a negative loglikelihood with a regularizer:

𝐷𝐾𝐿(𝑞(𝑧|𝑥;𝜙)) ∥ (𝑝(𝑧; 𝜃)) − 𝐸𝑧∼𝑞𝜙[log 𝑝(𝑥|𝑧; 𝜃)] (1)

p(z) is the expected distribution (the prior) of z which is specified
as a standard normal distribution with mean 0 and variance 1.

An observation x is assumed to be distributed according to
p(x|z;𝜃*), where the decoder takes as input z and outputs p(x|z;𝜃). The
choice of this distribution depends on the type of data. In this paper, a
multivariate Gaussian distribution is applied. In order to estimate 𝜃 to
get the closest possible p(x|𝜃) to the true data distribution, the decoder
can be fit by maximizing the marginal likelihood as seen in (2):

𝑝(𝑥; 𝜃) = ∫ 𝑝(𝑥|𝑧; 𝜃)𝑝(𝑧)𝑑𝑧 (2)

However, this likelihood cannot be evaluated or approximated as it
is intractable. Even trying to use p(z|x;𝜃) will not solve this problem
because p(z|x;𝜃) is intractable too.

The variational autoencoder model solves this problem by using
variational inference which uses majorization-minimization principles
to solve this optimization problem. The approach is to approximate
p(z|x;𝜃) using an encoder network and to use this approximation to
estimate a lower bound on the marginal log-likelihood. As a result, the
model will learn its parameters by maximizing this lower bound (the
Evidence Lower Bound).

Hence, q(z|x;𝜙) is considered as the approximating distribution
of p(z|x;𝜃) where q(z|x) is a multivariate Gaussian distribution. It
is parametrized with the encoder that takes as input x and outputs
q(z|x;𝜙).

The marginal log-likelihood of an observation x and for any varia-
tional distribution q(z|x;𝜙) over the latent variables z can be expressed
as follows:

𝑙𝑜𝑔𝑝(𝑥; 𝜃) = 𝐿(𝑥;𝜙, 𝜃) +𝐷𝐾𝐿(𝑞(𝑧|𝑥;𝜙) ∥ 𝑝(𝑧|𝑥; 𝜃)) (3)

where L(x;𝜙,𝜃) represents the Evidence Lower Bound (ELBO) as seen
in (4):

𝐿(𝑥;𝜙, 𝜃) = 𝐸𝑧∼𝑞𝜙[log 𝑝(𝑥|𝑧; 𝜃) − log 𝑞(𝑥|𝑥;𝜙)] (4)

As the Kullback–Leibler (KL) divergence is non-negative: log p(x;𝜃)
≥ L(x;𝜙,𝜃) with equality only when q(z|x;𝜙) = p(z|x;𝜃). Therefore, the
objective function maximized in variational inference is:

𝐿(𝑥;𝜙, 𝜃) = 𝐸𝑧∼𝑞𝜙[log 𝑝(𝑥|𝑧; 𝜃) − log 𝑞(𝑧|𝑥;𝜙)]

= −𝐷𝐾𝐿(𝑞(𝑧|𝑥;𝜙) ∥ 𝑝(𝑧; 𝜃)) + 𝐸𝑧∼𝑞𝜙[log 𝑝(𝑥|𝑧; 𝜃)]
(5)

As it is shown in (5), the ELBO has two terms. The first is a
regularization term called the KL divergence and it ensures that the
encoder stays close to the prior. The second is the reconstruction term.

Journal of Network and Computer Applications 207 (2022) 103513

5

M. Monshizadeh et al.

Fig. 3. Variational Autoencoder architecture.

Even if an analytical expression of the ELBO is missed, having an
approximation of it using Monte Carlo estimate is possible (Kingma and
Welling, 2014).

Lambda-VAE. The architecture of the lambda VAE which is a varia-
tion of a VAE was introduced by the authors of Wang et al. (2019). It
modifies the KL divergence of the original VAE which is responsible for
encouraging all latent embeddings to cluster around the origin. In fact,
this behavior is not desirable in IDS application because it can increase
class overlapping in the latent space.

Hence, the idea behind lambda VAE is to change the prior p(z) used
in the KL divergence KL(q𝜃 (z|xi)||p(z)) depending on the label so that
each class is placed on a separate dimension in the latent space.

For example, if the input sample has a label of 2 and the dimension
of the latent vector z (z has the same definition as in the VAE)
is 5, the mean of the encoded latent vector of this sample will be
forced to [0,0,𝜆,0,0]. In this way, all samples with a label of 2 will
be clustered around the direction [0,0,1,0,0] of the latent space. The
vector [0,0,𝜆,0,0] is an example of a lambda-hot encoding vector.

This behavior is enforced by replacing the prior p(z) in the KL di-
vergence with the lambda-hot encoding vector. So, instead of including
KL(q𝜃 (z|xi)||p(z)) in the loss of the VAE, it is replaced with KL(q𝜃
(z|xi)||v(x)) where the v(x) is the lambda-hot encoding vector of the
input sample x.

This method was proven to enforce clusters in the latent space for
the examples presented by the authors of Wang et al. (2019). However,
this was not the case for network traffic. Furthermore, the 𝜆 is a
hyperparameter that needs to be set in a way that pushes each cluster
far from the others in the latent space in order to avoid overlapping
between clusters. For the current paper experiments, lambda is set to
5 after testing other values (Wang et al., 2019).

SVMonline. Incremental SVM calculates the loss and retrains linear
SVM in every batch using stochastic gradient descent. It assigns SVM
weights to each feature and selects those with the highest absolute
value as the best discriminative features. Although SVMonline relies on
the linear dependency of features and labels as in F-Score, it is more
robust than F-Score, since it splits the dataset into small batches and
calculates the average of model coefficients that further increases the
robustness (Chen, 2003).

k-means. In this algorithm n data items are divided into K clusters
while new data entry would be assigned to the cluster with the highest
similarity; therefore, it has lower similarity to other clusters. The
similarity is defined based on the distance function, which is typically
a metric. k-means algorithm has three steps: assigning the new data
to the closest cluster, re-estimating the mean, and finally iteration or
normalization of data (Fred and Jain, 2005; Monshizadeh and Yan,
2014).

For observations x1, x2,, x𝑛 where each observation is a d-
dimensional real vector and for Euclidean distance function, k-means

clustering aims to partition the n observations into k(≤ n) sets S = {S1,
S2,, S𝑘} so as to minimize the within-cluster sum of squares.

𝑎𝑟𝑔𝑠 𝑚𝑖𝑛 =
𝑘
∑

𝑖=1

∑

𝑥∈𝑆𝑖

∥ 𝑥 − 𝜇𝑖 ∥2= 𝑎𝑟𝑔𝑠 𝑚𝑖𝑛
𝑘
∑

𝑖=1
|𝑆𝑖|𝑉 𝑎𝑟 𝑆𝑖 (6)

where μ𝑖 is the mean of points in S𝑖. This is equivalent to minimizing
the pairwise squared deviations of points in the same cluster.

𝑎𝑟𝑔𝑠 𝑚𝑖𝑛 =
𝑘
∑

𝑖=1

1
2|𝑆𝑖|

∑

𝑥,𝑦∈𝑆𝑖

∥ 𝑥 − 𝑦 ∥2 (7)

Co-association matrix. This technique is similar to a voting mecha-
nism that is used to combine the clustering results, leading to a new
measure of similarity between samples or data points (Fred and Jain,
2005).

The idea behind this voting is that data points belonging to the same
category (having the same nature) are very likely to be assigned to the
same cluster in different data partitions or data clustering.

Taking the co-occurrences of pairs of samples or packets in the same
cluster as votes for their association, the N data partitions (clusters) of
n samples are mapped into a n × n co-association matrix:

𝐶(𝑖, 𝑗) =
𝑛𝑖𝑗
𝑁

(8)

where

• C is the co-association matrix.
• N is the number of partitions created by the N clusterings.
• n𝑖𝑗 is the number of times that the packet pair (i,j) is assigned to

the same cluster among the N partitions.

In order to create this co-association matrix, each clustering is
represented by a n × n matrix (n is the total number of samples) where
the (i,j) position is either 1 if observations i and j belong to the same
cluster and 0 otherwise. The average of all these matrices constitutes
the co-association matrix.

DBSCAN. It is a density-based clustering algorithm as its name sug-
gests. It was designed by Ester et al. (1996) to group connected regions
of high density into the same cluster, in a clustering problem with
noise where clusters have arbitrary shapes. The outcome of the cluster-
ing depends on two hyperparameters: the maximum distance allowed
between two points within the same cluster referred to as 𝜀 and the
MinPts, which defines the minimum number of data points required to
form a distinct and dense cluster.

Let a region of the space with a radius of 𝜀 centered at a point p of
the dataset D be a dense region if it contains at least MinPts points. For
each point p, an 𝜀 -neighborhood N𝜖 can be defined as follows:

𝑁𝜖(𝑝) = {𝑞 ∈ 𝐷|𝑑𝑖𝑠𝑡(𝑝, 𝑞) ≤ 𝜖} (9)

The 𝜀 -neighborhood equals the set of points inside a hypersphere
of radius 𝜀 centered at point p. A point is called core-point if its
𝜀-neighborhood N𝜖 contains at least MinPts points.

|𝑁𝜖(𝑝)| ≥ 𝑀𝑖𝑛𝑃 𝑡𝑠 (10)

Journal of Network and Computer Applications 207 (2022) 103513

6

M. Monshizadeh et al.

DBSCAN looks for clusters by checking the neighborhood of each
object in the dataset. If the neighborhood of an object p contains more
points than MinPts, a new cluster with p as the core-point is created.
It then iteratively collects the objects directly density-reachable from
these core points, which may involve merging multiple clusters. The
process ends when no new objects can be added to any cluster (Khan
et al., 2014).

3.2. Evaluation metrics

To assess ADBC performance, the applied evaluation metrics are
briefly explained in the following subsections.

(1) Homogeneity: A clustering result satisfies homogeneity if all
of its clusters contain only data points that are members of a
single class. On the other word, for IDS application homogeneity
shows how well all packets belong to an attack type are assigned
to the same cluster. In an ideal situation, the class distribution
within each cluster should be skewed to a single class, meaning
zero entropy. To determine how close a given clustering is
to this ideal, the conditional entropy of the class distribution
is examined. The score is determined between 0 and 1, with
high values indicating a good homogeneity outcome. Homogene-
ity is calculated using the following formulas (Rosenberg and
Hirschberg, 2007; Ozdemir et al., 2015).

ℎ =

{

1 if H(C,K) = 0
1 − 𝐻(𝐶|𝐾)

𝐻(𝐶,𝐾) else
(11)

where,

𝐻(𝐶|𝐾) = −
|𝐾|

∑

𝑘=1

|𝐶|

∑

𝑐=1

𝐴𝑐𝑘
𝑁

log
𝐴𝑐𝑘

∑

|𝐶|

𝑐=1 𝐴𝑐𝑘

(12)

𝐻(𝐶,𝐾) = −
|𝐾|

∑

𝑘=1

|𝐶|

∑

𝑐=1

𝐴𝑐𝑘
𝑁

log
𝐴𝑐𝑘
𝑁

(13)

where,

• N is the number of data points
• C={c𝑖|i=1,. . . ,n} is a set of classes
• K={k𝑖|i=1,. . . ,m} is a set of clusters
• A represents the contingency table produced by the clus-

tering algorithm, such that A=a𝑖𝑗 with a𝑖𝑗 the number of
data points that are members of label c𝑖 and elements of
cluster k𝑗 .

• H(C|K) the conditional entropy of the class distribution

The H(C|K) is maximal and equals H(C) when the clustering
provides no new information (the class distribution within each
cluster is equal to the overall class distribution). And H(C|K) is
0 when each cluster contains only members of a single class that
means a perfectly homogeneous clustering. Therefore, when all
samples in a cluster k have the same label c, the homogeneity
equals 1.

(2) Silhouette Score: This metric shows how well clusters are apart
from each other and clearly distinguished. It ranges between −1
to 1. Values near 0 indicate overlapping clusters. Negative values
generally indicate that a sample has been assigned to the wrong
cluster, as a different cluster is more similar (Sklearn metrics,
2021; Das, 2021). A silhouette score of a data point i is defined
as follows:

𝑆 𝑖𝑙ℎ𝑜𝑢𝑒𝑡𝑡𝑒 𝑠𝑐𝑜𝑟𝑒(𝑖) =
𝑏𝑖 − 𝑎𝑖

𝑚𝑎𝑥(𝑏𝑖, 𝑎𝑖)
(14)

where,

• b𝑖 represents the smallest mean distance of i to all points
in any other cluster

• a𝑖 is the average dissimilarity of i to all other data points
of the same cluster.

If b𝑖 > a𝑖, then a point is well separated from its neighboring
cluster whereas it is closer to all points from the cluster it belongs
to.

4. Implementation phases

The implementation of ADBC involves cleaning and pre-processing
datasets, applying sampling techniques and feature extraction methods,
and utilizing clustering algorithms to categorize unknown traffic.

4.1. Datasets

In order to evaluate ADBC model performance, three publicly avail-
able datasets are used. These datasets include a variety of network
traffic attacks and meet the real traffic criteria to some extent. The
mentioned datasets were selected after a survey among 14 publicly
available datasets (Monshizadeh et al., 2021).

The MAWILab-2018 dataset is captured on a link between USA and
Japan, every day and since 2001 For the current paper, the traffic from
28th August 2018 is used (Fontugne et al., 2010). Furthermore, in order
to check model resilience and robustness and to have a diversity of
attacks, all the DoS attacks contained in ISCX-2017 dataset (Sharafaldin
et al., 2018) were extracted and injected into MAWILab-2018 (DoS
attack class). In this dataset, there is an unknown class from the
beginning which is labeled as such.

The ISCX-2017 dataset consists of 51G network traffic metadata
that is labeled including 80 features and the full packet payload. The
network traffic is provided on protocols, such as HTTP, HTTPS, FTP,
SSH, and email. The dataset includes the most common attacks based
on the 2016 McAfee report, such as Web-based, Brute force, Denial
of Service (DoS), Distributed Denial of Service (DDoS), Infiltration,
Heart-bleed, Bot and Scan covered in this dataset (Monshizadeh et al.,
2021). In this dataset, some packets cannot be correlated to any of the
labels provided by the dataset owners. Therefore, they are considered
as unknown traffic.

The ISCX-2012 dataset was captured in 2012 over one week in
an emulated environment. Dataset includes normal and malicious traf-
fic (Sharafaldin et al., 2018; Ring et al., 2019; Shiravi et al., 2012).
For current paper experiments, the attacks are grouped into three
categories: Local to Remote (L2R), Remote to Local (R2L), and Local
to Local (L2L). In this dataset, some packets are considered unknown
as they cannot be correlated to any of the labels provided by the dataset
owners.

While the network traffic payload may have different characteristics
for every dataset, this study only analyzes the header of the network
traffic datasets that consist of similar attributes and protocols. There-
fore, mixing datasets has not been an issue as the data points were also
close in the feature space during the experiments. The distribution of
packets in the selected subsets of the datasets is shown in Table 1. The
packets are considered in normal (−2), unknown (0) and attacks (1,
. . . ,) classes. In the field of IDS, unknown traffic refers to any packet
that is not labeled and not classified to any pre-defined category.

The packets in subset of datasets are randomly selected but the
proportion of each class is preserved as original dataset.

4.2. Data preprocessing

Data cleaning, converting the columns to the right types, han-
dling missing values, splitting IP addresses into four fields, vectorizing
categorical variables, normalizing the dataset, and changing the la-
bels of attack classes in order to differentiate different attack classes
are the processes carried out in this phase. For the normalization,
statistical and scaling normalization are used (Wang et al., 2009).

Journal of Network and Computer Applications 207 (2022) 103513

7

M. Monshizadeh et al.

Table 1
Distribution of packets in the selected subsets of the datasets.

Dataset Class type Class No. Packets Total

Normal −2 9173
Unknown 0 6135
Attack Class 1 (DoS) 2 4329
Attack Class 2 (Multi. points mptmp) 3 4625
Attack Class 3 (Multi. points mptp) 4 3636

MAWILab-2018 Attack Class 4 (Multi. points ptmp) 5 7216 43 631
Attack Class 5 (HTTP attack) 6 1435
Attack Class 6 (Network scan TCP) 7 2704
Attack Class 7 (Network scan UDP) 8 4368
Attack Class 8 (TTL error) 9 10

Normal −2 9512
Unknown 0 8138
Attack Class 1 (DoS) 2 7727
Attack Class 2 (Bot) 3 1248

ISCX-2017 Attack Class 3 (PortScan) 4 9653 54 430
Attack Class 4 (Infiltration) 5 5884
Attack Class 5 (FTP-Patator) 6 3855
Attack Class 6 (Heartbleed) 7 8413

Normal −2 10 811
Unknown 0 13 604

ISCX-2012 Attack Class 1 (L2R) 2 8201 43 731
Attack Class 2 (R2L) 3 6640
Attack Class 3 (L2L) 4 4475

Table 2
Features in datasets.

No. Features No. Features

1 Ethernet size 31 UDP length
2 Ethernet destination (divided into 6 features) 32 ICMP type
8 Ethernet source (divided into 6 features) 33 ICMP code
14 IP header length 34 Duration of connection
15 IP type of service 35 Connection starting time
16 IP length 36 IP fragmentation flag
17 IP time to live 37 IP fragmentation overlap
18 IP protocol 38 TCP ACK flag
19 IP source (divided into 4 features) 39 TCP retransmission
23 IP destination (divided into 4 features) 40 TCP push flag
27 TCP source port 41 TCP SYN flag
28 TCP destination port 42 TCP FIN flag
29 UDP source port 43 TCP urgent flag
30 UDP destination port

In order to improve the performance of the algorithms, nominal at-
tributes are transformed into numeric attributes. In addition, the IP
address and hexadecimal Medium Access Control (MAC) address of
the applied datasets are transformed into separate numeric attributes.
Each numeric attribute is normalized using batch mean and standard
deviation unless there is an already defined range (e.g., IP address
range) (Monshizadeh et al., 2021). Datasets contain 43 features as
shown in Table 2.

5. Experimental results

All the experiments are carried out on a server with Intel® Xeon®
16 𝑥 E5-2623 CPU @3.0 GHz (4 cores in each processor), 128 GB
RAM and 1.6 TB HDD. The scripts were developed in Python in a
Linux environment (Ubuntu 20.04.1 LTS) and utilized Scikit-learn and
Tensorflow2 library (Scikit-learn, 2021).

In order to prove the proposed architecture superiority to prior
art, this section evaluates and compares performance of ADBC against
prior art algorithms. For this purpose, the following prior art methods
are implemented by authors in the same testing environment and by
employing similar datasets that are applied to ADBC.

• DBSCAN and SVMonline (with known and unknown traffic)
• DBSCAN and lambda VAE (with known and unknown traffic)
• DBSCAN and vanilla VAE (with known and unknown traffic)
• ADBC (with known and unknown traffic)

The known traffic is used in all experiments to verify the model
is able to cluster traffic properly. The known traffic is classified in
multiple classes as shown in Table 1, whereas the clustering process
categorizes unknown traffic based on similarity among data points.
Furthermore, this architecture not only clusters unknown traffic but
provides insights to the cybersecurity expert as well. In other words,
the composition of the cluster and the proximity between the unknown
and known data samples can help the expert decide how much time
and investigation is needed for each new attack or sample. In brief, the
goal is to direct the expert’s attention to new attacks and facilitate the
analysis of attacks that are already known through insights.

5.1. DBSCAN and SVM𝑜

In this experiment SVM𝑜 feature selection is used with DBSCAN in
order to cluster unknown traffic. The known traffic is included in the
experiments, but the labels are only used during the evaluation as the
applied method is unsupervised. The best selected features for each
dataset and ordered by importance are as follows:

• MAWILab-2018: IP source 4, IP fragment offset, IP source 3, TCP
source port, UDP destination port, and IP source 2.

• ISCX-2017: Connection starting time, IP source 3, IP destination
2, Ethernet source 2, IP destination 4, and IP destination 3.

• ISCX-2012: Connection starting time, Ethernet destination 3, Eth-
ernet source 2, Ethernet destination 1, TCP destination port and
IP time to live.

Journal of Network and Computer Applications 207 (2022) 103513

8

M. Monshizadeh et al.

Fig. 4. DBSCAN_SVMo for MAWILab-2018.

Fig. 5. DBSCAN_SVMo for ISCX-2017.

Figs. 4–6 shows the performance evaluation of DBSCAN-SVM𝑜 for
each dataset. Though, this method is examined for two values of MinPts
hyperparameter where the minimum number of packets assigned in
each cluster are not less than 5 and 10, only the results for MinPts=10
is presented in this section.

From Figs. 4–6, it is obvious that maximum silhouette score
achieved by this method depends on the dataset (0.475 for MAWILab-
2018, 0.81 for ISCX-2017 and 0.84 for ISCX-2012 dataset). Further-
more, the epsilon hyperparameter varies for each dataset in order to
achieve the highest silhouette score (epsilon = 0.3 for MAWILab-2018,
0.1 for ISCX-2017 and 0.20 for ISCX-2012). Hence DBSCAN needs
to be tuned based on each dataset. These results reject the method
robustness.

Furthermore, Figs. 7–12, represent the data points using the six best
features selected by SVM𝑜. At each time, the data points are projected
into a 3D feature space for visualization purposes. As it is shown in
these figures, even some clusters are more visible, still due to the high
degree of overlapping (due to low silhouette score), distinguishing each
cluster is a challenging task. This indicates the data space created by
the selected features in this method are not suitable for clustering.
In other words, these figures show that the desired result cannot be
obtained directly using a clustering algorithm because this is not a
natural clustering problem. Therefore, the data space must be changed
in order to transform this problem into a clustering one. Notice that
this observation is valid for the three datasets.

5.2. DBSCAN and vanilla VAE

This experiment applies vanilla VAE feature extraction with DB-
SCAN to cluster unknown traffic. Notice that the known traffic is
used without its labels. The unknown traffic (label 0) should not be
considered as a class because it cannot be a single cluster. In fact, it
is composed of many classes. However, it is represented in the figures
using the same color to distinguish it from the rest of the traffic. The

Fig. 6. DBSCAN_SVMo for ISCX-2012.

Fig. 7. DBSCAN_SVMo with first feature set for MAWILab-2018.

Fig. 8. DBSCAN_SVMo with second feature set for MAWILab-2018.

data is projected at each time into a 3D space of 3 extracted features
(The VAE extracted 6 encoded features overall for each dataset: z0,
z1,z2,z3, z4 and z5) for visualization purposes.

Figs. 13–15 show the performance evaluation of DBSCAN-
VanillaVAE for each dataset. Though, this method is examined for
two values of MinPts hyperparameter where the minimum number of

Journal of Network and Computer Applications 207 (2022) 103513

9

M. Monshizadeh et al.

Fig. 9. DBSCAN_SVMo with first feature set for ISCX-2017.

Fig. 10. DBSCAN_SVMo with second feature set for ISCX-2017.

Fig. 11. DBSCAN_SVMo with first feature set for ISCX-2012.

Fig. 12. DBSCAN_SVMo with second feature set for ISCX-2012.

Fig. 13. DBSCAN_Vanilla VAE for MAWILab-2018.

packets assigned in each cluster are not less than 5 and 10, only the
results for MinPts=10 is presented in this section.

From Figs. 13–15, it is obvious that maximum silhouette score
achieved by this method depends on the dataset (0.67 for MAWILab-
2018, 0.43 for ISCX-2017 and 0.47 for ISCX-2012 dataset). Further-
more, the epsilon hyperparameter varies for each dataset in order to
achieve the highest silhouette score (epsilon = 0.2 for MAWILab-2018,
0.3 for ISCX-2017 and 0.20 for ISCX-2012). Hence DBSCAN needs to be
tuned based on each dataset. Similar to previous method, the silhouette
score and epsilon value depends on the dataset meaning the model is
not robust.

Furthermore, as illustrated in Figs. 16–21, though the Vanilla VAE
makes the classes look more like clusters, yet the clusters are still close
to each other and overlap in this new feature space which will make
clustering a hard task.

5.3. DBSCAN and Lambda VAE

This experiment applies Lambda VAE feature extraction with DB-
SCAN to cluster unknown traffic. Notice that known traffic is used in
these experiments without its labels. The Lambda VAE was used here in
order to encourage the clustering of the data in the latent space because
the original VAE does not enforce any clustering in the latent space.
In fact, the VAE loss function encourages the latent embeddings to be
around the origin which is not very useful since it creates overlapping
clusters.

Figs. 22–24 show the performance evaluation of DBSCAN-
LambdaVAE for each dataset. Though, this method is examined for
two values of MinPts hyperparameter where the minimum number of

Journal of Network and Computer Applications 207 (2022) 103513

10

M. Monshizadeh et al.

Fig. 14. DBSCAN_Vanilla VAE for ISCX-2017.

Fig. 15. DBSCAN_Vanilla VAE for ISCX-2012.

Fig. 16. DBSCAN_Vanilla VAE with first feature set for MAWILab-2018.

packets assigned in each cluster are not less than 5 and 10, only the
results for MinPts = 10 is presented in this section.

From Figs. 22–24, it is obvious that maximum silhouette score
achieved by this method depends on the dataset (0.38 for MAWILab-
2018, 0.47 for ISCX-2017 and 0.49 for ISCX-2012 dataset). Further-
more, the epsilon hyperparameter varies for each dataset in order to
achieve the highest silhouette score (epsilon = 0.2 for MAWILab-2018,
0.3 for ISCX-2017 and 0.3 for ISCX-2012). Hence DBSCAN needs to be
tuned based on each dataset. Similar to previous method, the silhouette
score and epsilon value depends on the dataset meaning the model is
not robust.

In this experiment, the Lambda VAE is supposed to encourage
pushing each class far from others in the latent space in order solve

Fig. 17. DBSCAN_Vanilla VAE with second feature set for MAWILab-2018.

Fig. 18. DBSCAN_Vanilla VAE with first feature set for ISCX-2017.

Fig. 19. DBSCAN_Vanilla VAE with second feature set for ISCX-2017.

Journal of Network and Computer Applications 207 (2022) 103513

11

M. Monshizadeh et al.

Fig. 20. DBSCAN_Vanilla VAE with first feature set for ISCX-2012.

Fig. 21. DBSCAN_Vanilla VAE with second feature set for ISCX-2012.

the class overlapping problem. While the lambda VAE slightly reduces
the overlapping, it does not solve the problem completely as shown
in Figs. 25–30 for all datasets. Therefore, the clustering cannot be
performed directly on feature space created by the extracted features
using lambda VAE.

5.4. ADBC

This method aims to change the data space by creating a more
robust distance metric that replaces the Euclidean distance. Therefore,
the distance between the data points in the new space will be computed
according to a clustering-based distance instead of the usual Euclidean
distance.

In order to create this distance, the first step is to apply different
clustering algorithms to the input data. For instance, this paper ap-
plies the same clustering algorithm k-means, with different numbers
of clusters. In other words, it apples k-means with several values for
hyperparameters to create different clusterings.

In the second step, the previous clusterings are used in order to
create the Co-Association Matrix as explained in Section 3. The Co-
Association Matrix allows to directly deduce the distance matrix which
will be used as an input for DBSCAN.

Fig. 22. DBSCAN_Lambda VAE for MAWILab-2018.

Fig. 23. DBSCAN_Lambda VAE for ISCX-2017.

Fig. 24. DBSCAN_Lambda VAE for ISCX-2012.

Fig. 25. DBSCAN_Lambda VAE with first feature set for MAWILab-2018.

Journal of Network and Computer Applications 207 (2022) 103513

12

M. Monshizadeh et al.

Fig. 26. DBSCAN_Lambda VAE with second feature set for MAWILab-2018.

Fig. 27. DBSCAN_Lambda VAE with first feature set for ISCX-2017.

Fig. 28. DBSCAN_Lambda VAE with second feature set for ISCX-2017.

Fig. 29. DBSCAN_Lambda VAE with first feature set for ISCX-2012.

Fig. 30. DBSCAN_Lambda VAE with second feature set for ISCX-2012.

The following explains the steps of ADBC architecture. In general,
the ADBC architecture has four main phases:

1. Creating a Co-Association Matrix with applying N different clus-
tering methods to a subset of the input data in order to produce
N clustering sets. This step will help us avoid the drawbacks of
a single clustering technique applied to an intrusion detection
dataset with clusters having very different densities. In fact, the
application of a single clustering algorithm is never sufficient
nor stable because the result varies a lot with minor changes in
the hyperparameters or the input data. In this step, the different
clustering algorithms or even the same algorithm with different
hyperparameters or initializations are applied.

2. Applying DBSCAN on the distance matrix (deduced from the Co-
Association Matrix) representing the new distance between data
points in order to detect the attack clusters. For this purpose,
a co-association matrix that is a combination of the obtained N
clustering sets is created. A distance matrix can be easily derived
from this co-association matrix. The distance represented in
this matrix is different from the Euclidean distance that rarely
reflects the similarity between packets in real scenarios. In fact,
this distance is based on the following idea: the more often
two packets fall into the same cluster when several clustering

Journal of Network and Computer Applications 207 (2022) 103513

13

M. Monshizadeh et al.

Fig. 31. Distance matrix of MAWILab-2018.

Fig. 32. Distance matrix of ISCX-2017.

algorithms are applied, the more similar they are and the more
likely they are to belong to the same attack type. Therefore,
the combination process that is used to obtain the co-association
matrix is based on a voting mechanism.

3. As the resulting distance matrix represents the input data points
in a new feature space where the distance between the points is
a new measure of similarity, DBSCAN can be applied directly to
this distance matrix in order to detect the attack classes.

4. The created clusters will be generalized to the whole dataset and
analyzed by a security investigator (human or an algorithm) in
order to identify malicious clusters.

Figs. 31–33 show the distance matrices which are issued from the
co-association matrices for the three datasets. These distance matrices
are grouped by clusters and reveal that the proposed architecture can
detect the known attack classes without using the labels. The similar
distance matrices can be obtained with variations in the DBSCAN
parameters, which shows the robustness of the final clustering. This
is due to the voting mechanism that was used to create the distances it
means the more often two data points appear in the same clusters, the
smaller the distance between them.

In these figures, data points are grouped into attack classes. In the
distance matrices, these classes are somehow visible. In fact, they can
be detected using white areas (where the distance between data points
is low).

Fig. 33. Distance matrix of ISCX-2012.

5.5. Performance evaluation

In order to evaluate ADBC performance, a comprehensive exam-
ination has been done based on the architecture robustness and for
different implementation factors such as hyperparameter setting and
diverse datasets. Figs. 34–39 depict the performance of the obtained
clustering architecture for each dataset. Though most studies in this
field consider only silhouette score for performance evaluation, this
paper presents the homogeneity score in addition to silhouette score to
evaluate the ADBC performance. If the homogeneity score is high, each
cluster will be mainly composed of the same attack class. However, the
overall number of clusters will be high which is, in general, a drawback
for the security investigator as this means that more investigation time
will be needed. If the homogeneity score is less important, there will
be fewer clusters to investigate however there is no guarantee that
they are composed mainly of the same attack. Therefore, in order to
select proper evaluation metrics, finding a good compromise between
the homogeneity score and the silhouette score is important.

This paper combines both supervised and unsupervised scores to
have a more complete idea about the performance of the clustering
and the coherence of the insights that will be given based on the
known traffic. Consequently, this paper focuses on the silhouette score
because intuitively, a high silhouette score indicates that the clusters
are compact (each point is similar to the other points in its cluster) and
well separated (each point is unlike the points in other clusters) which
gives an idea about the clusters for both unknown and known traffic.
Moreover, this study considers the homogeneity score which ensures
that the clusters contain mainly the same data points at each time (this
score does not include the unknown traffic as it is a supervised score).

As it is illustrated in Figs. 34–39 for the MinPts=10 for the same
hyperparameter epsilon(eps = 0.05), the architecture provides the high-
est silhouette score 0.99 for MAWILab-2018, 0.99 for ISCX-2017 and
0.98 for ISCX-2012. Similarly, for MinPts=5 for epsilon = 0.05 the
highest silhouette score is achieved for three datasets. In addition, the
highest homogeneity score is achieved for all datasets and with same
hyperparameter settings. These results conclude that the architecture
does not need to be tuned often. Therefore, it can be claimed that one
of the main achievements of this architecture is the robustness against
different datasets.

5.6. Cluster analysis

This paper provides insights based on the created clusters to a
cybersecurity investigator to help in detecting unknown attacks. The
cluster composition analysis is based on the type of packets in each

Journal of Network and Computer Applications 207 (2022) 103513

14

M. Monshizadeh et al.

Fig. 34. Performance scores for MAWILab-2018 for MinPts = 5.

Fig. 35. Performance scores for MAWILab-2018 for MinPts = 10.

Fig. 36. Performance scores for ISCX-2017 for MinPts = 5.

Fig. 37. Performance scores for ISCX-2017 for MinPts = 10.

cluster. Therefore, instead of analyzing thousands of packets, only
few samples will be investigated, and result would be generalized to
the entire cluster. This approach helps the security investigator with
reducing the time and computation resources.

Fig. 38. Performance scores for ISCX-2012 for MinPts = 5.

Fig. 39. Performance scores for ISCX-2012 for MinPts = 10.

• Class -2: Current cluster contains both outliers and normal traffic.
To solve this issue, these two categories can be separated (as
it is possible in DBSCAN to consider a separate class −1 for
noise). Furthermore, some techniques such as user profiling can
be applied to separate different type of normal traffic that are
distributed among the clusters.

• Class 0: Though the output of the model still has an unknown
cluster, the packets that are categorized as unknown are much
less than original ones. In addition, the approach gives possibil-
ity to security investigator to analyze one unknown packet and
generalize the analysis to other packets in the cluster.

• Class 3, 4 and 5: These clusters represent multipoint attack cat-
egories and they are labeled based on the services rather than
attack types. Therefore, there is overlapping between some of the
clusters for the mentioned attacks.

An example of cluster composition for a subset of MAWILab-2018
and hyperparameters: eps = 0.1 and MinPts = 5 is depicted in Table 3
after applying ADBC on the mentioned dataset.

This table depicts the number of packets in each cluster distributed
according to various attack categories. This clustering achieved a sil-
houette score of 0.958 with 26 clusters and produces 32 noise packets.

For this example, a hyperparameter tuning is used in order to
balance the total number of clusters, the size of each cluster and the
performance metrics. The obtained metrics for this example are:

• Homogeneity score 0.8061
• Silhouette score 0.9584

The unknown traffic contained in these clusters will be manually
analyzed by the security investigator to identify normal and attack
behaviors. However, the provided clusters will point the investigator’s
attention to new attacks, hence facilitate the unknown traffic analysis.
Therefore, it is important to provide the investigator with complete
information about the composition of the clusters in order to speed up
the investigation.

Journal of Network and Computer Applications 207 (2022) 103513

15

M. Monshizadeh et al.

Table 3
Cluster analysis for MAWILab-2018.

Class No.

−2 0 2 3 4 5 6 7 8 9

Cl
us

te
r

1 38 20 4 8
2 33 2897 1
3 639 6 9 882
4 3566
5 2212 301
6 486 8 18 2704
7 590 11 299 1432
8 11 128 4368
9 943 28 7 2168 3
10 198 2 75 4888 4
11 1044 18 811 1925 2
12 1071
13 533 11 175 4
14 3258
15 1097
16 1641 104 45 49
17 432
18 159 21 400
19 97 1 564 1
20 482
21 80 22 37 3 2
22 345 5
23 178
24 1 80
25 23
26 22 1

For instance, if the threshold is considered 50 packets in the Table 3
then for cluster 16, there are 1641 packets classified as safe and 104
packets classified as unknown. The classes 3 (45 packets) and 4 (49
packets) will be discarded since packets in these classes are under the
threshold. Hence, the investigator only analyzes two classes.

In the analysis process, clusters that contain less than the packet
threshold, may be discarded. For the rest of the clusters and for de-
creasing computation resources, the packet numbers in each cluster will
be converted to percentage of total number of packets. Furthermore,
the malicious clusters and consequently, the attack packets will be
identified based on some characteristics (e.g., the time stamp in relation
to location of generated packets and so on) by security investigator.

The detected attack packets will be fed into the architecture for
training purposes. Hence, the architecture will be trained periodically
with new packets after a time threshold (e.g., monthly). The threshold
time for training process will be defined based on the computation
requirements.

Thus, it must be determined whether the algorithms have previously
undergone training by newly detected attack packets. If no training has
been previously done, then new training will be needed for clustering
algorithms. Likewise, if the algorithms have already been trained, but
the training took place outside a predefined time window or after a
predefined amount of data, then the algorithms undergo retraining to
ensure it can handle data properly. The time window and the amount
of data may be selected by a user based on the application.

6. Discussion and future direction

As it was described in Section 2, several studies have applied
unsupervised techniques to analyze datasets and cluster the datapoints
based on their similarities. As it is shown in Table 4, these studies
apply optimized version of DBSCAN or a combination of DBSCAN with
various clustering techniques in order to categorize different type of
datasets. Though, some of these methods provide good silhouette score,
yet the achieved performance considerably depends on the datasets. In
addition, hyperparameter settings are changing based on the different
datasets. It must be noted that some of the prior art methods are
applied for different application than IDS, their employed datasets
are dissimilar to network traffic dataset, their testing conditions are

distinct and even the presented results lack a thorough analysis of
clusters quality. Therefore, in order to have a valid comparison between
ADBC and other methods, similar dataset and testing environment
are required, therefore authors implemented some of the prior art
methods such as DBSCAN, DBSCAN-SVM𝑜, DBSCAN-VAEs in similar
testing environment and on the same datasets. The achieved results
proved the ADBC outperforms prior art methods in term of clustering
performance and robustness.

In Fig. 40, the first plot shows the classes in the input space, where
there are no natural clusters. Therefore, a clustering algorithm like
DBSCAN cannot be applied directly to this input space. Hence, the
DBSCAN is applied on different feature spaces as described in the
previous sections. In the second and third experiments, DBSCAN was
applied on a latent space of a VAE and a lambda VAE where the classes
look more like clusters. However, these clusters have very distinct
densities, and they are overlapping. Therefore, DBSCAN is applied on
a co-association matrix in the last experiment in order to solve all
the mentioned problems. This method helps to resolve the problem of
varying densities of clusters and the overlapping problem.

Furthermore, a cluster composition analysis is presented based on
the number of packets in each cluster and according to various attack
categories. This analysis is intended to give insights to the cybersecurity
investigator. Accordingly, it will be sufficient for security investigator
to analyze a few packets belonging to each cluster and generalize the
result to all packets belonging to the cluster rather than analyzing every
packet. However, in order to determine the type of activity that each
cluster corresponds, each cluster centroid or mean must be checked
and inspected manually. On the other hand, the point to multipoint
attacks provided in the applied dataset are labeled based on services
rather than attack categories. Therefore, the clustering results provided
in Table 3 demonstrate overlapping between some of the clusters for
the mentioned attack categories. In order to avoid such overlapping
(in the evaluation phase) another dataset can be applied with distinct
distribution of attacks per protocol.

Moreover, the complexity and scale of learning algorithms are still
questionable and out of scope of this paper and will be investigated by
authors in the future work. In addition, the authors aim to automate
the cluster analysis part and reduce the human interaction with ML
algorithms.

Journal of Network and Computer Applications 207 (2022) 103513

16

M. Monshizadeh et al.

Table 4
Prior art methods comparison.

Model Dataset Silhouette score Arguments

• GBC (Muhlenbach
and Lallich, 2009)

• auto-mpg
• Breast Cancer Wisconsin
• Ecoli
• Iris
• Ruspini
• Test 2 Clusters
• Test with random values
• Yin and Yang

• 0.53 (kua = 2), 0.41 (ku = 5)
• 0.49 (ku = 2)
• 0.72 (ku = 3), 0.30 (ku = 8)
• 0.80 (ku = 2), 0.70 (ku = 3)
• 0.91 (ku = 4)
• 0.82 (ku = 4)
• −0.59 (ku = 4)
• 0.14 (ku = 2)

• Datasets consist of randomly selected points and do not have
similar pattern as network traffic dataset.
• This method is limited to hard clustering and fails if there is
recovery between the different clusters.
• The silhouette score greatly depends on the dataset where the
achieved values are between −0.593 and 0.910.
• Hyperparameters setting are changing based on datasets.

• DBSCAN
• Kmeans
• Agglomerative
(Turner and Joseph,
2017)

• Snort rule 2.9.9.0 • 0.81
• 0.84
• 0.84

• Datasets are snort rules for UDP, TCP and ICMP.
• Experiments are on few samples and concentrate on snort rules.
• Results are provided for one dataset without any analysis on
hyperparameter settings.

• Optimized DBSCAN
(Sun et al., 2020)

• set1-upc
• set2-camus

• 0.77 (eps = 4.2)
• 0.67 (eps = 4.8)

• Datasets are internet messages.
• Datasets are small size (36MB and 518KB).
• Hyperparameter epsilon changes for datasets to achieve highest
silhouette score.

• IIDBG (Xue-yong
et al., 2010)

• KDD Cup 1999 Data • NA • Model is applied for IDS application with network traffic dataset.
• The study provides supervised metrics such as detection rate and
false negative ratio for performance evaluation.
• The study applied clustering technique and discussed about
hyperparameter such as epsilon and MinPts setting.
• The study did not provide any analysis on clusters and
unsupervised metric such as silhouette score.

• DB-Kmeans (Dong
et al., 2019)

• NSL-KDD • NA • Model is applied for IDS application and employed network traffic
dataset.
• The study provides supervised metrics such as detection rates and
false negative ratio for performance evaluation.
• The study applied clustering technique but did not provide
analysis on clusters and unsupervised metric such as silhouette
score.

• Combination of
DBSCAN, K-Means++
and SMO algorithms
(Shakya and Makwana,
2017)

• KDD • NA • Study is for IDS application with network traffic dataset.
• The study provides supervised metric such as accuracy for
performance evaluation.
• DBSCAN is used for noise reduction and not for clustering.

• DBSCAN (Sabottke
et al., 2019)

• Web server logs • 0.99 (eps = 0.1) • Robustness against different dataset is not evaluated.
• The obtained clusters are composed of different types of attacks
(mixed clusters) that makes analysis difficult.
• The result of packet per cluster analysis cannot be generalized to
the entire cluster.

• HDBSCAN (Dockhorn
et al., 2015)

• Aggregation
• Moon
• Blobs-1000D
• Spiral
• R15
• D31
• Flame

• 0.89 (eps = 1.42)
• 0.68 (eps = 0.22)
• 1.00 (eps = 47.27)
• 1.00 (eps = 3.66)
• 0.91 (eps = 0.42)
• 0.87 (eps = 1.02)
• 0.60 (eps = 2.66)

• V-measures are provided for performance evaluation.
• Model is proper for convex shaped clusters rather than
density-based clusters.
• Hyperparameter epsilon changes for different datasets to achieve
high silhouette score.

• Evidence
Accumulation
Clustering (Fred and
Jain, 2005)

• Random data in a
five-dimensional hypercube

• Half-rings
• Three concentric rings
• Cigar
• Iris

• NA • Method is applied for image analysis.
• Metrics such as number of clusters in clustering ensemble is used
for the performance evaluation.

aku is the number of clusters used for the test.

7. Conclusion

In the field of machine learning, non-labeled data analysis is one of
the well-known challenges. In real-life scenarios, considerable amount
of incoming data does not belong to any known category; and for
unknown traffic, dividing data into the classes without having infor-
mation on the nature of the traffic is challenging. Hence, clustering
methods are introduced to gain some insight into the structure of the
data. However, clustering techniques also have some drawbacks such
as overlapping as clusters can appear with different shapes, sizes, and
data density; in addition, it is difficult to generalize an algorithm for
different dataset with the same hyperparameters tuning. Therefore, to
solve the mentioned challenges, a novel and combined unsupervised

approach is proposed in this paper. The architecture utilizes several
clustering algorithms in conjunction with co-association matrix and a
DBSCAN in order to categorize unknown traffic into various clusters.
The model Introduces a new metric that helps to achieve high silhouette
score by changing the feature space. The new similarity metric is
different from Euclidean distance, where the distance between data
points reflects the similarity between packets.

The illustrated results in this paper prove that architecture provides
very high silhouette score (almost 0.99) that means clusters (attack
classes) are distinct and with minimum overlapping. Therefore, this
method helped to resolve the problem of varying densities of clusters
and the overlapping problem. Similar analysis has been done for other

Journal of Network and Computer Applications 207 (2022) 103513

17

M. Monshizadeh et al.

Fig. 40. Performance comparison among different techniques.

datasets with different size and divers attacks in order to verify archi-
tecture robustness and scalability. Therefore, it can be claimed that one
of the main achievements of this architecture is the robustness against
different datasets where with the same hyperparameter (epsilon), the
architecture provides the highest silhouette score.

Furthermore, study provides cluster analysis generalization in a
way that few packets from each generated cluster are analyzed, the
malicious packets are identified, and the result of analysis is generalized
to the entire cluster. This approach saves security investigator time and
resources.

CRediT authorship contribution statement

Mehrnoosh Monshizadeh: Conceptualization, Methodology, Vali-
dation, Resources, Writing – review & editing, Writing – original draft,
Software, Visualization. Vikramajeet Khatri: Data curation, Valida-
tion, Writing – review & editing, Software, Visualization. Raimo Kan-
tola: Supervision, Writing – review & editing. Zheng Yan: Supervision,
Writing – review & editing.

Declaration of competing interest

The authors declare the following financial interests/personal re-
lationships which may be considered as potential competing inter-
ests: Mehrnoosh Monshizadeh reports financial support and equipment,
drugs, or supplies were provided by Nokia Bell Labs. Mehrnoosh Mon-
shizadeh reports a relationship with Nokia Bell Labs that includes: em-
ployment and equity or stocks. Mehrnoosh Monshizadeh has patent SE-
CURITY IN COMMUNICATION NETWORKS pending to Nokia Networks
(FI 20225102).

Data availability

The authors do not have permission to share data.

References

Bedi, P., Gupta, N., Jindal, V., 2021. I-SiamIDS: an improved Siam-IDS for handling
class imbalance in network-based intrusion detection systems. Appl. Intell. 51 (2),
1133–1151. http://dx.doi.org/10.1007/s10489-020-01886-y.

Chen, X.-W., 2003. Gene selection for cancer classification using bootstrapped genetic
algorithms and support vector machines. In: Computational Systems Bioinformatics.
CSB2003. Proceedings of the 2003 IEEE Bioinformatics Conference. CSB2003. pp.
504–505. http://dx.doi.org/10.1109/CSB.2003.1227389.

Das, A., 2021. Unsupervised learning techniques using python - K means and
silhouette score for clustering. URL https://towardsdatascience.com/unsupervised-
learning-techniques-using-python-k-means-and-silhouette-score-for-clustering-
d6dd1f30b660 [cited 2021-09-17].

Dockhorn, A., Braune, C., Kruse, R., 2015. An alternating optimization approach
based on hierarchical adaptations of DBSCAN. 2015 IEEE Symposium Series on
Computational Intelligence 749–755. http://dx.doi.org/10.1109/SSCI.2015.113.

Dong, G., Jin, Y., Wang, S., Li, W., Tao, Z., Guo, S., 2019. DB-Kmeans:An intrusion
detection algorithm based on DBSCAN and K-means. In: 2019 20th Asia-Pacific
Network Operations and Management Symposium (APNOMS). pp. 1–4. http://dx.
doi.org/10.23919/APNOMS.2019.8892910.

Ester, M., Kriegel, H.-P., Sander, J., Xu, X., 1996. A density-based algorithm for
discovering clusters in large spatial databases with noise. In: Proceedings of the
Second International Conference on Knowledge Discovery and Data Mining. pp.
226–231, URL https://dl.acm.org/doi/10.5555/3001460.3001507.

Fontugne, R., Borgnat, P., Abry, P., Fukuda, K., 2010. Mawilab: combining diverse
anomaly detectors for automated anomaly labeling and performance benchmarking.
In: Proceedings of the 6th International Conference (Co-NEXT ’10). URL https:
//doi.org/10.1145/1921168.1921179.

Fred, A.L.N., Jain, A.K., 2005. Combining multiple clusterings using evidence accumu-
lation. IEEE Trans. Pattern Anal. Mach. Intell. 27, 835–850. http://dx.doi.org/10.
1109/TPAMI.2005.113.

Jongsuebsuk, P., Wattanapongsakorn, N., Charnsripinyo, C., 2013. Network intrusion
detection with fuzzy genetic algorithm for unknown attacks. In: The International
Conference on Information Networking 2013 (ICOIN). pp. 1–5. http://dx.doi.org/
10.1109/ICOIN.2013.6496342.

Khan, K., ur Rehman, S., Aziz, K., Fong, S.J., Sarasvady, S., Vishwa, A., 2014. DBSCAN:
Past, present and future. In: The Fifth International Conference on the Applications
of Digital Information and Web Technologies (ICADIWT 2014). pp. 232–238.
http://dx.doi.org/10.1109/ICADIWT.2014.6814687.

Kim, M., Na, H., Chae, K., Bang, H., Na, J., 2004. A combined data mining approach for
ddos attack detection. In: Kahng, H.-K., Goto, S. (Eds.), Information Networking.
Networking Technologies for Broadband and Mobile Networks. Springer Berlin
Heidelberg, pp. 943–950. http://dx.doi.org/10.1007/978-3-540-25978-7_95.

Kingma, D.P., Welling, M., 2014. Auto-encoding variational Bayes. arXiv:1312.6114.
Li, X., Chen, W., Zhang, Q., Wu, L., 2020. Building auto-encoder intrusion

detection system based on random forest feature selection. Comput. Secur.
95, 101851. http://dx.doi.org/10.1016/j.cose.2020.101851, URL https://www.
sciencedirect.com/science/article/pii/S0167404820301231.

Lin, S.-C., Chen, P.S., Chang, C.-C., 2014. A novel method of mining network flow to
detect P2P botnets. Peer-to-Peer Netw. Appl. 7 (4), 645–654. http://dx.doi.org/10.
1007/s12083-012-0195-x.

Mehmood, T., Md Rais, H.B., 2016. Machine learning algorithms in context of
intrusion detection. In: 2016 3rd International Conference on Computer and
Information Sciences (ICCOINS). pp. 369–373. http://dx.doi.org/10.1109/ICCOINS.
2016.7783243.

Monshizadeh, M., Khatri, V., Atli, B.G., Kantola, R., 2018. An intelligent defense and
filtration platform for network traffic. In: Wired/Wireless Internet Communications
(WWIC). pp. 107–118. http://dx.doi.org/10.1007/978-3-030-02931-9_9.

Monshizadeh, M., Khatri, V., Atli, B.G., Kantola, R., Yan, Z., 2019. Performance evalu-
ation of a combined anomaly detection platform. IEEE Access 7, 100964–100978.
http://dx.doi.org/10.1109/ACCESS.2019.2930832.

Monshizadeh, M., Khatri, V., Gamdou, M., Kantola, R., Yan, Z., 2021. Improving data
generalization with variational autoencoders for network traffic anomaly detection.
IEEE Access 9, 56893–56907. http://dx.doi.org/10.1109/ACCESS.2021.3072126.

Monshizadeh, M., Yan, Z., 2014. Security related data mining. In: 2014 IEEE In-
ternational Conference on Computer and Information Technology. pp. 775–782.
http://dx.doi.org/10.1109/CIT.2014.130.

Muhlenbach, F., Lallich, S., 2009. A new clustering algorithm based on regions of
influence with self-detection of the best number of clusters. In: 2009 Ninth IEEE
International Conference on Data Mining. pp. 884–889. http://dx.doi.org/10.1109/
ICDM.2009.133.

Ozdemir, A., Bolaños, M., Bernat, E., Aviyente, S., 2015. Hierarchical spectral consensus
clustering for group analysis of functional brain networks. IEEE Trans. Biomed. Eng.
62 (9), 2158–2169. http://dx.doi.org/10.1109/TBME.2015.2415733.

http://dx.doi.org/10.1007/s10489-020-01886-y
http://dx.doi.org/10.1109/CSB.2003.1227389
https://towardsdatascience.com/unsupervised-learning-techniques-using-python-k-means-and-silhouette-score-for-clustering-d6dd1f30b660
https://towardsdatascience.com/unsupervised-learning-techniques-using-python-k-means-and-silhouette-score-for-clustering-d6dd1f30b660
https://towardsdatascience.com/unsupervised-learning-techniques-using-python-k-means-and-silhouette-score-for-clustering-d6dd1f30b660
https://towardsdatascience.com/unsupervised-learning-techniques-using-python-k-means-and-silhouette-score-for-clustering-d6dd1f30b660
https://towardsdatascience.com/unsupervised-learning-techniques-using-python-k-means-and-silhouette-score-for-clustering-d6dd1f30b660
http://dx.doi.org/10.1109/SSCI.2015.113
http://dx.doi.org/10.23919/APNOMS.2019.8892910
http://dx.doi.org/10.23919/APNOMS.2019.8892910
http://dx.doi.org/10.23919/APNOMS.2019.8892910
https://dl.acm.org/doi/10.5555/3001460.3001507
https://doi.org/10.1145/1921168.1921179
https://doi.org/10.1145/1921168.1921179
https://doi.org/10.1145/1921168.1921179
http://dx.doi.org/10.1109/TPAMI.2005.113
http://dx.doi.org/10.1109/TPAMI.2005.113
http://dx.doi.org/10.1109/TPAMI.2005.113
http://dx.doi.org/10.1109/ICOIN.2013.6496342
http://dx.doi.org/10.1109/ICOIN.2013.6496342
http://dx.doi.org/10.1109/ICOIN.2013.6496342
http://dx.doi.org/10.1109/ICADIWT.2014.6814687
http://dx.doi.org/10.1007/978-3-540-25978-7_95
http://arxiv.org/abs/1312.6114
http://dx.doi.org/10.1016/j.cose.2020.101851
https://www.sciencedirect.com/science/article/pii/S0167404820301231
https://www.sciencedirect.com/science/article/pii/S0167404820301231
https://www.sciencedirect.com/science/article/pii/S0167404820301231
http://dx.doi.org/10.1007/s12083-012-0195-x
http://dx.doi.org/10.1007/s12083-012-0195-x
http://dx.doi.org/10.1007/s12083-012-0195-x
http://dx.doi.org/10.1109/ICCOINS.2016.7783243
http://dx.doi.org/10.1109/ICCOINS.2016.7783243
http://dx.doi.org/10.1109/ICCOINS.2016.7783243
http://dx.doi.org/10.1007/978-3-030-02931-9_9
http://dx.doi.org/10.1109/ACCESS.2019.2930832
http://dx.doi.org/10.1109/ACCESS.2021.3072126
http://dx.doi.org/10.1109/CIT.2014.130
http://dx.doi.org/10.1109/ICDM.2009.133
http://dx.doi.org/10.1109/ICDM.2009.133
http://dx.doi.org/10.1109/ICDM.2009.133
http://dx.doi.org/10.1109/TBME.2015.2415733

Journal of Network and Computer Applications 207 (2022) 103513

18

M. Monshizadeh et al.

Phadke, A., Kulkarni, M., Bhawalkar, P., Bhattad, R., 2019. A review of machine
learning methodologies for network intrusion detection. In: 2019 3rd Interna-
tional Conference on Computing Methodologies and Communication (ICCMC). pp.
272–275. http://dx.doi.org/10.1109/ICCMC.2019.8819748.

Pietro, A.D., philippe Vasseur, J., Cruz, M.J., 2016. Signature creation for unknown
attacks. U.S. Patent 20160028750(A1).

Portela, F.G., Almenares Mendoza, F., Benavides, L.C., 2019. Evaluation of the
performance of supervised and unsupervised machine learning techniques for
intrusion detection. In: 2019 IEEE International Conference on Applied Science and
Advanced Technology (ICASAT). pp. 1–8. http://dx.doi.org/10.1109/iCASAT48251.
2019.9069538.

Ring, M., Wunderlich, S., Scheuring, D., Landes, D., Hotho, A., 2019. A survey of
network-based intrusion detection data sets. Comput. Secur. 86, 147–167. http://dx.
doi.org/10.1016/j.cose.2019.06.005, URL https://www.sciencedirect.com/science/
article/pii/S016740481930118X.

Rosenberg, A., Hirschberg, J., 2007. V-Measure: A conditional entropy-based external
cluster evaluation measure. In: Proceedings of the 2007 Joint Conference on
Empirical Methods in Natural Language Processing and Computational Natural
Language Learning (EMNLP-CoNLL). pp. 410–420", URL https://aclanthology.org/
D07-1043.

Sabottke, C.F., Chen, D., Layman, L., Dumitras, T., 2019. How to trick the borg:
threat models against manual and automated techniques for detecting network
attacks. Comput. Secur. 81, 25–40. http://dx.doi.org/10.1016/j.cose.2018.07.022,
URL https://www.sciencedirect.com/science/article/pii/S0167404818311283.

2021. Scikit-learn: machine learning in python. URL https://scikit-learn.org/stable/
[cited 2021-10-11].

Shakya, V., Makwana, R.R.S., 2017. Feature selection based intrusion detection system
using the combination of DBSCAN, K-Mean++ and SMO algorithms. In: 2017
International Conference on Trends in Electronics and Informatics (ICEI). pp.
928–932. http://dx.doi.org/10.1109/ICOEI.2017.8300843.

Sharafaldin, I., Lashkari, A.H., Ghorbani, A.A., 2018. Toward generating a new intrusion
detection dataset and intrusion traffic characterization. In: Proceedings of the 4th
International Conference on Information Systems Security and Privacy - ICISSP.
http://dx.doi.org/10.5220/0006639801080116.

Shiravi, A., Shiravi, H., Tavallaee, M., Ghorbani, A.A., 2012. Toward developing
a systematic approach to generate benchmark datasets for intrusion detection.
Comput. Secur. 31, 357–374. http://dx.doi.org/10.1016/j.cose.2011.12.012, URL
https://www.sciencedirect.com/science/article/pii/S0167404811001672.

2021. Sklearn metrics silhouette score. URL https://scikit-learn.org/stable/modules/
generated/sklearn.metrics.silhouette_score.html [cited 2021-06-09].

Sun, J., Wang, X., Xiong, N., Shao, J., 2018. Learning sparse representation with
variational auto-encoder for anomaly detection. IEEE Access 6, 33353–33361.
http://dx.doi.org/10.1109/ACCESS.2018.2848210.

Sun, F., Wang, S., Zhang, C., Zhang, H., 2020. Clustering of unknown protocol messages
based on format comparison. Comput. Netw. 179, 107296. http://dx.doi.org/10.
1016/j.comnet.2020.107296, URL https://www.sciencedirect.com/science/article/
abs/pii/S138912862030445X.

2022. Top 10 BEST intrusion detection systems (IDS) [2022 rankings]. Software test-
ing help. URL https://www.softwaretestinghelp.com/intrusion-detection-systems/
[cited 2022-06-20]..

Turner, C., Joseph, A., 2017. A statistical and cluster analysis exploratory study
of snort rules. Procedia Comput. Sci. 114, 106–115. http://dx.doi.org/10.
1016/j.procs.2017.09.023, URL https://www.sciencedirect.com/science/article/pii/
S1877050917318173, Complex Adaptive Systems Conference with Theme: Engi-
neering Cyber Physical Systems, CAS October 30 – November 1, 2017, Chicago,
Illinois, USA.

Wang, A., Blair, N., Belkhale, S., 2019. Encouraging categorical meaning in the latent
space of a VAE. URL https://www.nathanblair.me/pdfs/Encouraging_categorical_
meaning_in_the_latent_space_of_a_VAE.pdf.

Wang, X., Du, Y., Lin, S., Cui, P., Shen, Y., Yang, Y., 2020. adVAE: A self-adversarial
variational autoencoder with Gaussian anomaly prior knowledge for anomaly
detection. Knowl.-Based Syst. 190, 105187. http://dx.doi.org/10.1016/j.knosys.
2019.105187.

Wang, W., Zhang, X., Gombault, S., Knapskog, S.J., 2009. Attribute normalization in
network intrusion detection. In: 2009 10th International Symposium on Pervasive
Systems, Algorithms, and Networks. pp. 448–453. http://dx.doi.org/10.1109/I-
SPAN.2009.49.

Wei, Y., Chow, K.-P., Yiu, S.-M., 2020. Insider threat detection using multi-autoencoder
filtering and unsupervised learning. In: Peterson, G., Shenoi, S. (Eds.), Advances
in Digital Forensics XVI. Springer International Publishing, pp. 273–290. http:
//dx.doi.org/10.1007/978-3-030-56223-6_15.

Xue-yong, L., Guo-hong, G., Jia-xia, S., 2010. A new intrusion detection method based
on improved DBSCAN. In: 2010 WASE International Conference on Information
Engineering, Vol. 2. pp. 117–120. http://dx.doi.org/10.1109/ICIE.2010.123.

Yadav, N., Scheib, E., Agasthy, R., 2016. Network behavior data collection and analytics
for anomaly detection. U.S. Patent 20160359695(A1).

Yang, Y., Zheng, K., Wu, C., Yang, Y., 2019. Improving the classification effectiveness
of intrusion detection by using improved conditional variational AutoEncoder and
deep neural network. Sensors 19 (11), http://dx.doi.org/10.3390/s19112528, URL
https://www.mdpi.com/1424-8220/19/11/2528.

Yang, Y., Zheng, K., Wu, B., Yang, Y., Wang, X., 2020. Network intrusion detection
based on supervised adversarial variational auto-encoder with regularization. IEEE
Access 8, 42169–42184. http://dx.doi.org/10.1109/ACCESS.2020.2977007.

Yousefi-Azar, M., Varadharajan, V., Hamey, L., Tupakula, U., 2017. Autoencoder-
based feature learning for cyber security applications. In: 2017 International Joint
Conference on Neural Networks (IJCNN). pp. 3854–3861. http://dx.doi.org/10.
1109/IJCNN.2017.7966342.

Mehrnoosh Monshizadeh is finalizing her PhD at Electrical
School of Aalto University, Finland. She is working at
Nokia Bell Labs as security research specialist. Her research
interests include cloud security, mobile network security,
IoT security and data analytics.

Vikramajeet Khatri has M.Sc. degree in information tech-
nology from Tampere University of Technology, Finland.
He is working as security specialist at Nokia Bell Labs.
His research interests include intrusion detection, malware
detection, IoT security and cloud security.

Raimo Kantola has a D.Tech degree in computer science
from Helsinki University of Technology, Finland. He is
a professor in networking technology at department of
Comnet, Aalto University, Finland. His research interests
include SDN, customer edge switching, trust in networks
and cloud security.

Zheng Yan received the D.Sc. degree in technology from
the Helsinki University of Technology, Espoo, Finland, in
2007. She is currently a Professor in the School of Cyber
Engineering, Xidian University, Xi’an, China and a Visiting
Professor and Finnish Academy Research Fellow at the Aalto
University, Helsinki, Finland. Her research interests are in
trust, security, privacy, and security-related data analytics.
Dr. Yan is an area editor or an associate editor of IEEE
Network, Internet of Things Journal, Information Fusion,
Information Sciences, IEEE ACCESS, and Journal of Network
and Computer Applications, etc. She served as a General
Chair or Program Chair for numerous international confer-
ences, including IEEE TrustCom 2015 and IFIP Networking
2021. She is a Founder Steering Committee Co-Chair of
IEEE Blockchain conference. She received many awards,
including Distinguished Inventor Award of Nokia, the Best
Journal Paper Award issued by IEEE Communication Society
Technical Committee on Big Data and the Outstanding
Associate Editor of 2017/2018 for IEEE Access.

http://dx.doi.org/10.1109/ICCMC.2019.8819748
http://refhub.elsevier.com/S1084-8045(22)00154-0/sb23
http://refhub.elsevier.com/S1084-8045(22)00154-0/sb23
http://refhub.elsevier.com/S1084-8045(22)00154-0/sb23
http://dx.doi.org/10.1109/iCASAT48251.2019.9069538
http://dx.doi.org/10.1109/iCASAT48251.2019.9069538
http://dx.doi.org/10.1109/iCASAT48251.2019.9069538
http://dx.doi.org/10.1016/j.cose.2019.06.005
http://dx.doi.org/10.1016/j.cose.2019.06.005
http://dx.doi.org/10.1016/j.cose.2019.06.005
https://www.sciencedirect.com/science/article/pii/S016740481930118X
https://www.sciencedirect.com/science/article/pii/S016740481930118X
https://www.sciencedirect.com/science/article/pii/S016740481930118X
https://aclanthology.org/D07-1043
https://aclanthology.org/D07-1043
https://aclanthology.org/D07-1043
http://dx.doi.org/10.1016/j.cose.2018.07.022
https://www.sciencedirect.com/science/article/pii/S0167404818311283
https://scikit-learn.org/stable/
http://dx.doi.org/10.1109/ICOEI.2017.8300843
http://dx.doi.org/10.5220/0006639801080116
http://dx.doi.org/10.1016/j.cose.2011.12.012
https://www.sciencedirect.com/science/article/pii/S0167404811001672
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.silhouette_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.silhouette_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.silhouette_score.html
http://dx.doi.org/10.1109/ACCESS.2018.2848210
http://dx.doi.org/10.1016/j.comnet.2020.107296
http://dx.doi.org/10.1016/j.comnet.2020.107296
http://dx.doi.org/10.1016/j.comnet.2020.107296
https://www.sciencedirect.com/science/article/abs/pii/S138912862030445X
https://www.sciencedirect.com/science/article/abs/pii/S138912862030445X
https://www.sciencedirect.com/science/article/abs/pii/S138912862030445X
https://www.softwaretestinghelp.com/intrusion-detection-systems/
http://dx.doi.org/10.1016/j.procs.2017.09.023
http://dx.doi.org/10.1016/j.procs.2017.09.023
http://dx.doi.org/10.1016/j.procs.2017.09.023
https://www.sciencedirect.com/science/article/pii/S1877050917318173
https://www.sciencedirect.com/science/article/pii/S1877050917318173
https://www.sciencedirect.com/science/article/pii/S1877050917318173
https://www.nathanblair.me/pdfs/Encouraging_categorical_meaning_in_the_latent_space_of_a_VAE.pdf
https://www.nathanblair.me/pdfs/Encouraging_categorical_meaning_in_the_latent_space_of_a_VAE.pdf
https://www.nathanblair.me/pdfs/Encouraging_categorical_meaning_in_the_latent_space_of_a_VAE.pdf
http://dx.doi.org/10.1016/j.knosys.2019.105187
http://dx.doi.org/10.1016/j.knosys.2019.105187
http://dx.doi.org/10.1016/j.knosys.2019.105187
http://dx.doi.org/10.1109/I-SPAN.2009.49
http://dx.doi.org/10.1109/I-SPAN.2009.49
http://dx.doi.org/10.1109/I-SPAN.2009.49
http://dx.doi.org/10.1007/978-3-030-56223-6_15
http://dx.doi.org/10.1007/978-3-030-56223-6_15
http://dx.doi.org/10.1007/978-3-030-56223-6_15
http://dx.doi.org/10.1109/ICIE.2010.123
http://refhub.elsevier.com/S1084-8045(22)00154-0/sb42
http://refhub.elsevier.com/S1084-8045(22)00154-0/sb42
http://refhub.elsevier.com/S1084-8045(22)00154-0/sb42
http://dx.doi.org/10.3390/s19112528
https://www.mdpi.com/1424-8220/19/11/2528
http://dx.doi.org/10.1109/ACCESS.2020.2977007
http://dx.doi.org/10.1109/IJCNN.2017.7966342
http://dx.doi.org/10.1109/IJCNN.2017.7966342
http://dx.doi.org/10.1109/IJCNN.2017.7966342

