
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or 
part of any of the repository collections is not permitted, except that material may be duplicated by you for 
your research use or educational purposes in electronic or print form. You must obtain permission for any 
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not 
an authorised user.

Wright, Alec; Välimäki, Vesa
Grey-Box Modelling of Dynamic Range Compression

Published in:
Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22)

Published: 01/01/2022

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY

Please cite the original version:
Wright, A., & Välimäki, V. (2022). Grey-Box Modelling of Dynamic Range Compression. In G. Evangelista, & N.
Holighaus (Eds.), Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22) (2022
ed., pp. 304-311). Article 35 (Proceedings of the International Conference on Digital Audio Effects). DAFx .
https://dafx2020.mdw.ac.at/proceedings/papers/DAFx20in22_paper_35.pdf

https://dafx2020.mdw.ac.at/proceedings/papers/DAFx20in22_paper_35.pdf


Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 2022

GREY-BOX MODELLING OF DYNAMIC RANGE COMPRESSION

Alec Wright and Vesa Välimäki∗

Acoustics Lab, Department of Signal Processing and Acoustics
Aalto University
Espoo, Finland

alec.wright@aalto.fi

ABSTRACT

This paper explores the digital emulation of analog dynamic
range compressors, proposing a grey-box model that uses a com-
bination of traditional signal processing techniques and machine
learning. The main idea is to use the structure of a traditional
digital compressor in a machine learning framework, so it can be
trained end-to-end to create a virtual analog model of a compres-
sor from data. The complexity of the model can be adjusted, al-
lowing a trade-off between the model accuracy and computational
cost. The proposed model has interpretable components, so its be-
haviour can be controlled more readily after training in comparison
to a black-box model. The result is a model that achieves similar
accuracy to a black-box baseline, whilst requiring less than 10%
of the number of operations per sample at runtime.

1. INTRODUCTION

Dynamic Range Compression (DRC) is a nonlinear audio effect
which adjusts the dynamic range of the input signal [1]. The use of
DRC is widespread in music production, mastering, and broadcast-
ing. Typically DRC is applied to reduce the level of the loud parts
of a signal, whilst leaving the quieter parts unaltered. Generally,
the input signal is used to calculate a time-varying gain envelope,
which is then applied to the signal.

Digital compressor algorithms are a popular research topic,
exploring themes ranging from DRC algorithm design [1, 2, 3, 4],
to methods for automation of DRC parameters [5, 6, 7, 8], or inver-
sion of DRC [9, 10]. Studies have also approached the simulation
of analog compressors by creating virtual analog models of spe-
cific compressor devices [11], or of different components used in
the devices, such as optocouplers [12] or amplifiers [13].

Deep learning approaches have also been applied to DRC mod-
elling [14, 15, 16]. An advantage to this approach is that a model
can be trained to emulate a specific compressor using data recorded
from the device, removing the requirement to design a new model
for each compressor. The disadvantages are that the models can be
impractical for real-time applications, due to high-computational
cost at inference time, non-causality, or both. Furthermore, whilst
it is possible to incorporate the user controls of the effect via con-
ditioning, they are essentially black-box models and as such it is
hard to interpret or control their behaviour.
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Recent research into deep learning for musical instrument syn-
thesis has proposed the combination of digital signal processing
methods, such as oscillators and filters, with deep learning, allow-
ing the resulting model to be trained from data whilst retaining
components whose behaviour can be more readily understood and
controlled at inference time [17]. This has also been applied to
modelling non-linear audio effects such as distortion pedals [18,
19], by using memoryless nonlinearities and Infinite Impulse Re-
sponse (IIR) filters within a machine learning framework.

In this paper, we apply this approach to create a grey-box DRC
model based on an existing topology. This has the advantage that
the behaviour of the resulting model is easier to understand and
manipulate after training, whilst still allowing a specific analog
device to be modelled from data.

The paper is structured as follows. Section 2 summarises the
basics of DRC. Section 3 introduces the novel machine learning
approach for DRC modelling. Section 4 presents results of model
validation using an artificial dataset. Section 5 describes the analog
compressor and architectures used to model it. Section 6 reports
the results of the training, and Section 7 concludes the paper.

2. DIGITAL DYNAMIC RANGE COMPRESSION

The core idea of this paper is to utilise the components and struc-
ture of a traditional digital DRC, along with some neural network
based components, to create a grey-box DRC model that can be fit
to data recorded from a target device. The defining behaviour of a
DRC is that it applies a time-varying gain to the input signal, with
the time-varying gain envelope being calculated by a side chain.
Typically the input to the side chain is the signal being compressed,
although the compressor can also be controlled by another audio
signal if desired. How the side chain calculates the time-varying
gain envelope defines the behaviour of the compressor. A digital
compressor generally consists of three blocks, a static gain com-
puter, a level detector, and a make-up gain. These are all described
in more detail in the following sections.

2.1. Static Gain Computers

A static gain computer is a memoryless nonlinear function, that
maps input level to output level. Traditionally it is implemented
as a hard-knee or soft-knee compression curve. For the hard-knee,
the parameters are the threshold and the ratio. When it exceeds the
threshold, the signal level is reduced by a factor determined by the
signal level and the ratio, according to the equation [1]:

ygc =

{
xgc, when xgc ≤ T

T + (xgc − T )/R, when xgc > T,
(1)
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Figure 1: Hard and soft knee static compression curves, where T
is threshold, R is ratio, and W is the knee width.

where xgc is the input to the gain computer, ygc is the correspond-
ing output and T and R are the threshold and ratio, respectively.

For the soft knee, a knee width parameter is added, which in-
troduces a transition region. The soft knee is defined by [1]:

ygc =


xgc, 2(xgc − T ) < −W

xgc +
( 1
R

−1)(xgc−T+W
2

)

2W

2

, 2|xgc − T | ≤ W

T +
(xgc−T )

R
, 2(xgc − T ) > W,

(2)

where W is the knee width. An example of the above static com-
pression curves for various parameters are shown in Fig. 1. Note
that when W = 0, the soft-knee is identical to the hard-knee.

2.2. Level Detectors

A level detector prevents sudden gain changes being applied to
the signal, which can result in unpleasant sounding compression
artifacts, by producing a smooth gain envelope. It can be applied
directly to the side chain input, or, to the gain envelope produced
by the gain computer. A common choice for a level detector filter
is the digital one-pole filter, with the difference equation [1]:

yd[n] = αyd[n− 1] + (1− α)xd[n], (3)

where α is the filter coefficient and xd[n] and yd[n] are, respec-
tively, the filter input and output at time n. Stability of this filter is
ensured if |α| < 1. The step response of the filter is given by [1]:

yd[n] = 1− αn for xd[n] = 1, n ≥ 1. (4)

The time constant, τ , determines the amount of time it takes for
the filter output to reach 1− 1/e of its final value. The value of α
that produces a desired time constant can be found by:

α = e−1/τfs , (5)

where τ is the desired time constant in seconds and fs is the sam-
ple rate in Hz.

When describing compressor behaviour, the attack and release
times refer to how quickly the compressor acts. The attack time
determines how quickly the compressor responds to an increasing
input signal level, and thus how quickly the subsequent gain de-
crease is applied. Likewise, the release time determines how long
the applied gain takes to return back to the normal level, once the
input signal level begins to fall. Independent attack and release
times can be achieved by defining time constants τa and τa for
the attack and release phases, respectively, then finding the corre-
sponding filter coefficients αa and αr . The level detector filter can
then be implemented as follows [1]:

yd[n] =

{
αayd[n− 1] + (1− αa)xd[n], xd[n] > yd[n− 1]

αryd[n− 1] + (1− αr)xd[n], xd[n] ≤ yd[n− 1].

(6)
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Figure 2: Diagram of the compressor structure used in this paper.
Blue boxes are components with parameters learned from data.

2.3. Make-Up Gain

Finally, the reduction in signal level introduced by the previous
stages can be compensated for by the make-up gain module. The
make-up gain is applied uniformly to the output signal, and in a
digital DRC this is simply a constant gain factor.

3. PROPOSED MODEL

The compressor model used in this paper, depicted in Fig. 2, takes
on the ‘log-domain detector’ structure described in [1]. It has the
same three stages that were described in Sec. 2 , a static gain com-
puter, a level-detector, and a make-up gain.

3.1. Static Gain Computer

The static gain computer is a memoryless nonlinear function that
outputs a target gain reduction for each sample in the model input:

gc[n] = fgc(xdB[n], θgc, c), (7)

where gc[n] is the calculated gain reduction to be applied at dis-
crete time n, xdB[n] is the input signal level in dB at time n, θgc
are the learned parameters of the gain computer, and c is the condi-
tioning information describing the user settings of the device being
modelled. For this paper, the static gain computer, fgc, was imple-
mented as a hard or soft knee compression curve, see Sec. 2.1.

The user controls of the compressor can be incorporated into
the model, by providing information representing the device con-
trol settings. Following recent work modelling distortion circuits
[18], we use a hyperconditioning Multilayer Perceptron (HC-MLP)
network to predict the parameters of the static compression curve
based on the conditioning information. θgc is thus defined as the
parameters of the HC-MLP.

The conditioning information is first normalised to the range
[−1, 1], and then provided as an input to the HC-MLP, which pre-
dicts the corresponding threshold, ratio and knee width. The HC-
MLP has an input size equal to the number of conditioning values,
and an output size corresponding to the number of parameters of
the static gain function. The HC-MLP has two hidden layers of
size 20, each followed by a ReLU activation function. The output
layer is followed by a sigmoid activation function and appropriate
scaling and offset factors to ensure the threshold T , ratio R and
knee width W meet the conditions −80 < T < 0, 1 < R < 30
and 0 < W < 30.

The target output gain, ydB , is calculated according to Eq. (1)
or Eq. (2), and the target gain reduction is given by:

gc[n] = ydB [n]− xdB [n]. (8)

3.2. Level Detector

Smoothing is applied to the gain envelope to prevent discontinu-
ities and compression artifacts. The gain gc is first normalised to
the range [0, 1], assuming a minimum possible gain reduction of
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0 dB and a maximum possible gain reduction of 80 dB. The level
detector has memory and takes the output of the gain computer,
gc, to produce the smoothed gain envelope:

gs[n] = fgs(gc[n], sgs[n− 1], θgs), (9)

where gs[n] is the smoothed gain to be applied at discrete time
n, sgs[n − 1] is the state of the level detector from the previous
time step, and θgs are the learned parameters of the level detector.
The exact form of sgs[n − 1] depends on the chosen strucutre of
the level detector, and is described in the following sections. The
smoothed gain signal is then scaled back to the range [−80, 0] and
converted to the linear domain, before being applied to the input.

3.2.1. One-Pole Filter

Smoothing can be carried out by the one-pole filter defined in
Eq. (3). In this case the level detector learns the time-constant,
τ , which is parameterised by a sigmoid function, limiting it to the
range 0 s < τ < 1.0 s. The one-pole filter coefficient α is calcu-
lated according to Eq. (5). This ensures the stability of the one-
pole filter. In this case, θgs is the learned time constant, τ , and the
state sgs is simply the previous output of the one-pole filter.

For training purposes, implementing this filter recursively
slows the training time considerably, as has been noted in previous
work [18]. To reduce training time, the one-pole filter was applied
in the frequency domain. To achieve this, we take the Discrete
Fourier Transform (DFT) of the input to the filter, and multiply it
with the filter frequency response. The Inverse Discrete Fourier
Transform (IDFT) is applied to the result to produce the output of
the filter in the time-domain. This follows the approach described
in [18].

Training can be accelerated by increasing the frequency at
which the compressor model parameters are updated. This can be
achieved by updating the parameters many times whilst processing
a longer segment of audio, a process known as Truncated Back-
propagation Through Time (TBPTT) [20]. This presents an issue
when implementing the one-pole filter in the frequency domain,
as the filter parameters will change after each sub-segment of the
input is processed. Simply applying frequency domain filtering to
each sub-segment will result in an inaccurate approximation of the
one-pole filter unless inputs from previous sub-segments are also
included.

To solve this problem, we use an input buffer. The buffer is L
samples in length, and is initialised with zeros. Each sub-segment
is Nin samples in length, and as each sub-segment is processed it
is added to the buffer in a First-In First-Out fashion. The filter is
applied to the whole input buffer, and the last Nin samples of the
output are taken as the output of the filter. This process is depicted
in Fig. 3. The one-pole filter has a very long impulse response as α
approaches 1, so the input buffer length was selected to be 80 000
samples long. Although this is unnecessarily long to sufficiently
approximate the one-pole filter for most values of α, this method
was still found to be approximately five times faster during training
in comparison to implementing the IIR filter as a straightforward
recursion.

3.2.2. Switching One-Pole Filter

In practice, it is desirable for the compressor to have independent
attack and release times, as this allows users greater control over
the compressor behaviour. This can be implemented trivially by
learning two time-constants, τA and τR, representing the attack

One-Pole
Filter

Figure 3: Frequency-domain convolution with the frequency re-
sponse of the one-pole filter. The beginning of the output signal
yout(n) is discarded because it contains the starting transient.

and release times respectively. The one-pole filter can then be im-
plemented according to Eq. (6). It should be noted that in this
case, the filter is time-varying as the filter coefficients depend on
the previous output and the current input. This means that it must
be implemented recursively, which slows training considerably. In
this case, θgs is the learned attack and decay time constants, τa
and τr , and the state sgs is still simply the previous output of the
one-pole filter.

3.2.3. RNN-Modulated One-Pole Filter

The switching one-pole filter is a simple example of a time-varying
filter, where the filter’s time constant depends on the current input
and previous output of the filter. This is however somewhat limited
as the one-pole filter only has two possible values to switch be-
tween. The time-constant of the one-pole filter can also be varied
more freely, for example, by training a Recurrent Neural Network
(RNN) to predict appropriate time-constants. We propose using a
standard Elman-RNN [21] followed by a linear layer.

The RNN has a hidden size of 4, and its input is the un-
smoothed gain reduction, gc. An affine transformation is then ap-
plied to the RNN hidden state via a linear layer with an output size
of 1. A sigmoid activation function is applied to the output of the
linear layer, limiting it to be between the values of 0 and 1, and the
resulting sequence is taken as the predicted time-constant for the
one-pole filter, with the filter coefficient α being changed at each
time-step.

Modulation of the one-pole filter should allow the model to
have greater control over the gain smoothing process. The intro-
duction of the RNN does decrease the interpretability of the level
detector somewhat, as the time-constants in traditional a digital
DRC are generally stable over time. However, as the level detec-
tor is still a one-pole filter, it’s behaviour is still relatively easy to
interpret, and this configuration ensures that the gain smoothing
doesn’t scale or shift the input gains, as would be possible if the
gain smoothing was carried out directly by the recurrent model. In
this case, θgs is the weights and biases of the RNN and linear layer,
and the state, sgs, is the previous output of the one-pole filter as
well as the hidden state of the RNN.

3.3. Make-Up Gain

In a digital compressor, the make-up gain can be trivially imple-
mented as a constant gain factor applied to the output. However
in an analog compressor the make-up gain might be implemented
via a VCA or a vacuum-tube amplifier. The make-up gain in the
proposed model can thus be implemented either as a constant gain
factor, hereafter referred to as a Static Gain, or as a small Gated
Recurrent Unit (GRU) [22]. In both cases the make-up gain is
applied directly to the time-domain signal, after the time-varying
gain envelope gs has been applied.

The GRU model is identical to a previously proposed model
applied to guitar amplifiers and distortion effects [23]. It con-
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sists of a single-layer GRU, followed by an affine transformation.
The GRU has a hidden size of 4. The input to the make-up gain
GRU is the input signal after the time-varying gain envelope has
been applied, xc. The affine transformation is applied via a fully-
connected layer, reducing the hidden size of the GRU to a single
value, representing the compressor output, ŷ, at that time-step. To
reduce the ability of the GRU make-up gain to simply learn to em-
ulate the behaviour of the whole compressor, it is not provided
the conditioning information describing the compressor settings.
Whilst it is still possible that the GRU could infer the conditioning
parameters indirectly from the signal envelope provided to it, the
small hidden size should significantly limit its ability to do so.

3.4. Loss Functions

When evaluating the ‘SignalTrain’ dataset of the LA-2A compres-
sor (see Sec. 5 for a description of this dataset) it was noted that the
compressor output contains low frequency oscillating noise which
is not present in the compressor input. It is common practice to ap-
ply pre-emphasis filtering to the model output and the target before
calculating the loss, to emphasise or attenuate certain frequencies
[24, 25]. As the introduction of low frequency noise is not a de-
sired characteristic of the compressor, a DC-blocking pre-filter was
applied to the model output and target, prior to the loss calculation,
with the following transfer function:

H(z) =
1− z−1

1− 0.995z−1
. (10)

To avoid unnecessary recursions in the training process, the filter
was applied via an FIR approximation. The FIR filter coefficients
were obtained by truncating the impulse response of the filter to
2000 samples.

3.4.1. Error-to-Signal Ratio

The Error-To-Signal (ESR) loss has been used in a number of other
papers focussing on modelling non-linear audio circuits [23, 24,
26, 27]. The ESR is the squared error in the time-domain, divided
by the energy of the target signal. For a segment of training signal
of length N , the ESR is given by:

EESR =

∑N−1
n=0 |yp[n]− ŷp[n]|2∑N−1

n=0 |yp[n]|2
, (11)

where yp is the DC-blocker pre-filtered target signal, and ŷp is the
compressor model DC-blocker pre-filtered output.

3.4.2. Short-Time Energy-Loss

One potential issue with the ESR loss is that it requires strict align-
ment in the time domain. For the models proposed in this paper
where a static make-up is applied (as opposed to the GRU make-up
gain), the model is only able to apply a time-varying gain envelope
to the input signal. As such it is incapable of applying any phase
shifts or sign inversions to the input. This means that, when ap-
plying the ESR loss, slight time misalignment or phase differences
between the model output and target will result in a large loss, even
if the two signals are perceptually very similar.

In light of this, we propose using a loss function based on the
difference between the short-time energy of the output and tar-
get signals, similar to one proposed in [28]. The DC-blocker pre-
filtered target and model output signals, yp and ŷp, are first divided

Figure 4: Example of audio processed by the LA-2A compressor
with peak reduction set to 90, (top) input and (middle) output sig-
nals from the data set and (bottom) the corresponding RMS en-
velopes. Signals have been normalised to 0 dBFS and RMS en-
velopes were calculated using a sliding window of 250 samples.

into M overlapping frames of length Nf , referred to as Yp and Ŷp.
The short-time energy loss is given by:

ESTE =
1

MNf

M−1∑
m=0

|
Nf−1∑
n=0

Yp[n,m]2 − Ŷp[n,m]2|. (12)

The loss function can be applied at multiple resolutions. The over-
all loss is then calculated as the mean of the short-time energy
losses:

EMSTE =
1

I

I∑
i=1

ESTE,i, (13)

where I is the number of different frame sizes the loss is calculated
for. This Multi-Resolution Short-Time Energy (MSTE) loss was
applied at four different resolutions in this study, using frame sizes
of 8, 16, 32, and 64 and hop sizes of 2, 4, 8, and 16, respectively.

3.5. Training Hyperparameters

To train the model, the training dataset was split into 2.5 s seg-
ments. For each segment the first 4096 samples were processed
without updating the network’s parameters, to allow any compo-
nents of the model with a state to initialise. The remaining input
was processed with TBPTT being applied every 8128 samples and
The training dataset was processed using a batch size of 25. The
validation loss was calculated four times per epoch. Training was
run for a maximum of 50 epochs. Early stopping was applied,
with a validation patience of 5. The models were trained using the
Adam optimizer [29], with an initial learning rate of 5 × 10−3.
Models were trained on a GPU, and training took around 30 min-
utes when using the single parameter one-pole filter level detector,
and up to 16 hours otherwise. A reference PyTorch implementa-
tion is provided at1.

4. TOY PROBLEM – MODELLING A DIGITAL
COMPRESSOR

To verify the modelling approach and training procedure, the
model was trained to recreate the behaviour of a digital compres-
sor. As input material for the digital compressor, data from the
Signal-Train dataset [15], which is described in Sec. 5, was used.
Ten minutes of audio was selected as the training dataset, and 90
seconds of audio for the validation dataset. In this case, a test
dataset is unnecessary, as the success of the modelling procedure

1https://github.com/Alec-Wright/GreyBoxDRC
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can be observed directly based on the learned parameters of the
compressor model.

The target digital compressor was implemented as described
in Sec. 2, with hard-knee static gain curve (Eq. (1)), one-pole filter
level detector with independent attack and release times (Eq. (6))
and no make-up gain. The training dataset was processed a number
of times, with the hard-knee threshold and ratio parameters being
varied. For each dataset, the threshold was set to either -15 dB,
-20 dB, -25 dB or -30 dB and the ratio was set to 2, 4, 6 or 8. All
possible permutations of these setting were used resulting in 16
combinations of threshold and ratio. The attack and release times
and were set to 20 ms and 50 ms respectively. To better emulate
the data recorded from an analog device, and to test the robustness
of the training process, pink noise at a level of -40 dB was added
to the training data targets.

Models were trained using the soft-knee compression curve.
For the level detector either the switching one-pole or RNN mod-
ulated one-pole was used, and for the make-up gain both the static
gain and GRU were trialled. Models were trained using either the
ESR or the MSTE loss function. Conditioning information rep-
resenting the threshold and ratio used to generate the data was
provided to the model via a HC-MLP. It should be noted that as
the HC-MLP is a fully connected network, it must learn that the
two conditioning values it receives as input are independent of
each other. That is, the input conditioning value representing the
threshold, should have no influence over the ratio predicted by the
HC-MLP, and vice versa.

The success of the modelling can be evaluated by how closely
the conditioning values provided to the model match the predicted
threshold and ratio. Results for two of the trained models, over a
range of input threshold and ratio values, are shown in Fig. 5. The
models were selected to demonstrate that the correct compression
curve parameters can be inferred using the MSTE loss, and that
the GRU make-up gain does not simply bypass the compression
curve altogether and learn to apply the compression itself. It can be
seen that for both models the threshold parameter is learned very
accurately, with only minor fluctuations from the correct values.
For the ratio parameter, the models learned the mapping well for
low ratios, but a small error can be observed for higher values.
For both of the models shown in Fig. 5, the learned attack and
release times were within 0.02 ms of the target attack and release
times. Results for the other models are omitted here for brevity,
but generally similar behaviour was observed.

5. TELETRONIX LA-2A COMPRESSOR MODELLING

The proposed compressor model was tested on emulating the be-
haviour of the Teletronix LA-2A compressor. This is an optical
compressor, which uses the control voltage to drive a light source.
The light source controls the resistance of a light-dependent resis-
tor (LDR) which is connected to a voltage divider in the main sig-
nal path. The effect is that as the brightness of the light increases,
the resistance of the LDR decreases, resulting in a gain reduction.
Fig. 4 shows an example comparing the input and resulting output
of a signal processed by the device.

The data used to train the model was taken from the Signal-
Train dataset [15], which consists of input-output audio processed
by the LA-2A compressor, with settings of the peak reduction
knob (from 0 to −100), and the compressor either set to limit or
compress. It includes content such as lone instrument and full band
recordings, as well as electronic music. It also includes synthetic

Figure 5: Example outputs from HC-MLP trained on the toy prob-
lem, markers indicate threshold and ratio values seen during train-
ing, solid lines indicate threshold and ratio values input to the HC-
MLP, dashed lines indicate the threshold and ratio predicted by the
HC-MLP, for (green) model trained with EMSTE, soft-knee, switch-
ing one-pole level detector and no make-up gain, and (red) model
trained with EESR, soft-knee, switching one-pole level detector and
GRU make-up gain.

data, consisting of noise bursts mixed with tones.
To train the model a subset of the dataset was used, which

only included examples where the compressor was set to compress
mode, with the peak reduction setting, ranging from 0 to 100, in
increments of 10. This results in a total of 11 parameter settings
with a total of 20 min of audio for each, with the input audio being
the same for each setting. An identical 80:10:10 split of the dataset
was applied for each parameter setting, to create the training, vali-
dation and test datasets. A further test dataset was created, consist-
ing of the same input audio from the original test dataset, but using
the remaining ‘peak reduction’ settings that were not included in
the training dataset. These range from 5 to 95, in increments of
10, resulting in a total of 10 parameter settings, all of which were
unseen during training. This dataset is intended to test how well
the trained model generalises to unseen conditioning values, and
will now be referred to as the unseen test dataset.

5.1. Model Architectures

Models were trained either using the hard-knee or soft-knee com-
pression curve. The three level-detectors introduced in Sec. 3.2
were all tested, these are, the one-pole filter, the switching one-
pole filter, and the RNN-modulated one-pole filter. The make-
up gain was either the Static Gain, in which case the model was
trained using the EMSTE loss, or a GRU, in which case it was trained
using the EESR loss.

6. RESULTS

A black-box model consisting of a GRU followed by an affine
transformation was used as a baseline. This model has previously
been applied to guitar amplifiers [23, 27]. Recent work used this
model to profile the LA-2A compressor [16], conducting a listen-
ing test which showed slight but perceptible differences between
the LA-2A and the baseline. Two baseline models were created,
with hidden sizes of 8 and 32. The conditioning data was first nor-
malised to the range [−1, 1] and then provided to the network by
concatenating it to the input.
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(a) RMS envelopes for Model B2 output and target, Model B2 is baseline
GRU model with hidden size 32, for LA-2A with peak reduction set to 60
(top) and 90 (bottom).

(b) RMS envelopes of Model 3 output and target, with soft-knee compres-
sion curve, RNN modulated one-pole level detector and static make-up
gain, for LA-2A with peak reduction set to 60 (top) and 90 (bottom).

(c) RMS envelopes of Model 4 output and target, with hard-knee compres-
sion curve, one-pole level detector and GRU make-up gain, for LA-2A with
peak reduction set to 60 (top) and 90 (bottom).

(d) RMS envelopes of Model 5 output and target, with hard-knee compres-
sion curve, switching one-pole level detector and GRU make-up gain, for
LA-2A with peak reduction set to 60 (top) and 90 (bottom).

Figure 6: RMS envelopes produced by various compressor models, with RMS window size of 100 samples

Figure 7: Input-Output characteristic learned for various LA-2A
peak reduction settings, for (top) Model 3 (soft-knee, RNN mod-
ulated one-pole level detector, and static make-up gain), (middle)
Model 4, (hard-knee, one-pole level detector and GRU make-up
gain) and (bottom) Model 5 (hard-knee, switching one-pole level
detector and GRU make-up gain).

Figure 8: Level detector attack and release behaviour learned by
the compressor models.

Figure 9: Plots showing (top) input, (middle) static and smoothed
gain envelopes and (bottom) output of the model, for Model 5
(hard-knee, switching one-pole level detector and GRU make-up
gain) of the LA-2A compressor with peak reduction set to 90.
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Table 1: Results of the proposed model and the baseline model [16] when emulating the LA-2A compressor.

Test Loss Test Loss - Unseen
Model # Model ops/sample EESR EMSTE EESR EMSTE

B1 Baseline - Small GRU (hidden size 8) 1273 0.041 8.3× 10−4 0.037 7.6× 10−4

B2 Baseline - Big GRU (hidden size 32) 9697 0.023 5.5× 10−4 0.020 4.8× 10−4

Static Gain Level Detector Make-Up Gain
1 Hard Knee One-Pole Static Gain 11 0.095 8.4× 10−4 0.090 7.6× 10−4

2 Hard Knee Switching One-Pole Static Gain 12 0.089 8.0× 10−4 0.085 7.4× 10−4

3 Soft Knee RNN Mod. One-Pole Static Gain 184 0.092 7.4× 10−4 0.089 6.7× 10−4

4 Hard Knee One-Pole GRU 523 0.045 8.2× 10−4 0.043 7.9× 10−4

5 Hard Knee Switching One-Pole GRU 528 0.031 7.1× 10−4 0.028 6.8× 10−4

6 Hard Knee RNN Mod. One-Pole GRU 700 0.032 7.5× 10−4 0.029 7.0× 10−4

Figure 10: Plots showing (top) input and model output, (mid-
dle) RNN modulated one-pole time constant with switching one-
pole filter time constant for comparison, and (bottom) static and
smoothed gain envelope, for Model 6 (hard-knee, RNN modulated
one-pole filter and GRU make-up gain) emulating the LA-2A com-
pressor with peak reduction set to 90.

Figure 11: Test losses for Model 6, against different settings of
peak reduction, modelling the LA-2A compressor.

A selection of the results of the trained models are presented in
Table 1. For each possible combination of make-up gain and level
detector, the model with either the hard or soft knee is presented,
depending on which achieved the lowest test loss. An estimate
of the computational cost of the model at runtime is also provided,
by calculating the number of floating-point operations required per
sample of output, as suggested in [30]. The tanh and sigmoid non-
linearities are assumed to cost 30 floating point operations.

The results show that Model B2, the baseline model with a
hidden size of 32, achieves the best loss values, however the com-
putational cost is considerably higher in comparison to the other
models. Models 5 and 6 are less accurate than the large GRU
baseline, although the difference fairly small, and the proposed
models require less than 10% of the number of floating point oper-

ations per sample. They also outperform the small baseline model,
Model B1, whilst being less expensive to run.

In Table 1 the performance of the models on the unseen test
dataset, which consists of peak reduction values that were ex-
cluded from the training dataset, can also be observed. In all cases
the test loss decreases for the unseen test dataset, indicating that
the models generalise well. This can also be seen in Fig. 11, which
shows the test loss for Model 6 evaluated at different settings of
peak reduction.

Fig. 6 shows the RMS envelope of some of the models outputs,
compared to the target signal, indicating fairly close agreement.
It can be observed that for the higher peak reduction setting, the
model performance is noticeably worse. This can also be seen in
the ESR losses shown in Fig. 11. A possible contributing factor to
this is that the Signal-to-Noise Ratio (SNR) in the compressor out-
put is decreasing as the amount of compression applied increases.
For extreme peak reduction settings the low SNR might make it
challenging for the model to learn, as the loss function becomes
increasingly dominated by noise that is not present in the compres-
sor input. Sound examples are also provided at the accompanying
webpage 2.

Fig. 7 shows the learned compression curves for some of the
models, for varying settings of the peak reduction conditioning
value. As expected, the static gain curves learn to apply more
compression as the peak reduction increases. There is generally
good agreement between the models.

The results also indicate that the single parameter one-pole
filter performs worse than either the switching or RNN modu-
lated one-pole filter. The learned one-pole filter step responses
are shown in the Fig. 8, which show that the learned filters all have
an attack time constant of around 15 ms or less. However, for the
switching one-pole filter the release time is much longer, indicat-
ing that a fast attack and slow release is required to successfully
model the target device. Example output from Model 5, which
used the switching one-pole filter, is shown in Fig. 9

The results don’t indicate much difference in performance be-
tween the RNN modulated one-pole and the switching one-pole
level detector. Example output from Model 6 can be seen in
Fig. 10. It can be observed that the learned behaviour is somewhat
similar to that of the switching one-pole, with the time-constant
becoming very small when the input signal is large, and increasing
once the input decreases again.

2http://research.spa.aalto.fi/publications/papers/dafx22-DDRC
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7. CONCLUSION

In this work, we proposed a new method for virtual analog mod-
elling of dynamic range compressors, which created a grey-box
model using a combination of existing techniques and neural net-
work components. The resulting models can be trained using data
to emulate a specific device in an end-to-end fashion. As the model
structure follows that of a traditional digital DRC, parameters such
as threshold and ratio can be easily adjusted after training. We
trained our proposed model, as well as a black-box baseline model,
to emulate an analog compressor, and found that our model was
able to achieve comparable performance at a much lower compu-
tational cost. Future work should involve subjective evaluation so
that the perceptual quality of the models can be better understood.
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