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ABSTRACT

Recent research in deep learning has shown that neural networks
can learn differential equations governing dynamical systems. In
this paper, we adapt this concept to Virtual Analog (VA) modeling
to learn the ordinary differential equations (ODEs) governing the
first-order and the second-order diode clipper. The proposed mod-
els achieve performance comparable to state-of-the-art recurrent
neural networks (RNNs) albeit using fewer parameters. We show
that this approach does not require oversampling and allows to in-
crease the sampling rate after the training has completed, which re-
sults in increased accuracy. Using a sophisticated numerical solver
allows to increase the accuracy at the cost of slower processing.
ODEs learned this way do not require closed forms but are still
physically interpretable.

1. INTRODUCTION

Virtual Analog (VA) models are digital emulations of audio sys-
tems that were originally built using analog electronic or elec-
tromechanical components [1]. They arose out of the demand for
the reproduction of characteristic tonal distortions of analog de-
vices but with the digital stability and ease of integration with ex-
isting software. Devices modeled range from filters [2] through
time-varying effects [3–5], amplifiers [6–8], and mechanical re-
verb units [9] to tape or vinyl distortions [10].

One can distinguish three general approaches to VA modeling
[4, 5]. In black-box modeling, only the input-output relation of a
system is examined and a signal model is constructed to mimic
that behavior. Neural networks have successfully been applied to
this kind of modeling for guitar amplifiers [6–8]. An architecture
provided in [7] was chosen as a baseline for this work.

In white-box modeling, the internal structure of the system
under study is examined and used to construct an algorithm re-
producing the behavior of the device. Sometimes this approach is
referred to as physical modeling. Typical methods in this category
are numerical solutions of ordinary differential equations (ODEs)
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derived from electronic circuit analysis [3, 11, 12] or wave-digital
filters [13].

In white-box modeling, it is assumed that analog electronic
circuits are dynamical systems that can be described by differential
equations. However, the derivation of these equations is a difficult
task that requires expert knowledge. Additionally, solving these
equations poses a challenge because of the inherent aliasing [11].
Typical approaches to this problem, such as oversampling or local
iterations of implicit solvers, increase the processing times, often
preventing real-time applications.

Grey-box modeling falls in between the two already mentioned
approaches. In this methodology, we use some knowledge about
the inner workings of the device under study to design a model
and, subsequently, take advantage of the available signal data to
adjust the model’s parameters. This approach has been success-
fully applied to distortion circuits modeling [2], adjusting com-
ponent values of white-box circuit models [14], and time-varying
effects modeling [4, 5] also in conjunction with neural networks.

In related work, Parker et al. used a multilayer perceptron
(MLP) to learn the residual of a state-space system [2] in a grey-
box fashion. This residual network (ResNet) [15] approach was
called State Trajectory Network (STN). The authors successfully
applied STN to model analog first-order and second-order clipper
circuits and an analog filter. STN can be used at sampling rates dif-
ferent than the sampling rate of the training set by properly scaling
the residual but the authors did not provide any results concerning
this feature.

Recent research relating deep learning and ODEs has indi-
cated that ODEs governing analog electronic circuits could be
learned from data. The concept of teaching a neural network the
derivative of an unknown function and then supplying the learned
derivative to a numerical solver, termed ODENet, was introduced
in [16]. Karlsson and Svanström applied it to dynamical systems
modeling [17]. Since this approach combines data-driven neural
network training (an approach typically classified as black-box)
and the assumption that the modeled system is governed by an
ODE (usually associated with white-box models), it could be clas-
sified as grey-box.

The potential benefits of coupling a neural network with a nu-
merical solver in VA modeling are manifold. First, we could ob-
tain an empirical ODE that would replace complicated analytical
expressions based on simplifying assumptions and often unknown,
imprecise, or condition-dependent physical quantities [14]. Taking
this even further, we could model audio effects previously not de-
scribed by ODEs using solely signal data. Second, we could pos-
sibly alleviate various problems inherent to numerical solutions of
closed-form ODEs such as aliasing. Third, since an ODE is phys-
ically interpretable, we could alter the sampling rate of the model
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ttt, yyy0, f(t, yyy)
ODESolve

[yyy0, yyy1, . . . , yyyN−1]

Figure 1: A general pipeline for solving ODEs. In ODENet,
derivative function f is replaced by a neural network.

after training, which is typically not possible with purely black-
box models. Finally, by obtaining simplified, alias-free ODEs, we
could add real-time performance capabilities to white-box models,
thus, letting musicians and producers use previously unavailable
software emulations of analog hardware.

To validate the above possible benefits, we adapted ODENet
to VA modeling. In this paper, we applied it to the first- and
the second-order diode clipper. Through these examples, we con-
firmed all of the above potential benefits leaving possible real-time
implementation for future work. This paper discusses the ODENet
implementation in the context of VA, presents the results of exper-
iments, and analyzes strengths and weaknesses of this approach.

This paper is organized as follows. In Section 2, the general
concept of learning a derivative is described. In Section 3, the
proposed extension to this approach, which facilitates VA model-
ing, is discussed. In Section 4, we apply the derivative-learning
approach to the first-order and the second-order diode clipper cir-
cuits, compare it to the baseline, and discuss the results. Finally,
Section 5 recapitulates the most important conclusions and forms
the perspective for future work. Audio examples of the presented
models can be found under https://www.thewolfsound.
com/publications/dafx2022/. The full code without
the datasets can be found under https://github.com/
JanWilczek/va-phaser-with-neural-odes.

2. NEURAL ORDINARY DIFFERENTIAL EQUATIONS

An ordinary differential equation (ODE) is an equation of the form

dyyy

dt
= f(t, yyy), (1)

where yyy = yyy(t) is the vector-valued unknown function of an inde-
pendent variable t, here representing time, and f(t, yyy) is a known
function of t and yyy, which equals to the first derivative of yyy over
time [18]. An entry of the unknown function vector may, for ex-
ample, represent the voltage across a capacitor inside a circuit. We
refer to a vector-valued unknown function for generality and be-
cause every system of ODEs can be formulated as a system of
first-order ODEs [17].

In Figure 1, one can see a generic approach to solving a sys-
tem of ODEs with a numerical solver. A vector of time points
ttt, is supplied with the derivative function f(t, yyy), and the initial
value yyy0 (value of yyy at t = t[0]) to a numerical solver (marked as
ODESolve). The result is a series of estimates of the value of yyy
at the time points specified in ttt. The initial value plays a crucial
role in solving most ODEs because it determines the initial state
and may influence the overall dynamics of the system.

Chen et al. [16] showed that a neural network used in con-
junction with a numerical solver can learn f(t, yyy) from data. In
that framework, termed ODENet, the derivative function f from
Eq. (1) and Figure 1 is replaced with a derivative network f which
is trained based on the loss calculated using the solver’s output.

Karlsson and Svanström [17] demonstrated that a neural net-
work can learn f(t, yyy) describing a simple dynamical system such

as an oscillator. That indicated that a neural network can learn the
derivative function of ODEs describing analog electronic circuits
for VA purposes, which could provide the benefits mentioned in
Section 1.

3. EXTENSION FOR VIRTUAL ANALOG MODELING

To use ODENet for VA modeling, a few issues must be considered:
what initial value to supply, how to incorporate the input signal
(e.g., a guitar signal), how to parametrize the neural network, and
which solver to use.

3.1. Overview

In Figure 2, our implementation of the ODENet framework for
VA modeling is presented. For clarity, we omit the idea of mini-
batches and assume that a single example is processed at a time.
One dataset example is a sequence of samples of the input signal
to the modeled audio effect, xxx = [x0, . . . , xN−1]

T, and the cor-
responding target sequence (desired effect output), yyy0, . . . , yyyN−1.
The output of ODENet is an estimated sequence, ŷ̂ŷy0, . . . , ŷ̂ŷyN−1,
which is used to compute the loss.

3.2. Initial Value

Supplying an initial value is marked as "set_initial_value(yyy0)" in
Figure 2. A proper initial value to the numerical solver plays a
crucial role in obtaining a correct result of the ODE [18]. An inac-
curate initial condition can lead the solver to a completely incorrect
part of the solution space. That is why we decided to supply the
ground truth initial value for each subsequence during training, an
approach known in deep learning as teacher forcing [19, 20]. This
is especially important because we split our training set into se-
quences of 22 050 samples. A group of sequences constitutes a
minibatch. Each minibatch is processed in subsequences of 2048
samples (after each subsequence, there is a gradient step). Thus,
each subsequence is most likely to start in the middle of a wave-
form, so a zero value would be incorrect most of the time.

However, at test time, the framework must not be able to ac-
cess ground truth information. Additionally, in contrast to the
training phase, the test sequence is processed as one long sequence
without minibatches. Therefore, we decided to use an all-zero vec-
tor as the initial value of the test sequence, i.e., yyy0 = 000.

3.3. Excitation

In ODEs modeled with ODENet prior to this work, only a simple,
fixed-cosine excitation had been considered [17]. In the context
of VA modeling, the excitation is the input signal to the modeled
audio effect. We provide the input signal directly to the neural
network. The derivative network uses linear interpolation to obtain
the input signal value at time points specified by the solver. In
other words, when the solver calls the network f as f(t, yyyt) for
some t and yyyt, the network linearly interpolates the discrete input
signal xxx, to obtain an estimate of x(t), xt, and then uses xt and yyyt

as its input to output the estimate of the derivative ŷyy′
t. This can be

seen in the "Solver Loop" in Figure 2.

3.4. Neural Network Parametrization

Although the ODENet framework as a whole may be perceived as
a form of a recurrent neural network (RNN) (because it may use
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training/test :ODENet :ODESolver f:DerivativeNetwork :Interpolator

set_initial_value(yyy0)

forward(xxx)
set_excitation_data(xxx)

set_excitation_data(xxx)

integrate(f, yyy0, ttt)

forward(t, yyyt)
get_excitation(t)

xt

ŷyy′
t

Solver LoopSolver Loop

ŷyy0, . . . , ŷyyN−1

ŷyy0, . . . , ŷyyN−1

for each dataset example with input sequence xxx
and target sequence yyy0, . . . , yyyN−1

for each dataset example with input sequence xxx
and target sequence yyy0, . . . , yyyN−1

Figure 2: Sequence diagram containing the details of ODENet processing. The label “forward” denotes instance calls with specified
arguments.

previous outputs to compute subsequent outputs), the derivative
itself only maps the time and the state vector to the derivative value
as shown in Eq. (1). This property narrows down the space of
possible parametrizations of the derivative network to feedforward
networks, by our choice, MLPs.

In Figure 3, we show how ODENet works under the forward
Euler integration scheme [11]. The current input sample and cur-
rent output sample are provided to the derivative network that es-
timates the current derivative value. This derivative value is used
to estimate the next output sample, which is retained for the sub-
sequent iteration.

The difference between the processing in Figure 3 and STN
(ResNet) processing is that the latter would use a “current input,
previous output” neural network input, not the “previous input,
previous output” (see Figure 2 in [2]). Generally speaking, while
STN has a fixed numerical scheme, ODENet allows for a flexi-
ble choice of a numerical solver and a use of different solvers at
training and at test time. Additionally, ODENet learns the continu-
ous derivative, whereas the STN learns its discrete approximation.
Finally, ODENet and STN have significantly different learning dy-
namics. From our observations, the training of STN requires se-
vere regularization in the form of learning rate schedules [21].

[
x[n]
ŷyy[n]

]
f

ŷyy′[n]
ŷyy[n + 1] = ŷyy[n] + dt · ŷyy′[n]

z−1

ŷyy[n + 1]

Figure 3: ODENet processing using the forward Euler scheme.

3.5. Numerical Solvers

Applying numerical solvers to audio processing is challenging. In
time-stepping methods, one needs to multiply the derivative by the
time step size or its fraction at each step [18]. In audio, the step size
is very small, resulting in large derivative variations, numerical
errors, and slow neural network learning. To combat these issues,
we scaled the underlying ODE by the sampling rate so that the
time step size is 1. We adequately scaled down the state vector
passed to the derivative network to not alter the derivative learned.

Another challenge related to numerical solvers is their real-
time performance. Explicit solvers can become unstable when ap-
plied to certain kinds of ODEs with an insufficient step size (i.e.,
sample rate). For example, Yeh et al. needed to use 38x oversam-
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pling with the forward Euler scheme when solving the analytical
ODE of the first-order diode clipper [11]. Implicit solvers, which
iterate locally to reduce the error and, thus, provide very accurate
solutions, have unpredictable running times unless one bounds the
number of iterations per step. They also need oversampling, al-
beit smaller [11]. Explicit versus implicit choice is an example
of a broader design issue of choosing a numerical solver: typi-
cally, with increased accuracy comes increased processing time.
In this work, we show that oversampling is not needed when using
a derivative learned from data, but the solver choice is still relevant
for the model’s accuracy.

4. MODELING DISTORTION CIRCUITS

This section presents the analog systems that were modeled, the
modeling procedure, and the obtained results. First, the training
procedure is outlined. Second, the first-order diode clipper is pre-
sented and the results of modeling it discussed with distinction
between model quality and accuracy at different sampling rates.
Finally, the second-order diode clipper is treated in a similar way.

4.1. Training

After [5–8], this work used the following combined loss function
for neural network training of the first-order diode clipper

E(y, ŷ) = EESR(yp, ŷp) + EDC(y, ŷ), (2)

where y is the target signal, ŷ is the estimated signal, “p” in the
subscript marks signals that were pre-emphasized with a first-order
high-pass filter of the form [5, 6]

H(z) = 1− 0.85z−1, (3)

error-to-signal ratio (ESR), EESR, is given by

EESR(yp, ŷp) =

∑N−1
n=0 (yp[n]− ŷp[n])

2∑N−1
n=0 (yp[n])2

, (4)

and the direct current (DC) loss term, EDC, is given by

EDC(y, ŷ) =

(
1
N

∑N−1
n=0 (y[n]− ŷ[n])

)2

1
N

∑N−1
n=0 (y[n])

2
. (5)

For the second-order diode clipper, we used plain EESR given by
Eq. (4) not to suppress the DC component in the second state of
the circuit discovered in the synthesized data.

The dataset used for clipper circuits modeling consisted of 7
minutes and 59 seconds of guitar and bass recordings from [22]
and [23], respectively. The amount of guitar recordings was
roughly the same as the amount of bass recordings and their or-
dering was arbitrary. All recordings were single-channel and used
44.1 kHz sampling rate. The target distortion signals were synthe-
sized from SPICE models of the circuits with the schematics from
Figures 4 and 7 using LTspice XVII by Analog Devices. Approxi-
mately 20% of the dataset were used as the test set. The remaining
data was split into the bass-only validation set and the training set
according to the 80:20 rule.

The loss functions and dataset handling were implemented
using the CoreAudioML library1. The remainder of the pipeline
was implemented using the PyTorch library. We used exponential
learning rates and the Adam optimizer [24].

1https://www.github.com/Alec-Wright/CoreAudioML

5Vin R=2.2 kΩ Vout

C=0.01 µF y1

Figure 4: First-order diode clipper circuit with marked state y1.
Input voltage Vin was scaled by 5 in the target signal synthesis
process.

Table 1: Compared network architectures for diode clipper model-
ing.

Model
Number

of
parameters

Epochs
in

training

LSTM8 361 200
STN 3× 4 tanh 48 340
ODENet9-FE ReLU 127 300
ODENet9-IA SELU 127 600

4.2. First-Order Diode Clipper

The first-order diode clipper is a circuit used to achieve signal dis-
tortion, e.g., in guitar effects pedals [11]. Its schematic is shown
in Figure 4. It can be regarded as consisting of two parts: an RC
low-pass filter and a diode limiter.

The first-order diode clipper is a system particularly interest-
ing in the context of ODENet, because it is governed by a known,
nonlinear ODE derived by Yeh [11, 12]. The circuit has one state
(voltage across a capacitor), y1, which is taken as the output volt-
age Vout. The first-order diode clipper had already been modeled
with STN [2].

4.2.1. Compared Models

The smallest derivative network that has reached a validation
loss smaller than the assumed arbitrary threshold of 0.01 was a
2×9×9×9×1 MLP (ODENet9). This network was subsequently
trained in two setups: i) with the forward Euler (FE) scheme and
the Rectified Linear Unit (ReLU) nonlinearity and ii) with the im-
plicit Adams-Bashforth-Moulton (IA) scheme [17] and the scaled
exponential linear unit (SELU) nonlinearity [25].

For benchmark, we chose the STN from [2] of size 2 × 4 ×
4 × 4 × 1 with the tanh nonlinearity and bias enabled only in the
second layer (STN 3 × 4 tanh), and a Long Short-Term Mem-
ory (LSTM)-based architecture from [7] with 8 hidden units and
an 8× 1 output MLP mapping the hidden states to an output sam-
ple (LSTM8). Each model is listed with its hyperparameters in
Table 1. The number of epochs in training was determined by the
early stopping criterion [19].

All of the architectures were trained on audio data at 44.1 kHz
sampling rate but tested on four different sampling rates to ana-
lyze the presence of aliasing in the output and inspect the inter-
pretability of the learned ODEs. During the test, the STN and
ODENet models were informed about the new value of the time
step, whereas for LSTM8 it was not possible; LSTM implicitly
learns a fixed time step from the training data.
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Table 2: Signal-to-distortion ratio across all test samples in dB for
the first-order diode clipper models.

Test sampling
rate [kHz] 44.1 22.05 48 192

LSTM8 30.9 18.5 30.7 19.6
STN 3× 4 20.4 -6.6 21.3 21.5
ODENet9-FE 21.3 2.6 21.7 23.6
ODENet9-IA 26.4 -0.8 27.3 27.7

Figure 5: Magnitude spectrum of the A2 note played on the bass
guitar as processed by the first-order diode clipper: (top) Target
spectrum, (middle) ODENet9-FE output at 192 kHz sampling rate,
and (bottom) ODENet9-FE output at 22.05 kHz sampling rate,
showing aliasing at high frequencies. All spectra were normalized
to the highest absolute value before the conversion to the decibel
scale.

All models were tested on one long sequence, but the implicit
Adams scheme consistently diverged in this test setting. Therefore,
tests with ODENet9-IA were conducted using segments of 22 050
samples which were concatenated afterwards.

4.2.2. Results

In Table 2, test results of the compared models in terms of the
signal-to-distortion ratio (SDR) rounded to one decimal place are
shown. The best results (highest SDR) are given in bold. The
models were separately evaluated in terms of the learned model
quality (the test sampling rate equal to the training sampling rate)
and the performance at sampling rates different from the training
sampling rate.

At 44.1 kHz, the SDR was very high for all compared archi-
tectures (more than 20 dB). In terms of the SDR, the LSTM out-
performed all other models for 22.05 kHz, 44.1 kHz, and 48 kHz.

For 22.05 kHz test sampling rate, STN and ODENet models
produced aliased output, which can be seen in Figure 5. This is
to be expected because these models were trained with a higher
sampling rate.

ODENet has some advantage for 192 kHz test sampling rate,
with both models having the two highest SDR values. As could
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(a) Closed-form. Every magnitude m is transformed to 10 log10(m).
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(b) ODENet9-FE

Figure 6: Magnitude of the derivative of the first-order diode clip-
per: analytical (top) and learned (bottom).

be expected, architectures that take the sampling rate into account
during processing (STN, ODENet) obtained a higher SDR than the
non-informed one. There was an advantage of the implicit solver
over the explicit one in terms of the SDR but at the cost of doubled
time needed to process the same amount of data.

In Figure 6, one can see the analytical derivative function from
[11, 12] and the one learned by ODENet9-FE. The learned deriva-
tive function, although similar in the S-shape, is much smoother
than the analytical form. This difference probably comes from the
limited frequency bandwidth of the dataset due to sampling. The
learned derivative network visualization is on a par with the one
shown in [2].

All in all, results comparable to the established LSTM and
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5Vin R= 2.2 kΩ C1= 0.47 µF

y2

Vout

C2= 0.01 µF y1

Figure 7: Second-order diode clipper circuit with marked states y1
and y2.

Table 3: Compared network architectures for the second-order
diode clipper modeling

Model
Number

of
parameters

Epochs
in

training

LSTM16 1250 2000
STN 2× 30 tanh 1112 630
ODENet20 Softsign 542 1200
ODENet30 Softsign 1112 1200

STN architectures prove that ODENet can be used for VA mod-
eling and at sampling rates higher than the training sampling rate
even for the simplest numerical scheme, i.e., the forward Euler.

4.3. Second-Order Diode Clipper

The second-order diode clipper circuit and the values of the com-
ponents were taken from [2]. The circuit is similar to the first-order
diode clipper with the only difference being an additional capac-
itor inserted between the output node and the resistor as shown
in Figure 7. This additional capacitor introduces high-pass filter-
ing and makes the clipping asymmetrical [2]. The model has two
states, y1 and y2. The former is taken as the circuit output voltage
Vout. This circuit was modeled with STN using real-world mea-
surements in [2]. However, we again used a SPICE simulation that
processed the same dataset as in the case of the first-order diode
clipper.

4.3.1. Compared Models

In Table 3, the hyperparameters of the trained networks are pre-
sented. As a benchmark, we chose the LSTM-based architecture
with 16 memory cells (LSTM16) and a 3×30×30×2 STN (STN
2× 30). The derivative network of the ODENet was parametrized
by a 3 × 30 × 30 × 2 MLP (ODENet30) and a 3 × 20 × 20 × 2
MLP (ODENet20), both with the Softsign nonlinearity. The for-
mer was chosen to have roughly the same number of trainable pa-
rameters as the benchmark, the latter was meant to be significantly
smaller. The derivative network was used with the forward Euler
(FE), trapezoidal rule (TR), and explicit Runge-Kutta of order 4
(RK4) numerical schemes [18]. The training proceeded as in the
case of the first-order diode clipper.

Table 4: Signal-to-distortion ratio across all test samples in dB for
the second-order diode clipper models.

Test sampling
rate [kHz] 44.1 22.05 48 192

LSTM16 21.2 13.5 20.6 7.9
STN 2× 30 16.9 15.7 16.8 16.3
ODENet20-RK4 14.3 9.0 14.2 14.1
ODENet30-FE 11.6 6.4 11.5 11.0
ODENet30-TR 15.5 8.2 15.4 13.9
ODENet30-RK4 15.7 14.7 15.6 15.7
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Figure 8: Time-domain comparison of the results of the second-
order diode clipper modeling. Presented signal is a guitar note.

4.3.2. Results

Results in terms of the SDR are summarized in Table 4. As in
the case of the first-order diode clipper, the LSTM-based architec-
ture obtained the highest SDR for 44.1 kHz and 48 kHz. Some-
what surprisingly, STN obtained the highest SDR for the remain-
ing sampling rates, even for 22.05 kHz, which introduced alias-
ing in this model’s output for the first-order diode clipper. Again,
the LSTM-based architecture was inferior to other (sampling rate-
informed) models at 192 kHz.

ODENet models clearly performed worse, with the most so-
phisticated ODENet30-RK4 being close behind STN. Results re-
veal, however, the expected outcome: more complicated solvers
perform better than simple ones even though they are using the
same derivative network architecture. Additionally, a smaller net-
work using an advanced scheme ODENet20-RK4 outperformed a
larger network using a simpler scheme ODENet30-FE, but this re-
sult should be treated more as a hint rather than a general rule.

Figure 8 shows the accuracy of LSTM16 and ODENet30-RK4
at 44.1 kHz in the time domain. ODENet seems to follow the
signal well for small oscillations but fails to match the peaks of the
waveform.

One can obtain more insight into the ODENet by inspecting
the learned derivative of the state. The derivative is a vector-valued
function of three variables: the input voltage, Vin, and the two
states, y1 and y2. In Figure 9 the magnitude of the derivative of the
first state learned by ODENet30-RK4 is shown for two values of
y2. One can imagine these figures as snapshots taken at different
positions of the state space. The magnitude of the derivative of the
second state for y2 = 0 can be seen in Figure 10. If the magnitude
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Figure 9: Magnitude of the learned derivative of the first state of
the second-order diode clipper for two different values of the sec-
ond state.

of the learned derivative is asymmetrical with respect to the input
voltage, the chosen value for y2 should make it clear.

The derivative of the first state resembles the S-shape of the
first-order diode clipper derivative. The clipping behavior man-
ifests itself in regions with large derivative magnitudes, which
“push” the output towards the S-shape. Furthermore, for y2 = 1,
the behavior of the clipper becomes asymmetrical, which corre-
sponds to the previous analysis of the circuit in [2]. One can see
it even better in Figure 10, which shows that the derivative of the
second state is inherently asymmetrical with respect to the input
or y1 state. As one can see from Figures 9 and 10, the learned
derivative would be challenging to derive analytically in a white-
box fashion, which confirms the usefulness of the ODENet in VA
modeling.
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Figure 10: Magnitude of the learned derivative of the second state
of the second-order diode clipper for y2 = 0.

4.4. Time-Varying Models

We also applied ODENet to phaser modeling following the “toy-
problem” approach from [5]. However, even with ground truth-
informed dataset, ODENet was severely underfitting contrary to
the baseline from [5]. There seems to be an inherent difficulty for
ODENet in learning this time-varying system. This observation
was confirmed in [20], where STN, which is similar in nature to
ODENet, failed to fit a phaser dataset. Possible explanations and
solutions of this difficulty could be investigated in future work.

4.5. Challenges

Applying ODENet to VA is not without challenges. One needs to
obtain the state data to successfully train the derivative network.
To know which state data to capture, some insight into the mod-
eled device is needed as in white-box modeling. Additionally, the
implementation we used was quite slow to train because ODENet
allows parallelization only through the usage of minibatches.

5. CONCLUSIONS

In this paper, the concept of learning ODEs from data and solving
them numerically for VA modeling was presented. We adapted
this framework, termed ODENet, to handle an input signal and the
initial conditions of ODEs describing analog electronic circuits.
We successfully applied it to VA modeling of two distortion cir-
cuits: the first- and the second-order diode clipper. Our approach
obtained comparable performance to the baseline at the sampling
rate of the training set while using fewer trainable parameters and
showed acceptable performance at increased sampling rates. In
some cases, the accuracy increased at higher sampling rates. The
learned derivative is physically interpretable but does not have to
be derived analytically and does not need oversampling, which are
big advantages over purely white-box models. The learned deriva-
tive may be used in conjunction with any numerical solver, which
allows an accuracy-performance trade-off. Future work could in-
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clude modeling systems with more states or time-varying systems,
or a deeper analysis of the learned ODE-numerical solver cou-
pling.
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