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Abstract

In this work neural network models are used to reconstruct in-
cylinder pressure from a vibration signal measured from the en-
gine surface by a low-cost accelerometer. Using accelerometers
to capture engine combustion is a cost-effective approach due
to their low price and flexibility. The paper describes a vir-
tual sensor that re-constructs the in-cylinder pressure and some
of its key parameters by using the engine vibration data as in-
put. The vibration and cylinder pressure data have been pro-
cessed before the neural network model training. Additionally,
the correlation between the vibration and in-cylinder pressure
data is analyzed to show that the vibration signal is a good input
to model the cylinder pressure.The approach is validated on a
RON95 single cylinder research engine realizing homogeneous
charge compression ignition (HCCI). The experimental matrix
covers multiple load/rpm steady-state operating points with dif-
ferent start of injection and lambda setpoints. A radial basis
function (RBF) neural network model was first trained with a
series of two operating points at low loads with data of 1000
consecutive combustion cycles, to build the needed nonlinear
mapping. The results show that the developed neural network
model is capable of reconstructing in-cylinder pressure at low
loads with good accuracy. The error for combustion parameter
such as maximum cylinder pressure did not exceed 5%. The
approach is further validated with another series of operating
points consisting of both low loads and high loads. However,
the results in this case deteriorated. Changing the neural net-
work model to generalized regression (GR) improved the in-
cylinder pressure reconstruction quality. The performance of
the models was also considered in terms of combustion param-
eters, such as maximum pressure and mass burned fraction. The
paper concludes that vibration signal carries sufficient informa-
tion to estimate combustion parameters independently on the
engine platform or combustion concept.

INTRODUCTION

Demands for emission reduction and efficiency improvement in
internal combustion engines are increasing everyday, and there-
fore, novel combustion concepts and highly optimized con-
trollers are developed. In the combustion process specifically
the cylinder pressure is a vital component, which can be utilized
for the optimization of the engine performance, emission reduc-
tion and even fault detection (misfire, knock detection) [1–6].

The standard method for cylinder pressure measurement is by
using transducer inserted into the cylinder head of the engine.
This method is expensive and not reliable in long term due to the
limited lifetime of the transducers being exposed to severe con-
ditions (high temperature, high pressure). Therefore, many dif-
ferent non-intrusive or indirect methods to acquire the combus-
tion data have been developed, which mainly rely on vibration
measurements [7–11]. In addition, simple optical methods [12]
and ionisation measurement techniques [13, 14] are also being
investigated. There is a strong correlation between the cylin-
der pressure and the vibration of the engine because the fast
changing in pressure during combustion causes the vibration on
the engine block [15, 16]. The cited research indicates that vi-
bration data contains important information about the cylinder
pressure. Hence, there are possibilities of reconstructing the
cylinder pressure from the vibration on the engine block. Vibra-
tion signal is easily measured from accelerometers attached on
top of the cylinder head or on the frame of the test bench. How-
ever, there are some difficulties, because the cylinder pressure
is not the only source of the vibration. The non-linear correla-
tion between the pressure and the vibration makes the function
approximation process difficult [17].

Recently, many researchers have taken different approaches to
estimate the pressure curve from the accelerometer signal, ap-
plied on both spark ignition and compression ignition engines.
In [8] and [9], a recursive method using Kalman filter has been
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proposed. Frequency-based coherence analysis methods were
used in [18] and [19] to estimate combustion parameters from
accelerometer signal. Artificial neural networks have also been
proven to be a reliable method in [17], [20], [21]. In these
works, radial basis function neural network, recurrent and gen-
eralized regression network were implemented to reconstruct
the cylinder pressure of diesel engine and gas engine with good
results. However, there is very little work related to homoge-
neous charge compression ignition (HCCI) engines. Results
in [22] and [23] show that generalized regression neural net-
works can be good tools for combustion parameter estimation
for HCCI engines.

In this paper, an approach using radial basis network models
is proposed to reconstruct engine cylinder pressure from ac-
celerometer signal. The models were trained with data from
an HCCI engine and the validation of the predicted results are
also presented. Error of the validation is analyzed in terms of
combustion parameters such as peak pressure and 50 % mass
fraction burned.

EXPERIMENTAL SETUP

Experimental data in this work has been collected from a single-
cylinder HCCI engine test bench at Lublin University of Tech-
nology. Detailed specification of the engine is presented in Ta-
ble 1. Figure 1 shows the cross-section view of the engine. The
engine’s head uses hydraulic mechanism to reduce valve lifts
and enables negative valve overlap operation [24]. Notably, this
mechanism is responsible for high valve opening and closing
noise. Cylinder pressure is measured by a GH12D miniature
pressure transducer. The transducer is mounted on the engine
head and connected via a charge amplifier to the test bench ac-
quisition system. An optical encoder with a 0.1 crank angle
degree (CAD) resolution triggers the high-speed pressure data.
Vibration signal is measured by accelerometers attached on the
upper surface and side surface of the cylinder head, as shown
in Figure 2. The vibration signal is also sampled with corre-
sponding resolution of 0.1 CAD. Table 2 shows the accelerom-
eters specifications. The engine was coupled to a direct current
dynamometer with automatic control. All thermodynamic pa-
rameters, e.g. intake pressure and temperature, temperatures of
oil and coolant were controlled and monitored with high accu-
racy. More detailed information on the test stand can be found
in [25, 26].

Table 1: Specifications of the research engine. [26]

Parameter names Values
Displaced volume 498.5 cm3

Bore 84 mm
Stroke 90 mm
Connecting rod 165 mm
Compression ratio 11.7
Number of valves 2
Fuel injector Single stream, side mounted
Boost device Vane compressor, electrically driven

Table 2: Specifications of the accelerometers. [27]

Manufacturer PCB PIEZOTRONICS
Type PCB ICP M338A34
Sensitivity 11.1 mV/g
Measurement range ± 4905 m/s2

Frequency range (± 5%) 1-2000 Hz
Frequency range (± 10%) 0.7-3000 Hz
Resonance frequency > 12 kHz
Wideband sensitivity ± 0.2 m/s2

Cross sensitivity < 5 %
Impact resistance ± 19620 m/s2pk
Operating temperature -54 → +121 °C
Temperature coefficient < 0.09 %/°C
Stress sensitivity < 0.005 g/ε

Figure 1: Cross-section of the research engine SB 3.5; 1) camshaft, 2) drive
shaft, 3) sliding sleeve, 4) cam piston, 5) valve piston, 6) hydraulic accumulator
piston, 7) hydraulic accumulator spring, 8) valve springs, 9) valve lift regulating
screw, 10) valve, 11) engine head, 12) fuel injector, 13) piston, 14) cylinder
liner. [28]

Figure 2: Location of accelerometers on the engine test bench (red circle).
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METHODOLOGY

PRINCIPLES OF RADIAL BASIS FUNCTION NEURAL
NETWORK Radial basis function neural network (RBFNN)
is a feed forward network consisting of an input layer and a
hidden layer interconnected to an output layer. This intercon-
nection is a linear combination of the hidden layer signals [29].
The architecture of RBFNN is shown in Figure 3. Given an
input vector x, the network output yk is expressed as follows
[30]:

yk(x) =
n∑

j=1

wjkϕj(∥x− cj∥) + w0k (1)

where n is the number of neurons in the hidden layer, cj is the
vector determining the center of the basis function ϕj , wjk are
the final layer weights and w0k is the bias term. The term ∥x−
cj∥ indicates the Euclidean distance from vector x to the center
cj . There are several basis functions that can be used, such as
multi-quadratic, inverse multi-quadratic, thin plate spline, cubic
or linear [30], but in this work, the Gaussian function, which
is the most popular function for RBF, is used. The Gaussian
function can be expressed as follows:

ϕ(∥x− cj∥) = exp(−∥x− cj∥2

σ2
) (2)

in which σ is called the spreading parameter. Increasing σ re-
sults in smoother approximation. However, too large σ would
require a larger number of neurons to adapt to fast changing
functions [21]. Advantages of RBFNN are its nonlinear map-
ping and generalization ability. Additionally, it is fast in learn-
ing and convergence [31].

Figure 3: Architecture of a RBFNN. [32]

PRINCIPLES OF GENERALIZED REGRESSION NEURAL
NETWORK Generalized regression neural network (GRNN)
belongs to radial basis networks and is suitable for function ap-
proximation and model identification. GRNN consists of input
layer, pattern layer (radial basis layer), summation layer and
output layer, as depicted in Figure 4.

Figure 4: Architecture of the generalized regression neural network. [33]

The pattern layer operates similarly as the hidden layer in
RBFNN. The output of the pattern layer pass through the sum-
mation layer, which calculates the weighted sum of the signals
(for details see [34, 35]). The result is a mapping between the
hidden layers and the output layer. Similarly to RBFNN, GRNN
also has a strong nonlinear mapping ability. In addition to that,
it has a fast learning speed and strong approximation ability.
Other advantages of GRNN are its simple network architecture
and robustness [33]. However, the major advantage of GRNN is
its ability to provide good prediction with small data sets [34].

DATA PRE-PROCESSING AND ANALYSIS

VIBRATION AND CYLINDER PRESSURE CORRELATION
The vibration signal is able to capture the events taking place
during the engine operation. These events are for example in-
take valve opening or closing, piston slap and start of combus-
tion, and can be detected as drastic changes in the amplitude in
vibration signal [21]. It should be noted that the valve open-
ing and closing heavily influenced the vibration signal, which
is more severe compared to commercial engines. This issue
is a result of unoptimized design of the research engine val-
vetrain. Fortunately, there are no significant mechanical inter-
ference during the combustion event. In Figure 5 the cylinder
pressure with the corresponding vibration signal is presented.

Figure 5: Vibration signal and cylinder pressure (OP 13: 2095 RPM)

Figure 6 presents the normalized vibration with respect to nor-
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malized cylinder pressure and its derivative, where correlation
between the signals is clear. According to [36] comparing the
derivative of cylinder pressure against the vibration signal as
shown in Figure 6b is more informative than comparison be-
tween the vibration and pressure signals, as shown in Figure 6a.

(a) Normalized vibration signal and cylinder pressure

(b) Normalized vibration signal and cylinder pressure derivative

Figure 6: Normalized vibration and cylinder pressure signal (OP 13: 2095
RPM). The normalization presents the z-score of the signals with center 0 and
standard deviation 1. There is a distinct correlation between the vibration and
cylinder pressure during the combustion event.

It can be concluded that force impulses created by changes
in the cylinder pressure are propagated throughout the engine
block and are hence detected by the accelerometers.

Additionally, correlation between cylinder pressure and vi-
bration signal can be measured with different signal analysis
techniques such as the magnitude squared coherence estimate,
fast Fourier transform (FFT) or power spectral density (PSD)
[8, 36–38]. Combustion metrics, such as peak cylinder pres-
sure or combustion phasing, can be calculated from the vibra-
tion signal as shown in [36]. Zero-crossing of the vibration sig-
nal is used to calculate peak cylinder pressure. Time delay be-
tween the cylinder pressure and vibration signal was obtained
by observing the vibration and the first derivative of the cylin-

der pressure. In addition to that, [36] compared the first deriva-
tive of the rate of heat release to the vibration in order to es-
timate the parameters, such as combustion phasing and main
injection. [38] and [37] used FFT as a feature extractor to de-
tect and extract most dominant frequencies and their respective
amplitudes. These features were then used to detect abnormal
behaviour, such as misfire occurring during the combustion.

In this work, data analysis is focused more on the inspection of
the data. Thus, the only pre-processing procedure performed on
the vibration data has been data trimming around the combus-
tion event.

CYLINDER PRESSURE PEGGING In-cylinder pressure is
instrumental for this study as it provides reference and verifica-
tion data. The recorded relative pressure traces for individual
cycles were pegged to provide absolute values. To this end, the
absolute pressure signal from the intake port was used as a ref-
erence value to correct in-cylinder pressure around the point,
where valve flow was stagnated. The pegging procedure was
applied to each separate engine cycle.

Figure 7: Example of the pegging process for the cylinder pressure.

IMPLEMENTATION AND RESULTS

The goal in this paper is to build a radial basis neural network
model, valid for wide range of operating conditions. Two differ-
ent series of data were used for virtual sensor development. The
first data series consists of medium-low load operating points,
namely X60xx, presented in Table A1. The second data series
consists of operating points in a wider load range from low to
high loads, namely X43xx, which is presented in Table A2.

RESULTS OF X60XX SERIES Initially, a RBFNN model
was trained with this medium-low load data series, which con-
sists of two operating points, marked as X6021 and X6027 re-
spectively. The data was collected from 1000 consecutive cy-
cles for each point with resolution of 0.1 CAD, in which 700
cycles were used as training data. The remaining 300 cycles
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were used for validation. Hence, there are 1400 cycles of data
for training and 600 cycles for validation. Figure 8 presents
the measured accelerometer signals and cylinder pressures of
the two operating points averaged over 300 cycles. Addition-
ally, the accelerometer signal and cylinder pressure are trimmed
from -40 CAD to 40 CAD to concentrate on the combustion
phase. This reduces the computation time, while preserving
all relevant correlation between vibration and cylinder pressure
signals.

Figure 8: Accelerometer signals and cylinder pressures of the two operating
points.

The model was trained using the newrb function from Deep
Learning toolbox in MATLAB. There are two important param-
eters, which require tuning: the maximum number of neurons
in the hidden layer and the spread of radial basis functions σ.
These two parameters are tuned such that the mean square error
loss is minimized with the minimum number of neurons. Figure
9 presents the network performance, in terms of mean square
error (MSE), as function of the maximum number of neurons
and the spreading parameter σ. As the test indicates, the most
suitable maximum number of neurons is 75 and σ should be
3000. These values are implemented for the RBFNN training
throughout this paper and all the prediction from this model will
be denoted as ANN75.

(a) Training (b) Validation

Figure 9: RBFNN performance as a function of maximum number of neurons
and σ

Validation was carried out in two ways: by cycle-to-cycle and

by the mean value of the 300 validating cycles. In the first part
of validation, prediction is executed with the average of vibra-
tion and pressure data over the 300 validating cycles for each
operating point. The predicted cylinder pressure of both operat-
ing points are compared to the averaged experimental cylinder
pressure in Figure 10. The results show a good prediction with
very small root mean square error (RMSE). Furthermore, the
prediction was executed with every cycle in the validation data
set and the goodness of fit in terms of RMSE is shown in Figure
11. The average RMSE for both operating points are low and
it indicates good prediction of the pressure over the cycles with
error being below 2 bar, except for few cycles, where the error
is high for both operating points.

(a) X6021: RMSE = 0.29 bar (b) X6027: RMSE = 0.11 bar

Figure 10: Measured (red) and predicted pressure (green) at X6021 and X6027

Figure 11: RMSE over the validation cycles.

Combustion parameters, such as peak cylinder pressure and
peak pressure location are also investigated for both operating
points. In Figure 12 and Figure 13 the predicted peak pressure
values and locations errors are computed against the measured
values for both X6021 and X6027 over the 300 cycles of vali-
dation data. The root mean square error in peak pressure values
is kept at less than 2 bars. The peak pressure location errors are
approximately at 1-2 CAD for both operating points.

In both operating points, the majority of 300 validating cycles
has very small estimation error. However, due to some irregular
cycles, in which there are defects such as misfiring, incomplete
or late combustion, errors are unexpectedly high at these cycles.
For example, in Figure 11, it can be seen some minor cycles,
where the errors are excessively high. The similar result can
also be seen in Figure 12 and Figure 13, where there are some
irregular cycles with relatively high errors.
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(a) Peak pressure (b) Peak pressure location

Figure 12: Peak pressure comparison over validation cycles at X6021

(a) Peak pressure (b) Peak pressure location

Figure 13: Peak pressure comparison over validation cycles at X6027

RESULTS OF X43XX SERIES The approach was further
applied to another series of engine data which consists of wider
load range, from low loads to high loads, according to the spec-
ification of this test engine. The data consists of 27 operating
points with 100 consecutive cycles for each point with resolu-
tion of 0.1 CAD. Detailed operating conditions are presented in
Table A2. The data set was divided into 70 cycles for training
and 30 cycles for validating. The training and validation cycles
were chosen randomly. Figure 14 presents an example of 10 cy-
cles of the training data from operating point 1 (OP1) in which
indicated mean effective pressure (IMEP) is 4.497 bar.

Figure 14: Example of 10 cycles of training data from OP1.

The RBFNN model was trained again with this set of training
data and validated on all the cycles of the validating data set.

Figure 15 shows the average RMSE over the cycles of the val-
idation data at every operating point. As can be seen from the
graph, the fitting results are deteriorated at several first operat-
ing points, where the loads are high. Otherwise, after operating
point number 10 towards the end, the prediction errors are rea-
sonably low and those points are corresponding to the low load
conditions. Moreover, Figure 16 shows the fitting results at the
first validation cycle of OP1 and OP3. The RMSE are 1.32 bar
and 3.34 bar respectively. It appears from the results that the
radial basis function neural network model has difficulties to
reconstruct the cylinder pressure from a high load condition, in
which the pressure rises rapidly and fluctuates at the peak. As
can be seen from the plots, the two pressure curves are very
steep and narrow.

Figure 15: Average RMSE over 30 cycles of 27 operating points with RBFNN.

(a) OP1: IMEP = 4.497 bar (b) OP3: IMEP = 3.969 bar

Figure 16: Prediction results at OP 1 and OP 3 using RBFNN

In order to tackle the challenge at high load conditions, the
generalized regression neural network model was implemented.
Performance analysis of both GRNN and RBFNN has been con-
ducted at the end of this section. The GRNN model was trained
by using the Deep Learning toolbox in MATLAB with the com-
mand newgrnn and one hyperparameter that requires tuning is
the spreading parameter σ. In order to fit a smoother function,
σ can be chosen as large value, but small values are selected
to fit the data closely. In this work, the spreading parameter
σ was selected by a network performance test in which σ that
makes the mean square error minimized will be selected. Fig-
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ure 17 indicates that the suitable spreading parameter should
be 125. The number of neurons in the pattern and summation
layer are chosen by the function based on the value of the σ.
This chosen value of σ created pattern layer with 1890 neurons
and a summation layer of 801 neurons. Fitting result in terms

Figure 17: GRNN performance as a function of σ.

of RMSE is shown in Figure 18, where it presents the average
RMSE over the 30 cycles of validating data of the whole 27
operating points. The average errors over the validating cycles
are kept relatively small, i.e., under 2 bar. Similar to the per-
formance of the RBFNN, prediction error is higher at the high
load conditions and it becomes smaller at the low load operat-
ing points. However, the amplitude of the prediction error by
GRNN is relatively lower. In every operating point, the error
is approximately 30 % less than the error by using RBFNN, as
shown in Figure 15. In Figure 19, the first validation cycles of
OP1 and OP3 are also verified with the GRNN model. It shows
a much better fit compare to the RBFNN with mean square er-
rors of 0.36 bar and 0.91 bar respectively.

Figure 18: Average RMSE over 30 cycles of 27 operating points with GRNN.

(a) OP1: IMEP = 4.497 bar (b) OP3: IMEP = 3.969 bar

Figure 19: Prediction results at OP1 and OP3 using GRNN

In addition to the in-cylinder pressure, other combustion param-
eters were also taken into account during the validating phase,
such as peak pressure, peak pressure location and location of
50 % mass fraction burned (MFB50). The average root mean
square errors of each operating point of the peak cylinder pres-
sure and peak location in crank angle degree are shown in Fig-
ure 20 and Figure 21 respectively. Performance of both RBFNN
and GRNN models are exhibited. Due to the fluctuation around
the top dead center, the RMSE of estimation for peak pressure
value was kept under 0.8 bar with GRNN and 1.1 bar with
RBFNN. The two models have similar trends of result in the
peak pressure location, but GRNN definitely has smaller error
in both high and low load regions. Errors are relatively small
except for a few points where there are some abnormal cycles
in the validation data, which makes the errors become 3-4 CAD.

(a) RBFNN (b) GRNN

Figure 20: Prediction results of peak pressure values by RBFNN and GRNN

(a) RBFNN (b) GRNN

Figure 21: Prediction results of peak pressure location by RBFNN and GRNN

The reconstructed cylinder pressure was used to calculate the
location of MFB50. The procedure starts with calculating heat
release rate with respect to crank angle dQ

dθ by using Equation
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3 [39], in which p, V are the cylinder pressure and volume re-
spectively. The ratio of specific heat γ is kept constant at 1.4 in
this work.

dQ

dθ
=

γ

γ − 1
p
dV

dθ
+

1

γ − 1
V
dp

dθ
(3)

The cumulative heat release is then calculated by a cumulative
sum of dQ. Location of MFB50 is determined by finding the
crank angle where the corresponding cumulative heat release is
closest to 50 % of the maximum cumulative heat release. Re-
sults of MFB50 are compared to the measured values in Figure
22. The graph indicates that a majority of operating points have
low error, approximately only from 0.5 CAD to 1.0 CAD. How-
ever, there are a few points of which the errors are higher, also
due to abnormal cycles in the validating data set. Figure 23
shows some exemplary abnormal cycles with misfiring, incom-
plete or late combustion, extracted from the validating data set.
These two cycles belong to operating point 8 (OP8) and oper-
ating point 10 (OP10), which show high errors in the previous
analysis.

(a) RBFNN (b) GRNN

Figure 22: Prediction results of CA50 location by RBFNN and GRNN

Figure 23: Example of 2 abnormal cycles of validating data from OP8 and
OP10.

Finally, the fitting results of several operating points are shown
in Figures 24, 25, 26 and 27. The average of vibration signal
over 30 cycles of validating data was used as the input to recon-
struct the pressure curves. The predicted pressure curves are
compared with the average of cylinder pressure over 30 cycles
of validating data. The first and the second plots present the pre-
diction results by GRNN and RBFNN at high load conditions.

The third and the fourth plot show results of the two network
models at low load conditions.

In the high load cases, GRNN model captures the rapid rise
of the pressure curve very well while the RBFNN is not as suc-
cessful. There are always some offset between the measurement
and the prediction by RBFNN, specially in the expansion phase.
Both models performed well under low load conditions. Never-
theless, it can be seen that in a same operating point, RBFNN
tends to have slightly higher error than GRNN.

(a) OP 2 (b) OP 3

(c) OP 5 (d) OP 7

(e) OP 11 (f) OP 13

Figure 24: Measured and predicted cylinder pressure of high load engine con-
ditions by GRNN
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(a) OP 2 (b) OP 3

(c) OP 5 (d) OP 7

(e) OP 11 (f) OP 13

Figure 25: Measured and predicted cylinder pressure of high load engine con-
ditions by RBFNN

(a) OP 16 (b) OP 17

(c) OP 20 (d) OP 22

(e) OP 25 (f) OP 27

Figure 26: Measured and predicted cylinder pressure of low load engine condi-
tions by GRNN

(a) OP 16 (b) OP 17

(c) OP 20 (d) OP 22

(e) OP 25 (f) OP 27

Figure 27: Measured and predicted cylinder pressure of low load engine condi-
tions by RBFNN

CONCLUSIONS

In this work, two neural network models were built to recon-
struct cylinder pressure from vibration signal. Accelerometers
were installed on the surface of the engine cylinder head and
their measurements were used to estimate cylinder pressure uti-
lizing a radial basis function neural network and a generalized
regression neural network. The pressure prediction was vali-
dated and sensitivity analysis was carried out in terms of com-
bustion parameters, such as peak pressure and combustion tim-
ing.

Moreover, in high load conditions of HCCI combustion, the
generalized regression network performed better compared to
the radial basis network. This can be explained by the slight
difference in the last layer of the generalized regression net-
work, which is the extra normalized dot product function right
before the linear function of the output layer. It helps the func-
tion approximation deal with the fast changing function like the
pressure curve in the high load HCCI combustion. The fact that
in high-load combustion, GRNN performs better than RBFNN
is an open question and is currently being investigated.

The results have shown that vibration signal carries sufficient
information to estimate combustion parameters independently
of the engine platform or combustion concept.
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DEFINITIONS/ABBREVIATIONS

Abbreviations

CAD Crank angle degree
FFT Fast Fourier transform
GR Generalized regression
GRNN Generalized regression neural net-

work
HCCI Homogeneous charge compres-

sion ignition
IMEP Indicated mean effective pressure
MFB50 50 % mass fraction burned
MSE Mean square error
PSD Power spectral density
RBF Radial basis function
RBFNN Radial basis function neural net-

work
RMSE Root mean square error

Symbols

wk weight

w0k bias

yk output of the neural network

ϕ basis function

σ spreading parameter

c vector determining the center of the basis function

x input vector of the neural network

n number of neurons in the hidden layer
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APPENDIX

Table A1: Engine Operating Conditions of the X60xx data series. Each operating point contains 1000 cycles.

Speed [rpm] IMEP [bar] Lambda EGR [%] Pmax [bar]
X6021 1500 3.468 1.042 37.51 28.863
X6027 1500 2.786 1.101 46.98 27.86

Table A2: Engine Operating Conditions of the X43xx data series. Each operating point contains 100 cycles.

Speed [rpm] IMEP [bar] Lambda EGR [%] Pmax [bar]
OP 1 917 4.497 1.014 33.8 43.82
OP 2 1110 4.358 1.018 34.5 46.392
OP 3 1308 3.969 1.023 36.3 46.206
OP 4 1506 3.756 1.029 38.9 40.665
OP 5 1700 3.527 1.016 38.9 40.665
OP 6 1899 3.402 1.036 42.4 39.404
OP 7 2096 3.219 1.022 44.5 39.33
OP 8 1110 3.778 1.096 37.9 35.328
OP 9 1308 3.436 1.1 43.4 34.959
OP 10 1506 3.131 1.104 44.7 28.85
OP 11 1703 2.986 1.102 47.9 33.625
OP 12 1899 2.771 1.101 48.7 33.823
OP 13 2095 2.707 1.107 49.0 34.48
OP 14 2291 2.627 1.165 49.5 31.35
OP 15 1300 2.127 1.253 55.6 28.875
OP 16 1509 2.228 1.275 55.3 27.929
OP 17 1705 2.217 1.255 54.7 30.895
OP 18 1901 2.193 1.232 54.4 31.141
OP 19 2097 2.162 1.253 55.8 31.796
OP 20 2291 1.947 1.265 58.3 30.857
OP 21 1110 2.464 1.249 50.4 29.143
OP 22 1309 2.08 1.239 56.7 28.658
OP 23 1508 2.038 1.235 58.0 27.773
OP 24 1705 1.875 1.248 60.4 29.539
OP 25 1903 1.829 1.247 60.7 29.437
OP 26 2098 1.702 1.266 62.0 29.659
OP 27 2293 1.611 1.288 63.2 29.44
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