Lehtonen, Juha Matti; Virtanen, Kai

Choosing the most economically advantageous tender using a multi-criteria decision analysis approach

Published in:
Journal of Public Procurement

DOI:
10.1108/JOPP-06-2021-0040

Published: 14/04/2022

Document Version
Peer reviewed version

Published under the following license:
CC BY-NC

Please cite the original version:

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or part of any of the repository collections is not permitted, except that material may be duplicated by you for your research use or educational purposes in electronic or print form. You must obtain permission for any other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not an authorised user.
Choosing the Most Economically Advantageous Tender Using a Multi-Criteria Decision Analysis Approach

Juha-Matti Lehtonen
Department of Military Technology, National Defence University, Helsinki, Finland

Kai Virtanen
Department of Mathematics and Systems Analysis, School of Science, Aalto University, Helsinki, Finland and Department of Military Technology, National Defence University, Helsinki, Finland

Structured abstract

- **Purpose** Proposing and testing a multi-criteria decision analysis (MCDA) approach based on an additive value function (AVF) to select the most economically advantageous tender under EU public procurement regulations.
- **Design/methodology/approach** A case study in which the AVF tender evaluation model is constructed by the procurement personnel and the results of the original, real-life public procurement evaluation model are compared to those discovered by the MCDA approach.
- **Findings** The AVF model captures the preferences of the procurement authority in a more reliable and transparent manner than commonly used evaluation models based on scoring formulas.
- **Originality** The contribution of the article is threefold. First, the successful construction of the AVF model with procurement personnel is introduced. Second, the model is utilised in an actual, real-life case. Third, a thoughtful comparison of features, structures, and results of the AVF model and the evaluation model utilising scoring formulas is presented.
- **Practical implications** While commonly used in public procurement, relative scoring formulas cannot present the preferences of a procurement unit accurately nor do they enable bidders to draft bids according to these preferences. The proposed MCDA approach can achieve both.

Keywords: procurement, purchasing, award criteria, multi-criteria decision analysis

Article type: Research paper

Word count: 8316 + 6 * 280 = 9996

Introduction

Public procurement in the internal EU markets is regulated by public procurement directives 2014/24/EU, 2014/25/EU, 2014/23/EU and the defence procurement directive 2009/81/EU. These regulate how public procurement is carried out in the EU common market. The overall objective of the current public purchasing directives is to “obtain better value for public money, to deliver better outcomes for societal and other public policy objectives while increasing the efficiency of public spending” (European Commission, 2017).

There are three types of conflicting goals in every public procurement system: the goal to achieve efficiency or value-for-money; the aim to achieve other general political
objectives such as regional balance and eco-friendliness; and the goal to maintain general trust in public procurement activities through transparency, equality, and regulation (Schapper et al., 2006). For example, Keulemans and Van de Walle (2017) note that many policy objectives contrast sharply with the principle of economy and choosing the cheapest bidder.

As the value of public purchasing in EU is around 14% of GDP (EU, 2019), the significant amounts at stake make public procurement a potential lever for achieving social, environmental, and innovation-related objectives (Saussier and Tirole, 2015 p. 7). For example, the current Finnish government intends to increase the efficiency of public procurement but also sees public procurement as means to achieve social, climate, and sustainability targets, and even to promote domestically sourced food (PM Marin’s programme, 2019). The transaction costs of public procurement have been estimated by Strand et al. (2013) whose overall average for Europe was at 1.4 % of purchasing volume but with considerable variation between different EU member states. An average public procurement process uses 123 person-days of resources; in monetary terms that equates to 28,000 Euro (Strand et al. 2013). Of that, ¾ are borne by businesses who draw up the bids.

The overriding goal of public procurement is to fulfil the needs of a procurement authority (PA) through a purchase from the private sector. The goal of each procurement procedure is the selection of the best tender, and therefore, the evaluation criteria must help clarify and objectivate what constitutes the ‘best tender’ from the PA’s standpoint (Mateus et al., 2010). Public articles 26-31 in the 2014/24/EU procurement directive offer six different procurement procedures for the public procurement authority. In selecting the tender, the PA first applies the mandatory (e.g., non-payment of taxes) exclusion grounds in art. 57, the optional exclusion grounds in art. 57 (e.g., previous failure to deliver) and the selection criteria in art. 58 (e.g., economic standing) to the tenderer. Then, the PA checks if the tender is compliant with all the requirements and conditions of the procurement documents (e.g., technical specifications). Assessing the best tender is based on the contract award criteria in art. 67. These award criteria may consist of either the price only or consist of both the price and quality criteria. The multiple criteria option is termed the Most Economically Advantageous Tender (MEAT) in the directive. Furthermore, art. 67 requires that in addition to award criteria, the PA must also provide their relative weighting in the procurement documents. Regardless of which procurement procedure the PA chooses to use, both the award criteria and their relative weighting need to be determined at the beginning and are not subject to negotiation.

When considering the evaluation of alternatives in respect to multiple criteria, according to Keeney (2002), valuing the trade-offs between the criteria in the absence of the consequence ranges of the alternatives is a mistake. The requirement for setting weights for the award criteria in absence of the range of their measurement levels is not a meaningful value trade-off and thus such weights and criteria do not necessarily reflect the utility of the PA. That is, it is not meaningful to say that the price of a car is four times more important than its top speed, unless a range of consequences is specified, e.g., prices of 15,000 EUR and 20,000 EUR and top speeds of 150 km/h and 200 km/h. However, the procurement directive 2014/24/EU requires only criteria and their weightings. Moreover, in its decision on TNS Dimarso NV v Vlaams Gewest, the European Court of Justice has ruled that the PA is not required in advance to inform the tenderers of “the method of evaluation used by the contracting authority in order to specifically evaluate and rank the tenders” while “the method may not have the effect of altering the award criteria and their relative weighting.”

Multicriteria contractor selection must be understood as a system where criteria,
weights, scales, and price formulas interact (Waara and Böhner, 2006). In order to implement an entire evaluation model, in addition to multiple criteria and their weightings, also a procedure to evaluate for each tender and criterion the relative attractiveness of each performance level and then to combine the results for each criterion to an overall tender score is needed. A common way to assess the relative attractiveness of performance levels is through a scoring formula and using a weighted average to combine scores into an overall tender score.

Stilger et al. (2017) present 38 different scoring formulas found in the literature and other sources. They point out that the choice of formula critically affects which bid wins. Indeed, it should come as no surprise, that, given the same input values, different formulas produce different results.

Scoring formulas can be divided (e.g., Faustino, 2017 p. 24) into relative formulas, where the bid score is measured for a criterion in relation to other tenders (e.g., as a percent of best tender) and independent formulas, where the bid score for a criterion is measured using an independent scale (e.g., the percentage of some pre-set value). There is not a full picture available of the use of different scoring formulas in Europe as the procurement directive does not mandate their publication. Moreover, each EU country may have national legislation, legal practices, and administrative rules about tender evaluation models. Faustino (2017) suggest that in the UK and France the use of relative formulas for price criteria are a common practice. Högnäs and Kortelainen (2019) mention that in Finland relative formulas are widespread in practice and are the default in electronic tendering systems, while in Sweden relative formulas are avoided. Portugal has even prohibited relative formulas through legislation (Mateus et al., 2010).

Relative formulas have two clear issues recognised by a number of authors. One is rank reversal or the ranking paradox, where the order of two bids may be changed by presenting a third bid (see, e.g., Stilger et al., 2017; Waara and Bröchner, 2006; Bergman and Lundberg, 2013; Chen, 2008) thus violating the rule independence of irrelevant alternatives. Stilger et al. (2017) report a Dutch court case where it was found to be fully legal that a scoring formula could produce a reversal between two bids when a third bid was excluded as non-compliant. The other is that, because of scoring in relation to other bids, a tenderer cannot calculate the score when preparing the bid and therefore cannot optimise their own bid in relation to their production costs (Bergman and Lundberg, 2013; Dini et al., 2006; Mateus et al., 2010). Relative scoring methods replace the preferences of a buyer to a certain extent with a lottery because the lowest price is determined by the market and not by the buyer (Faustino, 2017).

In addition to scoring formulas, Multi-Criteria Decision Analysis (MCDA) has also been proposed for the bid selection problem, e.g., by Mateus et al. (2010). In general, decision analysis (see e.g., Clemen, 1996; Keeney and Raiffa, 1993; Kirkwood, 1997) is a discipline which formalises the analysis of decisions. The primary aim of decision analysis is to aid a decision maker—or a group of decision makers—to think systematically about their values, objectives, and preferences as well as to structure decision problems. Decision analysis offers a versatile set of methods to analyse decision problems in a transparent manner and to support decision making.

Mateus et al. (2010) introduce an MCDA bid evaluation model based on an additive value function (AVF) (Keeney and Raiffa, 1993) originating from multi-attribute value theory. Although the construction and use of this model in the bid selection are discussed in an elegant way by Mateus et al. (2010), there is no application to an actual tendering process as only an illustrative example is presented. It should also be noted that the quality-to-price method introduced by Bergman and Lundberg (2013) for the bid selection can be seen as a special case of the value function when the value gained from a criterion
is assumed to depend linearly on the measurement level of that criterion. However, with the additive value function, the form of this dependence is not restricted to a linear relationship. This enables a more flexible way to describe preferences of the PA.

Like the value function, Analytical Hierarchy Process (AHP) (Saaty, 2000) is a widely used tool in the field of MCDA. AHP-based tender evaluation models are introduced by Marcarelli and Nappi (2019). They use an ex-post evaluation approach where AHP is used to rank the tenders using the MEAT criteria. However, there are several arguments favouring the use of the value function over AHP in the bid selection. For instance, in AHP, relative pairwise comparisons of alternative bids are conducted, and thus AHP suffers similar issues as the relative scoring formulas discussed above.

Outranking methods (e.g., Ishizaka and Nemery, 2013) have also been suggested for evaluating bids (e.g., Segura and Maroto, 2017) but compared to the AVF, one of their challenges is the vague interpretation of criteria weights that should represent the relative importance of performance differences measured with each criterion. Moreover, the PA should determine indifference and preference thresholds on the measurement scales of the criteria. The thresholds imply whether two bids are equally good or whether one bid is preferred to another one with respect to each criterion. In general, the elicitation of these weights and thresholds from the PA can be difficult. Moreover, the quantification of the weights is based on relative pairwise comparisons, which pose the undesirable threat of rank reversal to the bid evaluation process.

In this article, the selection of the most economically advantageous tender under EU public procurement regulations is tackled from the perspective of MCDA. In the tender preparation stage, there are no actual bids, so the evaluation model including criteria as well as their weights and scoring formula corresponding to partial value functions of the criteria in the AVF model should be able to reflect the preferences of the PA. That is, bids that are more preferable to the PA should also receive higher overall scores. We propose an MCDA approach based on an additive value function for tender preparation. In this approach, the PA, given the MEAT criteria, first determines partial value functions representing the PA’s preferences related to each criterion by using a bisection procedure (Keeney and Raiffa, 1993). In the second phase of the approach, the PA assesses the weights of the criteria by using the SWING procedure (Von Winterfeldt and Edwards, 1986). The novelty in comparison to the existing literature and especially to Mateus et al. (2010) is that this article presents an ex-post application of the approach with a real public procurement tendering case of the Finnish Defence Forces. In addition to testing the feasibility of the proposed approach, an application with a real ex-post case also enables a comparison to results obtained with the actual tender evaluation model and thus for conclusions to be drawn on the merits of both evaluation means, including amount of elicitation effort and expertise required from the PA.

The MCDA approach for tender evaluation

In the MCDA approach, an AVF is used to provide overall scores of tenders. Its elements are determined by the PA utilising decision analytic elicitation procedures. As discussed in the introduction section, such a value function is a widely used method for analysing multi-criteria decision-making problems, and Mateus et al. (2010) have also suggested its use in evaluating tenders and identifying the most economically advantageous tender in public procurement processes.

The AVF is composed of partial scores of the tenders with respect to each award criterion.
and weights of the award criteria. Formally, it is of the form:

\[
V(x) = \sum_{i=1}^{n} w_i v_i(x_i),
\]

where \(V(x) \) is the overall score of tender \(x \), \(w_i \geq 0 \) is the weight and \(v_i(x_i) \) is the partial value function of award criterion \(i \), and \(x_i \) is the measurement level of tender \(x \) on the measurement scale of criterion \(i \). The value range of the partial value functions is \([0,1]\). The worst measurement level of each criterion among the set of tenders to be compared is associated with score 0 and the best one with score 1, and other measurement levels between the worst and best levels are assigned to a score between zero and one. Therefore, the original measurement scales of the award criteria are converted into commensurate unit scales using these functions. The weights are normalised so that their sum is one. Due to the scaling of the partial value functions and the normalisation of the weights, the overall scores of the alternative tenders vary within the range from zero to one. These scores provide the final rank of the tenders, and a tender with the highest overall score wins the bidding competition. Note that the AVF reveals a natural interpretation of the weights of the award criteria associated with the ranges of the worst and best measurement levels; the weight of the given criterion is equal to the change of the overall score of a tender when the measurement level of this criterion moves from the worst level to the best level. Furthermore, the ratio of two weights reflects the trade-off between the partial scores of the corresponding criteria.

Regarding the theoretical rationale of the AVF, its functional form is motivated and argued by underlying preference assumptions or axioms. That is, when the PA accepts these axioms, then there exists an AVF that captures the PA’s preferences. From the practical point of view, the most relevant axiom deals with the preference independence of award criteria. Roughly speaking when the preference order for the measurement levels of one criterion does not depend on the level of another criterion, the criteria are said to be mutually preferentially independent (Keeney and Raiffa, 1993). Then, the AVF is a valid representation of the preferences of the PA. If the criteria are not preference independent in this sense, more complex value functions, e.g., a multiplicative function, should be used (Dyer and Sarin, 1979). A way to overcome the preference independence issue is to define a new preference independent criterion whose measurement scale is two-dimensional representing the scales of two originally preferentially dependent criteria (see, e.g., Ewing and Parnell, 2006).

Elicitation of partial value functions

The decision analysis literature offers several procedures for eliciting partial value functions and weights of award criteria from the PA. The choice of an assessment procedure of the partial value functions depends on the type of measurement scales of the criteria (see, e.g., Eisenfuhr et al., 2010). For example, if an award criterion has an interval or ratio scale, the difference standard procedure can be used. In this procedure, a sequence of equally preferred differences on the measurement scale of a criterion should be assessed by the PA. Based on these assessments, a piecewise linear partial value function can be determined (e.g., von Winterfeldt and Edwards, 1986). In some cases, it might be appropriate to use a pre-specified functional form, e.g., exponential, for the partial value function (e.g., Kirkwood 1997; Mateus et al., 2010). In the case of an ordinal
measurement scale, the direct assessment of measurement levels can be applicable in providing partial score for each level (e.g., Clemen, 1996). Moreover, scores could also be determined based on pairwise comparisons between the measurement levels. Indeed, such comparisons are used to express preference information when applying AHP in the selection of the most economically advantageous tender (Marcarelli and Nappi, 2019).

In the MCDA approach, partial value functions are elicited from the PA using a bisection procedure (Keeney and Raiffa, 1993). This is a suitable technique for the case study presented in this article as all the award criteria are measured on ratio scales and its use is already illustrated in tender evaluation models (Mateus et al., 2010). The popularity of this procedure in MCDA studies is mainly based on a pragmatic consideration that decision makers typically prefer applying the bisection procedure rather than using, e.g., the difference standard procedure (Schuwirth et al., 2012; Ferretti, 2016; Zheng and Lienert, 2012; Zheng et al., 2016). It has also been noted that the bisection procedure provides more reliable partial value functions compared to, e.g., ones elicited via direct rating (Schuwirth et al., 2012).

In the bisection procedure, the PA should choose a midpoint between two measurement levels of a single criterion so that the improvement of the score from the one measurement level to the midpoint is equal to the improvement of the score from the midpoint to the other measurement level. This gives two new intervals of measurement levels whose midpoints are identified in a similar way. The procedure is repeated until a set of (measurement level, score)-points is obtained which allows the definition of the partial value function with the desired accuracy.

Elicitation of criteria weights

There are several procedures for assessing weights of the AVF that represent preferences of the PA. Mateus et al., 2010 discuss the use of alternative elicitation procedures in the bid selection but only two of them, i.e., the trade-off procedure (Keeney and Raiffa, 1993) and the SWING procedure (Von Winterfeldt and Edwards, 1986), take into account the ranges of measurement levels of the award criteria which is essential in order for the resulting weights to reflect the preferences of the PA. Direct weighting procedures, such as SMART (Edwards, 1977) or pairwise comparisons in AHP, ignore these measurement level ranges leading to weights with no meaningful interpretation. There are also other arguments for the superiority of the SWING and trade-off procedures over AHP pairwise comparisons in eliciting weights. The number of the PA’s comparison tasks increases exponentially with the number of the criteria, and the PA also must ensure that comparison results are consistent. On the other hand, experimental studies have shown that weights obtained using AHP typically deviate from SWING and trade-off weights (Pöyhönen and Hämäläinen, 2001). In addition to the ignorance of measurement level ranges in relative pairwise comparisons, vague interpretations of AHP weights also originate from the lack of well-founded underlying theory, i.e., there is no preference axiomatic basis for AHP. Moreover, the mapping from the standard measurement scale used in AHP comparisons to the resulting weights is nonlinear, which complicates how the levels of the scale and their verbal expressions can be understood by the PA. In order to overcome this challenge, alternative scales for pairwise comparisons have been suggested (Salo and Hämäläinen, 1997). Finally, AHP suffers a well-known rank reversal issue—the rank of tenders may change when a new tender is added to or an existing tender
is excluded from the tender evaluation.

There are also weighting procedures that allow for the use of only ordinal or incomplete preference information to rank the importance of award criteria. In the former procedures, the PA should first rank the criteria. Then, weights are obtained based on this rank information (e.g., Bana e Costa et al., 2002; Ahn and Park, 2008; Pictet and Bollinger, 2008). In the latter procedures, the preference information of the PA is expressed in the form of inequalities related to weights which define intervals for the weights (e.g., Weber, 1987; Salo and Hämäläinen, 1992; Harju et al., 2019). Then, it is possible to determine the overall interval scores of the tenders and these imply the ranking of the tenders.

The SWING procedure is selected for the case study due to its acknowledged means of providing weights in a consistent and valid way. The trade-off weighting procedure is often suggested as a preferable means for eliciting weights in the MCDA literature, and the utilisation of this procedure is also described in tender evaluation models with a tokenistic example by Mateus et al. (2010). However, in trade-off weighting, the PA should construct and consider equally preferred hypothetical tender alternatives, which makes its use more time consuming and cognitively demanding compared to the SWING procedure (Schuwirth et al., 2012; Fischer, 1995; Eisenfuhr et al., 2010; Danielson and Ekenberg, 2019; Riabacke et al., 2012). Moreover, prior to the use of SWING, only measurement level ranges of the award criteria are required, whereas shapes of partial value functions of the criteria are required and must be taken into account when applying the trade-off procedure (Schuwirth et al., 2012; Eisenfuhr et al., 2010; Ferretti, 2016). Therefore, the SWING procedure allows conducting weight elicitation before the assessment of the partial value functions. The SWING procedure has also proven to provide similar weights in test-retest experiments (Bottomley and Doyle, 2001), stable weights over time in a time dependent decision environment (Lienert et al., 2016), and has been shown to avoid some cognitive biases (Montibeller and von Winterfeldt, 2015), even though all weighting procedures have the potential for such biases (see, e.g., Hämäläinen and Alaja, 2008). Moreover, although SWING is less theoretically defensible than trade-off weighting, the convergence validity of these methods has been confirmed by demonstrating that the procedures provide similar weights in experimental settings (Pöyhönen and Hämäläinen, 2001).

In the SWING procedure, the PA should first consider a hypothetical tender in which all the criteria are their worst measurement level. The PA should choose the criterion that the PA would first like to change to its most preferred measurement level. This criterion is given 100 points. Then, the PA identify the next criterion that the PA would like to change to its most preferred measurement level. This criterion is given points that reflect this improvement relative to the first one. The procedure continues in the same way until points of all the award criteria are determined. Finally, the points are normalised, i.e., divided by their sum, which provides the weights of the AVF.

The Mini Unmanned Aerial System procurement case

The MCDA approach was applied in an ex-post workshop to the procurement of a mini unmanned aerial system (MUAS). The actual MUAS procurement had already been completed by the Finnish Defence Forces (FDF) at a cost of €30 million. The ex-post design makes it possible to compare the results of the MCDA approach with the actual
evaluation model included in the request for quotations (RFQ). Because the procurement has been completed, the evaluators at the ex-post workshop were subject matter experts concerning this procurement and knowledgeable of the procurement needs. As the MUAS procurement was conducted by the FDF, the actual names of the MUAS systems are referred to by code names.

MUAS tenders and RFQ evaluation model

The MUAS procurement was carried out according to the defence procurement directive 2009/81/EC. The contract award criteria were price, quality, field test performance and life-cycle costs (LCC). The quality criterion was measured as a sum of points given based on a number of optional MUAS features and performance criteria. The weights for the award criteria were specified in the RFQ. As required by Finnish legal practice, scoring formulas for the criteria were specified in the RFQ. The scoring formula of a criterion converts the criterion’s measurement levels into partial scores of tenders in respect to that criterion. The RFQ evaluation model, including the scoring for each criterion and criteria weights was:

\[
P_{\text{tot}} = \frac{P_i}{P_l} \times 60 + \frac{Q_i}{Q_h} \times 40 + \frac{F_i}{F_{\text{max}}} \times 30 + \frac{\text{LCC}_i}{\text{LCC}_{\text{max}}} \times 10
\]

where

- \(P_{\text{tot}} \) = Overall score of a tender \(i \)
- \(P_i \) = Lowest quoted price
- \(P_l \) = Price of tender \(i \)
- \(Q_i \) = Quality points of tender \(i \)
- \(Q_h \) = Highest quality points
- \(F_i \) = Field test points of tender \(i \)
- \(F_{\text{max}} \) = Maximum field test points (30 p)
- \(\text{LCC}_i \) = Lowest quoted LCC
- \(\text{LCC}_{\text{max}} \) = LCC of tender \(i \)

The scoring formulas of the award criteria were relative, except for the absolute measurement scale from zero to 30 performance points for the field test criterion.

//take in table 1//

FDH received five tenders, one of which did not fulfil the selection criteria so four tenderers were evaluated, including the extensive field testing done by the FDF. The four tenders and their levels on the measurement scales of the criteria are shown in Table 1.

Applying the MCDA approach to tender evaluation at the ex-post workshop

A half-day workshop was arranged 24th March 2020 to apply the MCDA approach to tender evaluation. Because of the travel restrictions due to the coronavirus pandemic, the workshop was organised both face to face and virtually via a video link. The workshop participants included a technical expert and a commercial specialist who had drafted the original RFQ as well as another commercial specialist and a participant with legal expertise.

After explaining the purpose of the workshop, the MCDA approach was introduced to all participants by the workshop facilitators (i.e., the authors of this paper). Explaining
the bisection and SWING procedures was important in order to ensure sufficient knowledge for their use in the workshop. The authors facilitated the elicitation of each partial value function included in the AVF model by explaining the meaning of choices in the bisection procedure as the participants did not have prior experience of partial value functions or the bisection procedure. The set of (measurement level, score)-points obtained during the procedure and the resulting functions for all award criteria are presented in Figure 1. Eliciting the partial value functions lasted about 20 minutes for each of the four criteria and terminated once a consensus was reached. After that, the criteria weights were elicited with the SWING procedure and this terminated once a consensus was reached in about 15 minutes.

//take in Figure 1//

For the price criterion, the participants arrived at a concave value function (Figure 1a). This reflected a strong preference to not exceed the budget constraint for the procurement. From the whole-of-the-government perspective, the value function should essentially be linear, as the cost of the MUAS procurement from that perspective is small. However, as Bergman and Lundberg (2013) point out, the PA may have weak incentives not to use all of the allocated funds and often strong incentives not to exceed the budget allocation causing the value function to be curved. On the other hand, for the quality criterion, the elicitation procedure revealed a convex value function that reflects the strong preference to achieve the maximum performance. The workshop participants indicated that achieving the best performance was a top priority. They arrived at a linear value function for the field test criterion (Figure 1c). The main purpose of the field test was to exclude MUAS tenderers that did not fulfil the minimum requirements. Therefore, the extra performance points were linear. There was some discussion of what shape the value function should be for the LCC, but in the end consensus for a linear value function was reached (Figure 1d). The verification issue of the LCC was also brought up in the discussion, as contractual mechanisms for making an LCC complaint were weaker than for other criteria. However, the participants decided that this should not be reflected in the value function.

When one inserts the best measurement levels (see Table 1) of the criteria measured with relative scoring formulas, i.e., the price, quality and LCC criteria, into the formulas included in Equation (2), the corresponding partial scores can be plotted as a function of the measurement scale (see Figures 1a, 1b and 1d). While these best levels are not known when the bidders draft their bids, they are available ex-post when all the bids have arrived. As the field test criterion has an independent scoring formula, the corresponding partial scores are readily available (Figure 1c).

When comparing the partial value functions and the RFQ scoring formulas presented in Figure 1, only with regard to the field test criterion, the workshop arrived at a partial value function with a similar linear form as in the RFQ evaluation model. For the price criterion, the value function was concave while for the RFQ it was a convex formula. For the quality criterion, the value function was strongly convex while the RFQ formula was linear. The RFQ LCC scoring formula was slightly convex while the linear partial value function for the LCC was elicited at the workshop.

//take in table 2//

When the SWING procedure for eliciting the criteria weights of the AVF evaluation model was executed at the workshop, first the importance points (see the points column
in Table 2) regarding the ranges of the criteria measurement levels shown in Table 1 were assessed. Then, the normalisation of these point resulted in the criteria weights presented in the weight column of Table 2. The corresponding RFQ weights are given in the normalised weight column of Table 3. Here, these weights were obtained by normalising the original weights of the RFQ evaluation model (2) so that their sum was one. When the SWING weights are compared to the RFQ weights, a number of differences can be seen. The SWING procedure gives only around half the weight for the price criterion (0.20) than the RFQ model (0.43) while the SWING weight for quality (0.40) has increased the most compared to its RFQ weight (0.29). The weight given to the field test criterion is almost unchanged while the LCC weight has increased.

Because the range of the partial score provided by the partial value function of each criterion is one, the SWING weights (Table 2) directly describe the contribution of each criterion to the overall score differences between the tenders under consideration when using the AVF evaluation model. In order to analyse the contributions of the criteria also in the case of the RFQ evaluation model, the product of each criterion’s normalised weight and score range was calculated, and the resulting products were normalised to sum them to one. These quantities measure the effect of each criterion on the overall score differences between the tenders in the RFQ model. They are shown in the normalised product column of Table 3. When comparing the overall contributions of the criteria to the tender evaluation in the AVF model and in the RFQ model, the contribution of the price criterion in the RFQ is overwhelming, about 75% of total while it is only around 20% with the AVF model. The rank order of the effects of the three non-price criteria remains the same with both evaluation models, although their magnitudes are clearly different.

The price criterion dominates the tender evaluation based on the RFQ model and does that even more so than could be concluded by analysing only the value of the RFQ weight for price. This finding clearly demonstrates that—as argued in the introduction section—not taking into account the ranges of the measurement levels of award criteria when assessing their weights and, on the other hand, using relative scoring formulas can lead to a biased evaluation result including meaningless overall scores for tenders. By assuming that the AVF model constructed in the ex-post workshop reflects the preferences of the PA and these have remained constant since the actual MUAS procurement, the RFQ model poorly captures these preferences.

The overall scores of the tenders provided by the AVF model and the RFQ model are presented in Figures 2 and 3, respectively. The contribution of each criterion to these scores is also illustrated. Note that the RFQ scores were now calculated by using the normalised RFQ weights presented in Table 3. This way it is possible to compare their magnitude to the AVF scores determined with the normalised SWING weights presented in Table 2.

In the actual MUAS system procurement procedure, the FDF awarded the contract to the tenderer “Green” that received the highest overall RFQ score (0.93). This tender had
also the highest overall AVF score (1.00). In fact, “Green” is the best alternative in respect to each single award criterion. Therefore, it would be awarded the contract regardless of which evaluation model is used. Nevertheless, the superiority of “Green” over the other tenders was revealed more clearly with the AVF model than the RFQ model since the AVF score of the second best tender, i.e., “Blue” was 0.51 and the RFQ score was 0.82 assigned to the tender “Black”. That is, the evaluation models led to different rank of these two tenders. Both models gave the worst rank to the tender “White” (AVF score 0.31 and RQF score 0.61) but also here the overall RFQ score was closer to the scores of the better tenders compared to the differences between the AVF scores. Overall, the sensitivity of the AVF scores seems to be more accurate than the RQF scores since the score range is noticeably wider with the AVF model (0.31 – 1.00) than with the RFQ model (0.61 – 0.93).

Discussion

The MCDA approach with an additive value function was tested for the selection of the most economically advantageous tender for the MUAS case. The workshop participants were able to elicit partial value functions using the bisection procedure and criteria weights with the SWING procedure. In both procedures, the participants’ answers to elicitation questions were founded on ranges of criteria measurement levels. Compared to the RFQ approach in which criteria weights are decided and then selecting a scoring rule for each criterion, the MCDA approach brings more clarity and openness to the value decisions. We believe that both the elicited partial value functions and SWING weights more properly represent the preferences of the PA.

The partial value functions elicited in the ex-post workshop were quite different compared to scoring formulas used in the RFQ evaluation model (see Figure 1). It is hard to see that the relative scoring formulas for price and LCC in the RFQ would represent what actually gives value to the PA. RFQ scoring means that there are diminishing marginal penalties the higher the bid price is in relation to the lowest price. The mere use of scoring formulas does not seem to encourage thinking about what adds value to the procurement at hand. It is almost as if it brings about a shortcut to arriving at a decision. The partial value functions obtained with the bisection procedure, on the other hand, are more believable. The use of this procedure, however, should be trained thoroughly, especially if there are no facilitators in an elicitation session.

The weight of the quality criterion increased while the weight of the price criterion decreased when applying the SWING procedure compared to the original RFQ weights. Thus, this procedure more clearly reveals different contributions of quality and price than the RFQ in the overall evaluation results. Determination of the weights with the SWING procedure was based on a firm theoretical footing, while it is hard to say what the basis was for the RFQ weights, other than guesswork. Provided that the preferences of the PA were unchanged since the actual MUAS procurement, the SWING weights more correctly reflect the preferences of the PA than the RFQ weights.

Both AVF and RFQ evaluation models ranked the same choice first, which was natural since the selected tender was the best one in respect to all the award criteria, i.e., it dominated all other alternatives. It is important to note, however, that the evaluation models could have led to different first choices if the tenders had been more even. In fact, the rank was changed between Black and Blue, i.e., the second and third best tenders.
If the original RFQ would have included partial value functions in Figure 1 and SWING weights in Table 2 instead of the evaluation model (2), the bidders could have calculated trade-offs in design and production and maximised their overall evaluation score. This calculation would have also maximised the value for the PA. In fact, it would have been in the interest of each bidder to submit a tender that maximises the PA value, given their profit requirement.

In the MUAS case, the ex-post workshop used the actual tenders to elicit partial value functions and criteria weights. This is not possible in the ex-ante drafting of an RFQ as the tenders will come after the RFQ. In defence procurement a request for information (RFI), including price and product features, before drafting the RFQ is common practice. The directive 2014/24/EU art. 40 on preliminary market consultations allows an RFI and other such procedures. Instead of actual tenders, the PA may use information received in preliminary market consultations to make up plausible tenders that cover the expected range of each criterion’s measurement scale and apply the MCDA approach as with actual tenders. When partial value functions are elicited with bisections and weights with the SWING procedure, only the criteria and their expected range of measurement scales are needed.

Regardless of how well preliminary market consultations are carried out, there is always a possibility that the measurement level of some criteria in some bids are over or below the expected range. If, e.g., the price is lower than the expected price, awarding no extra scores is one possibility, but it is not an optimal one from the PA perspective. Another possibility would be to extrapolate partial value functions outside the expected ranges, but it is unclear how courts would react to this. Faustino (2017, p. 154) reports a decision by a French court where negative scores were not allowed because it was thought that the impact of those negative scores on the overall score of each tender might distort the relative weighting of the criteria as disclosed in advance. However, it should be noted that there is no decision theoretical restriction that a partial value function could give scores greater than one or less than zero when a measurement level is outside the expected range.

The weight assigned to the quality criterion in the ex-post workshop was much higher than that of the RFQ. The RFQ included over 100 individual features and performance requirements that each gave some amount of points. The quality points used in the RFQ evaluation model (2) was a sum of such individual items fulfilled by a tender. Even the worst tender fulfilled around 6/7 of the those fulfilled by the best tender. If this would not have been found in the preliminary market consultations, then the PA may have had to draft a partial value function covering the entire range of the quality scale. In that case, it may not be assumed that the shape of the value function would have been similar to the shape identified at the workshop. For example, would the form of red line in Figure 1b have remained the same in the interval [926, 1074], if the range [0, 1074] instead of [926, 1074] had been used as a basis in the workshop? The obtained convex form reflected the strong preference for procuring the best possible equipment but it also highlights the need for educating the procurement personnel in thinking about and eliciting what it is that provides value to the PA for the procurement. In the ex-post workshop, the partial value function of the price criterion strongly implied the importance of not exceeding a budget constraint and small incentives for not using all the money. From the overall governmental perspective, the partial value function of the price should be linear, as the saved money could be used elsewhere. In fact, as the PA does not have a budget constraint for LCC, its value function was linear.
Conclusions
There is a large body of literature on decision analysis approaches for making value decisions. However, as pointed out by Bergman and Lundberg (2013), the current public procurement practice and practitioners are not informed by this literature. The issues with widely-used tender evaluation models based on scoring formulas are that:

- their capability to capture preferences of the PA is questionable as the preference representation depends on the bids in the evaluation, not on the view of the PA.
- weights of award criteria are assessed without taking into account ranges of measurement levels of the award criteria, leading to vague interpretation and meaning of the weights.
- relative scoring formulas do not enable bidders to make informed judgements regarding their offer because the scoring depends on other bids that are unknown at the time.

Therefore, the nature of these evaluation models can be viewed as a black box, and the evaluation process may end up with a contract that is not made based on well-argued rationales reflecting the original aims of the PA. In order to overcome the issues discussed, we propose an MCDA approach with an AVF that could be applied in public procurement tendering. Although the application of AVF-based models to support the tender evaluation have been earlier suggested in the literature (Mateus et al., 2010), our article is the first in which the successful construction of the AVF model with subject matter experts (i.e., the procurement personnel) is introduced, and in which such a model is utilised in an actual, real-life case. In addition, a thoughtful analysis and comparison of are conducted of the features, structures and results of the AVF model and the evaluation model utilising commonly used scoring formulas.

The managerial practice of public procurement could benefit from clear thinking about what really brings value to the PA. The application of the MCDA approach took only two hours from four participants, i.e., one person-day (excluding the researchers) in an ex-post workshop. From a managerial viewpoint, the effort of applying the proposed approach is only a fraction of the effort required for a public procurement.

References

Tables

Table 1. MUAS tenders, their measurement levels as well as the best and worst measurement levels of the award criteria

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Green</th>
<th>Blue</th>
<th>White</th>
<th>Black</th>
<th>Best</th>
<th>Worst</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price (M€)</td>
<td>10.5</td>
<td>29.6</td>
<td>25.1</td>
<td>12.6</td>
<td>10.5</td>
<td>29.6</td>
</tr>
<tr>
<td>Quality (points)</td>
<td>1 074</td>
<td>1 053</td>
<td>926</td>
<td>1 028</td>
<td>1 074</td>
<td>926</td>
</tr>
<tr>
<td>Field test (points)</td>
<td>20</td>
<td>19</td>
<td>19.5</td>
<td>16</td>
<td>20</td>
<td>16</td>
</tr>
<tr>
<td>LCC (k€/yr.)</td>
<td>486</td>
<td>559</td>
<td>726</td>
<td>500</td>
<td>486</td>
<td>726</td>
</tr>
</tbody>
</table>

Table 2. SWING points and weights of the award criteria

<table>
<thead>
<tr>
<th>SWING</th>
<th>Points</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price</td>
<td>50</td>
<td>0.20</td>
</tr>
<tr>
<td>Quality</td>
<td>100</td>
<td>0.40</td>
</tr>
<tr>
<td>Field test</td>
<td>60</td>
<td>0.24</td>
</tr>
<tr>
<td>LCC</td>
<td>40</td>
<td>0.16</td>
</tr>
</tbody>
</table>

Table 3. RFQ weights of the award criteria and normalised product quantities describing the contribution of each criterion to the overall evaluation of the tenders

<table>
<thead>
<tr>
<th>RFQ</th>
<th>Weight</th>
<th>Normalised Weight</th>
<th>Highest Score</th>
<th>Lowest Score</th>
<th>Score Range</th>
<th>Norm. Weight x Score range</th>
<th>Normalised Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price</td>
<td>60</td>
<td>0.43</td>
<td>1</td>
<td>0.35</td>
<td>0.65</td>
<td>0.28</td>
<td>0.754</td>
</tr>
<tr>
<td>Quality</td>
<td>40</td>
<td>0.29</td>
<td>1</td>
<td>0.86</td>
<td>0.14</td>
<td>0.04</td>
<td>0.11</td>
</tr>
<tr>
<td>Field test</td>
<td>30</td>
<td>0.21</td>
<td>0.67</td>
<td>0.53</td>
<td>0.13</td>
<td>0.03</td>
<td>0.074</td>
</tr>
<tr>
<td>LCC</td>
<td>10</td>
<td>0.07</td>
<td>1</td>
<td>0.67</td>
<td>0.33</td>
<td>0.02</td>
<td>0.062</td>
</tr>
</tbody>
</table>
Figures

Figure 1. Score of A) price, B) quality, C) field test and D) LCC criteria provided by the partial value function (black curve) and by the RFQ scoring formula (red curve). Black crosses refer to (measurement level, score)-points identified in the elicitation procedure. Red diamonds refer to the tenders.

Figure 2. Overall scores of the tenders provided by the AVF evaluation model. The score bars are divided according to the contribution of each criterion.
Figure 3. Overall scores of the tenders provided by the RFQ evaluation model. The score bars are divided according to the contribution of each criterion.