
Dispersive Thermometry with a Josephson Junction Coupled to a Resonator

Published in:
Physical Review Applied

DOI:
10.1103/PhysRevApplied.6.024005

Published: 10/08/2016

Document Version
Publisher’s PDF, also known as Version of record

Please cite the original version:
https://doi.org/10.1103/PhysRevApplied.6.024005
Dispersive Thermometry with a Josephson Junction Coupled to a Resonator

O. -P. Saira, 1 M. zgirski, 2 K. L. Viisanen, 1 D. S. Golubev, 1 and J. P. Pekola 1
1Low Temperature Laboratory, Department of Applied Physics, Aalto University School of Science, P.O. Box 13500, 00076 AALTO, Finland
2Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668 Warsaw, Poland

We embed a small Josephson junction in a microwave resonator that allows simultaneous dc biasing and dispersive readout. Thermal fluctuations drive the junction into phase diffusion and induce a temperature-dependent shift in the resonance frequency. By sensing the thermal noise of a remote resistor in this manner, we demonstrate primary thermometry in the range of 300 mK to below 100 mK, and high-bandwidth (7.5 MHz) operation with a noise-equivalent temperature of better than 10 μK/√Hz. At a finite bias voltage close to a Fiske resonance, amplification of the microwave probe signal is observed. We develop an accurate theoretical model of our device based on the theory of dynamical Coulomb blockade.

DOI: 10.1103/PhysRevApplied.6.024005

I. INTRODUCTION

An apparently simple coupled system of an ultrasmall Josephson junction and a transmission line resonator exhibits rich physics which currently attracts a lot of attention. It has been known for a long time that the current-voltage characteristics of such a junction are described by a well-developed P(E) theory [1–3], which emphasizes the effect of the electromagnetic environment on the fluctuations of the Josephson phase. This theory has been experimentally verified; see, e.g., Refs. [4–6]. In more recent experiments, the “bright-side” effect, i.e., emission of radiation by the junction into the transmission line, has been detected [7], and the signs of lasing by a single-Cooper-pair box into a resonator have been observed [8]. The experiments have stimulated a series of theory papers that describe, for example, nonlinear quantum dynamics of the system [9,10], emission of entangled photons in two separate resonators [11], antibunching of the emitted photons [12], and the full quantum theory of emitted radiation [13].

In this paper, we demonstrate that depending on bias condition, an ultrasmall Josephson junction can operate either as a sensitive noise detector or as a source of photons. We weakly couple the resonator to the outer transmission line and monitor its resonance frequency and the quality factor via microwave reflection measurements. We show that at zero bias, the shift of the resonance frequency is inversely proportional to temperature, and the junction operates as an ultrasensitive thermometer and noise detector. In this regime, we effectively realize a power-to-frequency transducer. Applying bias voltage V to the junction, we detect amplification of the probe signal close to the resonance condition, where the Josephson frequency ωJ = 2eV/h matches the fundamental frequency of the resonator ωr. In this case, the junction may operate as an amplifier or as a source of radiation. We also develop a high-frequency generalization of the P(E) theory and show that it describes the experiment fairly well in the whole range of bias voltages studied. Our results highlight the unique properties of an ultrasmall Josephson junction and outline future applications as a thermometer or as a general-purpose radiation and noise detector. In particular, we estimate that a thermal photodetector based on this method of temperature sensing can reach photon-resolving energy resolution in the microwave domain.

II. OVERVIEW OF THE EXPERIMENT

A. Sample design

We fabricate a small Josephson junction and couple it to a coplanar waveguide (CPW) resonator that allows simultaneous dc biasing and microwave probing [Figs. 1(a) and 1(b)]. The chip layout and the design philosophy of microwave elements mirror those of superconducting quantum processors [21–23]. In the absence of Josephson dynamics, the fundamental λ/2 resonance mode is characterized by the resonance frequency f r(0) = 5.6681 GHz, the internal and coupling quality factors Q r(0) = 3400 and Q c = 760, respectively, and impedance Z le = (2/π)Z r, where Z r = 30 Ω is the characteristic impedance of the waveguide. The Josephson element is realized as a planar tunnel junction between an aluminum electrode and a 1-μm-long proximitized Al/Cu/Al superconductor−normal-metal−superconductor (SNS) wire [Fig. 1(c)]. A separate heater line allows local Joule heating of the wire to aid in characterization. Earlier experiments on resonator-coupled tunnel-junction structures have employed thermometry based on quasiparticle transport [24,25], and an initial observation of supercurrent thermometry was reported in Ref. [26]. Details of device fabrication, measurement setup, and microwave readout are presented in the Supplemental Material [15].
The sample chip contains another similar device with the resonator 1 GHz lower in frequency. The two device structures can be independently dc biased and read out by frequency multiplexing, and they show similar behavior in the experiments. Here, we mainly discuss the higher-frequency device whose readout resonance has smaller intrinsic loss.

B. Theory

The junction dynamics is described by the equation

$$\int_{-\infty}^{t} dt' Y(t-t') \frac{\hbar \varphi}{2e} + I_J = \tilde{I}_{\text{probe}}(t), \quad (1)$$

where $Y(t) = \int d\omega e^{-i\omega t}/2\pi Z(\omega)$ is the Fourier-transformed admittance of the electromagnetic environment surrounding the junction and including junction capacitance [see Fig. 1(d)], $Z(\omega)$ is the impedance of the environment, I_J is the Josephson current, and $\tilde{I}_{\text{probe}}(t)$ is the current induced by the probe signal. If the junction critical current I_c is high, one should put $I_J = I_c \sin \varphi$ in Eq. (1). However, here we consider the limit $I_c \lesssim 2 e k_B T/\hbar$, in which case, applying the theory developed in Refs. [27,28], we find (see the Supplemental Material [15] for details)

$$I_J = \frac{I_c^2}{2e} \int_{-\infty}^{t} dt' e^{-F(t-t')} \sin[K(t-t')] \times \sin[\varphi(t) - \varphi(t') + \alpha(t-t')]. \quad (2)$$

Here, $\varphi(t)$ is the high-frequency component of the Josephson phase induced by the combined effect of the probe signal and the resonator. The functions $F(t)$ and $K(t)$ characterize the environment and are defined as follows:

$$F(t) = \frac{4e^2}{\hbar} \int \frac{d\omega}{2\pi} \frac{S_{V}(\omega)}{\omega} \left(1 - \cos \omega t / \omega^2 \right),$$

$$K(t) = \frac{2e^2}{\hbar} \frac{Z(t)}{2\pi} \int d\omega Z(\omega) e^{-i\omega t} \sin \varphi(t') + \alpha(t-t'). \quad (3)$$

In these expressions, $S_V(\omega)$ is the spectral density of voltage fluctuations across the junction, and e is an infinitely small positive constant. In equilibrium, the fluctuation-dissipation theorem is valid, and one finds $S_V(\omega) = \Re(Z(\omega)) h \omega \coth(h \omega/2k_B T)$. In our experiment, the impedance $Z(\omega)$ is dominated by the transmission line resonator [see Figs. 1(a) and 1(d)] and can be formally written as

$$Z(\omega) = \frac{i Z_r}{\pi} \sum_{n=-\infty}^{\infty} \frac{\omega_r^{(n)} - n \omega_r^{(0)}}{\omega - n \omega_r^{(0)} + i \gamma_r^{(n)}}, \quad (4)$$

where $\omega_r^{(0)}$ is the angular frequency of the fundamental ($\lambda/2$) resonance, and $\gamma_r^{(0)}$ is the damping rate of the nth harmonic mode. One has $\gamma_r^{(0)} = \gamma_{1,n}^{(0)} + \gamma_{c,n}^{(0)}$, where $\gamma_{1,n}^{(0)} = (\omega_r^{(0)} Z_r/\pi) \Re[1/Z_r(n \omega_r^{(0)})]$ is the internal damping, and $\gamma_{c,n}^{(0)} = n^2(\omega_r^{(0)})^2 C_{\lambda}^2 Z_{\lambda}/2\pi$ originates from coupling to the outer transmission line. In the experiment, contributions from up to the second harmonic ($n = 2$) can be observed.
C. Linearized treatment

Linearizing the problem in $\varphi(t)$, we introduce the impedance of the junction

$$Z_J^{-1}(\omega) = i(I_c^2/2\hbar\omega) \times [P(\omega_I) + P(-\omega_I) - P(\omega_I + \omega_J) - P(\omega_I - \omega_J)],$$

where the function

$$P(\omega) = \int_0^\infty dt e^{i\omega t}e^{-\gamma t}\sin[K(t)]$$

characterizes the high-frequency response of the electromagnetic environment and generalizes the familiar $P(E)$ function. The latter describes only the dc properties of the junction, i.e., its I–V curve. The two functions are related as $\text{Im}[P(\omega)] = \pi\hbar[P(\hbar\omega) - P(-\hbar\omega)]/2$. Taking the limit $Z_r/R_q \ll 1$ and making use of the small-I_c assumption, we find the modified resonance frequency f_r and the internal damping rate $\gamma_{i,1}$ of the fundamental resonance ($n = 1$) as

$$f_r = f_r^{(0)} + (\gamma_{i}^{(0)} Z_r/\pi)\text{Im}[Z_J^{-1}(\omega_{r}^{(0)})],$$

$$\gamma_{i,1} = \gamma_{i,1}^{(0)} - (\omega_r^{(0)} Z_r/\pi)\text{Re}[Z_J^{-1}(\omega_{r}^{(0)})].$$

III. ZERO-BIAS OPERATION

At low bias voltages and in the limit of small-signal microwave probing, the voltage dependence of the resonance frequency reduces to a simple Lorentzian form

$$f_r = f_r^{(0)} + \frac{\Delta f_r}{1 + V^2/V_T^2}, \quad V_T = \frac{4\pi R_s k_B T}{e R_q},$$

where $R_s = Z_s(0)$ denotes effective low-frequency shunt resistance, and the other parameters are

$$\Delta f_T = \frac{I_c^2 Z_r}{4\pi^2 k_B T} \left(2 \sinh \frac{\pi k_B T}{\hbar}\right)^\alpha,$$

$$\delta = -\frac{\Delta f_T}{1 + h\gamma_0/2eV_T},$$

$\alpha = 8e^2 R_s/2\pi \hbar$, and $\gamma_0 = Z_c(0)/\pi R_s$. To arrive at Eq. (9), we assume $h\gamma_0 \gg k_B T$, and the limit of classical phase fluctuations $R_s(0)$, Z_c, $Z_0 \ll R_q = h/e^2 = 25.8$ kΩ. Both conditions are satisfied in our experiment.

In the experiment, the resonance line displays a clear temperature [Fig. 2(c)] and bias dependence. In Fig. 2(a), we analyze the experimental low-bias part of frequency-voltage dependence, which indeed has the Lorentzian form. The width of the Lorentzian is proportional to the temperature at $T \geq 70$ mK [Fig. 2(b)]. Comparing the experimental temperature dependence of the width with Eq. (9), we determine the low-frequency shunt resistance $R_s = 57.4$ Ω. By design, the shunt resistance is given by the external bias resistor (nominally, 50 Ω) plus any effective in-line dc resistance including the SNS wire and contacts (approximately 4 Ω for Cu in normal state). The deviation from the linear dependence at lowest temperatures is due to two independent mechanisms. When the condition $I_c < 2e k_B T/h$ is violated, our model no longer applies, and a supercurrent feature with a width close to $I_c R_s$ emerges instead. In addition to this, insufficient thermalization can result in saturation of sample temperature. With the linear scaling established earlier, the minimum observed width corresponds to a temperature of 44 mK [29].

One can similarly work out the approximate form of the quality factor at low bias voltage. The result reads

$$\frac{1}{Q_i} = \frac{1}{Q_i^{(0)}} + \frac{2eI_c^2 Z_r}{\pi^2 R_c V_T} \left(2 \sinh \frac{\pi k_B T}{\hbar}\right) \frac{8R_s/R_c}{1 + V^2/V_T^2}.$$

Here we assume that the thermal linewidth significantly exceeds the damping rate of the fundamental resonance [15]. This condition is satisfied in our experiment.

IV. FINITE-VOLTAGE RESONANCES

In Figs. 3(a) and 3(b) we show, respectively, the resonance frequency f and the internal quality factor Q_i as a function of the bias voltage applied to the junction. The
experimental data are fitted with the temperature-dependent critical current I_c as the only free parameter. (Refer to the Supplemental Material [15] for a comparison of I_c values determined with different methods and for theory expressions covering full bias range.) It is interesting that the internal quality factor Q_i becomes negative at bias voltages close to $\hbar \omega_c^{(0)}/2e$ and at a sufficiently low temperature [Fig. 3(c)]. In this regime, the junction pumps energy into the resonator and amplifies the probe signal. Previously, emission from the junction has been detected under similar conditions [7]. The theory predicts that the internal damping becomes negative at $T < T^* = I_c^2 Z_r Q_i^{(0)}/4\pi k_B \omega_c^{(0)}$ and for bias voltages in the range

$$\left| V - \frac{\hbar \omega_c^{(0)}}{2e} - \frac{2eR_c k_B T'}{\hbar} \right| < \frac{2eR_c k_B \sqrt{T'^2 - T^2}}{\hbar}. \quad (11)$$

Taking $I_c \approx 3$ nA, we estimate the threshold temperature to be $T^* \approx 150$ mK. Experimentally, the threshold temperature lies between 120 and 170 mK based on data shown in Fig. 3(b). Although the condition $Q_i < 0$ indicates the generation of microwave power by the junction, it does not imply $|S_{21}| > 1$ in the two-port feed-line configuration employed in our experiment. For that, a stricter condition $1/Q_i + 1/2Q_c^{(0)} < 0$ needs to be met, which occurs theoretically at $T < T^*/(1 + Q_c^{(0)}/2Q_i^{(0)}) \approx 45$ mK and is not realized in the experiment. In earlier work [30], a one-port device based on this principle has been operated as a reflection amplifier at 2.8 GHz.

V. NONLINEAR OPERATION

A. High-power readout

Here, we relax the assumption $|\phi| \ll 1$ to describe the response to strong microwave probing. High-power probing is relevant for optimizing the noise-equivalent temperature, although overheating of the sample can impose a stricter limit to probing power than the nonlinearity of Josephson dynamics. In a two-port feed-line configuration employed in the experiment, the amplitude of high-frequency phase modulation ϕ_1 is related to the incident probe power P_{in} at probe frequency f_p as

$$\phi_1 = \frac{4Q}{eR_q f_p} \sqrt{\frac{2Z_r P_{in}}{\pi Q_c \left(1 + 4Q^2 \left(f_p - f_c^{(0)}\right)^2/f_p^2\right)}}, \quad (12)$$

where $Q^{-1} = Q_c^{-1} + Q_i^{-1}$. Denoting by \tilde{f} and \tilde{Q}_i the power-dependent expressions for the resonance frequency and internal quality factor, respectively, we find the relations

$$\tilde{f}_r - f_r^{(0)} = [J_0^2(\phi_1) - J_1^2(\phi_1)](f_r - f_r^{(0)}), \quad (13)$$

$$\frac{1}{\tilde{Q}_i} - \frac{1}{Q_i^{(0)}} = [J_0^2(\phi_1) - J_1^2(\phi_1)] \left(\frac{1}{Q_i} - \frac{1}{Q_i^{(0)}}\right), \quad (14)$$

where the J_n are Bessel functions of the first kind, and the small-signal f_r and Q_i are evaluated according to Eqs. (4) and (5), respectively. An experimental power sweep performed at zero bias and at the base temperature of the cryostat (13 mK) [Fig. 4(a)] indeed reveals Bessel-type oscillations of the resonance frequency. Solution of the circuit model with ϕ_1-dependent \tilde{f}_r and \tilde{Q}_i reproduces the data well [Fig. 4(b)] including fine structure that appears with off-resonant probing at large power.

The nonlinearity of the model can result in multivalued solutions for certain combinations of low temperature, large I_c, and large probing power. We do not observe hysteretic or bistable behavior in the experiment. Physically, it is likely that large probing power locally heats up parts of the sample or the surrounding circuitry, raising the effective temperature. It is, in principle, possible to include a thermal...
balance in the model and solve it in a self-consistent manner. Here, we explain the high-power response by using a constant elevated temperature (75 mK) throughout the simulation. Good agreement with the constant-temperature simulation shows that the present design is not severely overheated even at an incident probing power of -100 dBm.

B. Local heating

In an idealized description of our device, the Josephson element does not have an internal temperature of its own. Instead, the observed temperature dependence stems from fluctuations of the electromagnetic environment. Localized Joule heating or electronic cooling of the SNS wire will generally drive the system to a quasiequilibrium state with independent electron and environment temperatures [31]. We demonstrate sensitivity to the local electron temperature by modulating the wire temperature with either cw microwave heating or by voltage biasing the other tunnel junction that is otherwise unused in the experiment (data are shown in the Supplemental Material [15]). The data are consistent with a model where the cryostat sets the temperature of the electromagnetic environment to suppress hysteresis in the model.

VI. SENSITIVITY AND NOISE

To evaluate the suitability of this thermometer for calorimetric and bolometric experiments [35], we characterize the sensitivity of the temperature readout with cw mode of operation have been explored in detail in earlier metallic weak links [32]. Optimized detectors based on this follows from that of proximity superconductivity in diffusive electromagnetic environment by thermalizing the cold bias a model where the cryostat sets the temperature of the Supplemental Material [15]). The data are consistent with that is otherwise unused in the experiment (data are shown in wave heating or by voltage biasing the other tunnel junction by modulating the wire temperature with either cw micro-

We demonstrate sensitivity to the local electron temperature independent electron and environment temperatures [31]. generally drive the system to a quasiequilibrium state with fluctuations of the electromagnetic environment. Localized microwave probing at zero bias with phase-sensitive heterodyne readout. Despite conceptual similarities with noise thermometry employing superconducting quantum-interference-device readout [36], our device indicates the temperature directly through a change in the phase of the probe signal instead of relying on power detection with room-temperature electronics. To scan rapidly the parameter space of possible combinations of probing frequency and power, we study the single-shot detection fidelity of discrete heating pulses (1-μs duration, 0.8-pW nominal power) using only the thermometer readout. An optimum is found at 5.671 GHz with a nominal incident power of -118 dBm at the sample box. Next, during a bath temperature sweep up to 200 mK, we record the cw quadrature voltage amplitudes V_1, V_Q and the full noise spectrum of the quadrature readout. We evaluate numerically the voltage responsivity $dV/dT = \sqrt{(dV_1/dT)^2 + (dV_Q/dT)^2}$ corresponding to homodyne detection with optimal phase [Fig. 5(a)]. Similarly, the noise-equivalent temperature (NET) for homodyne detection is $V_{\text{rms}}(dV/dT)^{-1}/\sqrt{2}$, where V_{rms} is the voltage noise level in one quadrature [Figs. 5(b) and 5(c)]. Using the small-signal theory and sample parameters determined earlier, we can reproduce the observed NET values for temperatures higher than 75 mK. We include the responsivity enhancement from the weak temperature dependence of I_c (thin solid line). Minimum achievable NET with optimized probing power at each temperature from a nonlinear model (thick line).
the inductance modulation losing its significance below 100 mK. For the theoretical NET calculation, we assume a total power loss of 11 dB from cabling between generator output and the cold amplifier, and amplifier-limited system noise with $T_{\text{noise}} = 2$ K (as per preamplifier specifications). These quantities cannot be independently determined within a linearized model. The origin of the temperature-dependent component of readout noise that follows the shape of the responsivity curve is unknown. The low-frequency resonator is measured simultaneously in an identical manner, and the noise level is found to be constant within 0.5%. We estimate the power dissipated at the sample (P_{diss}, including shunt resistors) as ηP_{in}, where P_{in} is the incident probing power and $\eta = 2Q_c Q_i/(Q_c + Q_i)^2$ using modeled values for Q_c and Q_i. The loss fraction η is smaller than 0.5 at all temperatures, resulting in total dissipation less than 0.8 fW [37]. Finally, using the theory for high-power readout presented in Sec. V A, we evaluate the lowest achievable NET when overheating of the sample is neglected [Fig. 5(c), thick line].

VII. OUTLOOK

Small power dissipation, submicrosecond temporal resolution, and good sensitivity at sub-100-mK temperatures make this type of a thermometer a promising candidate for calorimetric experiments [35]. In a nanocalorimeter implementation [26], the external macroscopic bias resistor will be replaced with a metallic or semiconducting nanowire with similar resistance but minimal volume. In a calorimeter device, it is critical to consider the trade-off between the thermometer sensitivity and the power dissipation induced by the thermometer readout. One can formalize this trade-off by writing the NET (units K/√Hz) explicitly in terms of P_{in}.

For a dispersive thermometer, the general result

$$\text{NET} = \frac{f_r Q_c}{4Q^2} \left(\frac{df_r}{dT} \right)^{-1} \sqrt{\frac{k_b T_{\text{noise}}}{P_{\text{in}}}}$$

(15)

follows from linearized circuit theory assuming one-port reflection measurement and readout noise that is described by the system noise temperature T_{noise}. As long as the responsivity df_r/dT does not explicitly depend on Q_c, the choice $Q_c = Q_i$ is optimal. For a pure reflection measurement, this choice implies $P_{\text{in}} = P_{\text{diss}}$ at resonance. It is possible to derive simple expressions describing our Josephson thermometer by substituting the linear-response formulas of Eqs. (9) and (10) with $V = 0$ and assuming $R_s/R_q \ll 1$. One has

$$\text{NET} = \frac{2TZ_r}{\pi R_s} \sqrt{\frac{k_b T_{\text{noise}}}{P_{\text{in}}}},$$

(16)

to the first order in $Z_r/\pi R_s$. Working from the above relation, one can estimate the expected energy resolution of a calorimeter under quite general assumptions (see the Appendix for details) about the temperature dependence of the heat capacity ($C_{\text{th}} \propto T^b$) and the thermal link of the calorimeter platform ($G_{\text{th}} \propto T^{b-1}$) as

$$\delta E \approx 2\sqrt{a + b} + 1 \sqrt{C_{\text{th}} k_b T_{\text{noise}} Z_r / \pi R_s}.$$

(17)

Note that the validity of Eq. (9) requires the fraction $Z_r/\pi R_s$ to be larger than $k_b T / h \omega_r$. For a practical example, we consider a small metallic absorber ($C_{\text{th}} = 300 k_b$, $a = 1$) on a suspended platform with quantized phononic heat conductance ($b = 2$; see Ref. [36]) at a temperature of 20 mK, microwave probe at $\omega_r = 2\pi \times 5$ GHz, and a readout chain approaching the standard quantum limit $k_b T_{\text{noise}} = h \omega_r$, which results in an estimated energy resolution of 9.6 GHz $\times h$.

In conclusion, we construct a power-to-frequency transducer based on a small Josephson junction and demonstrate sensitive high-bandwidth thermometry at sub-100-mK temperatures. We also develop a theoretical model based on strong environmental fluctuations that describes the measurements within its expected range of validity. Good performance and versatility of the approach suggest it can find use in a wide range of experiments requiring sensitive thermometry, calorimetry, or noise detection. Our results also hint at the possibility of further performance gains in designs with large I_r and/or R_s, whose analysis, however, requires an improved theoretical model.

ACKNOWLEDGMENTS

This work is funded through Academy of Finland Grants No. 2722195, No. 284594, and No. 285300. We acknowledge the availability of the facilities and technical support by Otaniemmi research infrastructure for Micro and Nanotechnologies, and VTT Technical Research Centre of Finland for sputtered Nb films. M. Z. thanks the EAgLE project (EC-FP7-REGPOT-CT-2013-316014). K. L. V. acknowledges financial support from Jenny and Antti Wihuri Foundation. We thank A. Savin for the dilution refrigerator setup.

APPENDIX: CALORIMETER OPTIMIZATION

We consider a generic calorimeter platform that is described by the model equations

$$\delta E = \text{NET} \sqrt{C_{\text{th}} G_{\text{th}}},$$

$$C_{\text{th}} = AT^a,$$

$$G_{\text{th}} = \frac{\partial \dot{Q}}{\partial T},$$

$$\dot{Q} = B(T - T_{\text{bath}}),$$

$$\text{NET} = f(P_{\text{diss}}, T)$$

subject to steady-state thermal balance.
where T and T_{bath} denote the temperature of the calorimeter and its surrounding thermal bath, respectively, δE is the energy resolution, C_{th} is the heat capacity of the calorimeter, G_{th} is its linearized heat conductance at the operation point, \bar{Q} describes the steady-state heat flow between the calorimeter and its surroundings, a, b are numbers and A and B numerical constants describing the thermal properties of the calorimeter, and f describes the sensitivity of the thermometer as a function of the steady-state dissipation P_{diss} and T_{th}. The choice of the readout power (or, equivalently, P_{diss}) influences the steady-state operation temperature T, and, consequently, δE through the temperature dependence of G_{th} and C_{th}.

Furthermore, if one has

$$f = FP_{\text{diss}}^{-1/2}T_{c},$$ \hspace{1cm} (A2)

with F a numerical constant and c a number, the problem can be solved through the introduction of a Lagrange multiplier. Note that Eq. (16) describing our thermometer is of this form. One finds

$$P_{\text{diss}}^* = (a + b + 2c - 1)^{-1}T^*G_{th}$$ \hspace{1cm} (A3)

and

$$\delta E^* = (a + b + 2c - 1)^{1/2}F(T^*)^{-c-1/2}\sqrt{C_{th}^*},$$ \hspace{1cm} (A4)

where the superscript $*$ denotes quantities calculated at the optimum steady-state (P_{diss}, T) operation point. In practice, one can evaluate Eq. (A4) with $T_{bath} = T^*$ to approximate the energy resolution, as the optimal probing power does not raise the absorber temperature significantly.

[29] Fitting the base temperature data with two superimposed Lorentzians located symmetrically around zero bias yields a broadening corresponding to 31 mK.

[35] Here, we refer to an experimental setting where radiation is coupled to a small absorber, and the thermometer is used to monitor the absorber temperature.

[37] Cabling losses on the input side are not included and will diminish the estimated dissipation proportionally.