
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by you for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

Capretto, Tomás; Piho, Camen; Kumar, Ravin; Westfall, Jacob; Yarkoni, Tal; Martin, Osvaldo
Bambi: A simple interface for fitting Bayesian linear models in Python

Published in:
Journal of Statistical Software

DOI:
10.18637/jss.v103.i15

Published: 15/08/2022

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY

Please cite the original version:
Capretto, T., Piho, C., Kumar, R., Westfall, J., Yarkoni, T., & Martin, O. (2022). Bambi: A simple interface for
fitting Bayesian linear models in Python. Journal of Statistical Software, 103(15).
https://doi.org/10.18637/jss.v103.i15

https://doi.org/10.18637/jss.v103.i15
https://doi.org/10.18637/jss.v103.i15

JSS Journal of Statistical Software
August 2022, Volume 103, Issue 15. doi: 10.18637/jss.v103.i15

Bambi: A Simple Interface for Fitting Bayesian
Linear Models in Python

Tomás Capretto
IMASL-CONICET

Camen Piho
risQ

Ravin Kumar
PyMC Labs

Jacob Westfall
BlackLocus

Tal Yarkoni
University of Texas at Austin

Osvaldo A. Martin
IMASL-CONICET
Aalto University

Abstract

The popularity of Bayesian statistical methods has increased dramatically in recent
years across many research areas and industrial applications. This is the result of a variety
of methodological advances with faster and cheaper hardware as well as the development
of new software tools. Here we introduce an open source Python package named Bambi
(BAyesian Model Building Interface) that is built on top of the PyMC probabilistic pro-
gramming framework and the ArviZ package for exploratory analysis of Bayesian models.
Bambi makes it easy to specify complex generalized linear hierarchical models using a
formula notation similar to those found in R. We demonstrate Bambi’s versatility and
ease of use with a few examples spanning a range of common statistical models including
multiple regression, logistic regression, and mixed-effects modeling with crossed group
specific effects. Additionally we discuss how automatic priors are constructed. Finally,
we conclude with a discussion of our plans for the future development of Bambi.

Keywords: Bayesian statistics, generalized linear models, multilevel models, hierarchical mod-
els, mixed effect models, Python.

1. Introduction
Bayesian statistics is a flexible and powerful theory that has seen a marked increase in use
over the past few years across many classical scientific disciplines like psychology and bi-
ology, as well as emerging fields like data science. The primary benefit of using Bayesian
methods relative to classical methods is the flexibility when fitting complex and realistic

https://doi.org/10.18637/jss.v103.i15
https://orcid.org/0000-0003-0501-6098
https://orcid.org/0000-0001-7566-3544
https://orcid.org/0000-0002-6558-5113
https://orcid.org/0000-0001-7419-8978

2 Bambi: Fitting Bayesian Linear Models in Python

models, incorporation of prior information about plausible values for the model parameters,
and the outputs, which are expressed in terms of probabilities which are easier to interpret
by non-expert users. However, fitting Bayesian models has historically required considerable
mathematical work or large computing resources in order to solve or approximate solutions
to difficult statistical problems. While there are still many large or complex Bayesian models
that remain computationally challenging, a wide array of useful Bayesian models can now be
efficiently fit using average laptops and free, open source, software. Thus, the computational
barrier to widespread adoption of Bayesian statistics is rapidly disappearing.
Probabilistic programming languages (PPL) have also contributed to minimizing the adoption
barrier of Bayesian methods. The aim of a PPL is to augment general purpose programming
languages with built-in probabilistic capabilities, allowing applied users to focus on the cre-
ation of models, rather than on the implementation of their computation (Daniel Roy 2015;
Bessiere, Mazer, Ahuactzin, and Mekhnacha 2013; Ghahramani 2015). While the syntax of
PPLs such as PyMC (Salvatier, Wiecki, and Fonnesbeck 2016; Salvatier et al. 2021) or Stan
(Carpenter et al. 2017) is very flexible, it could still be too verbose for many practitioners,
such as those coming from a frequentist paradigm, the R programming language (R Core
Team 2022), or other Python (Van Rossum et al. 2011) packages like statsmodels (Seabold
and Perktold 2010) or Scikit-learn (Pedregosa et al. 2011).
Even for users that are experts in PPLs it still takes time to write a simple linear model.
These users can benefit from a more compact syntax closer to the formula notation found in
popular R packages for statistical computing; like lme4 (Bates, Mächler, Bolker, and Walker
2015), rstanarm (Goodrich, Gabry, Ali, and Brilleman 2020) or brms (Bürkner 2017). The
development of a simpler, more intuitive interface would go a long way towards promoting the
widespread adoption of Bayesian methods within applied scientific fields as well as industrial
applications.
Here we introduce Bambi (Bayesian model building interface) an open source Python package
designed to make it considerably easier for practitioners to fit generalized linear multilevel
models (GLMMs)1 using a Bayesian approach. Generalized linear multilevel models encom-
pass a large class of techniques that include most of the models commonly used in applied
fields of research: linear regression, analysis of variance (ANOVA), logistic and Poisson re-
gression, multilevel or hierarchical modeling, crossed group specific effects models. Bambi
is built on top of the PyMC Python package, which implements a state of the art adaptive
dynamic Hamiltonian Monte Carlo algorithm (Hoffman and Gelman 2014; Betancourt 2018),
among other sampling methods. Bambi also uses ArviZ (Kumar, Carroll, Hartikainen, and
Martin 2019; Martin et al. 2022) for comprehensive sampling diagnostics, model criticism,
model comparison and visualization of Bayesian models. Importantly, Bambi affords both
ease of use and considerable power: for example, beginner users can quickly specify complex
generalized linear multilevel models with sensible default priors and syntax similar to pop-
ular R statistical computing packages, while advanced users can still directly access all the
internal objects exposed by PyMC, allowing strong flexibility as well as a sensible learning
progression.
The remainder of this article will focus primarily on Bambi in practice. We start by giving a
brief overview of the family of models supported in Section 2, then we continue with Section 3
demonstrating basic usage through example, Section 4 discussing default prior choices, and

1Also known as generalized mixed linear models.

Journal of Statistical Software 3

Section 5 providing further insights into the inner workings of the formula specification.
Finally, we conclude with Section 6 discussing the limitations and the future of the Bambi
package.
Bambi is available from the Python Package Index at https://pypi.org/project/bambi/.
Alternatively, it can be installed using conda. The project is hosted and developed at
https://github.com/bambinos/bambi. The package documentation, including installation
instructions and many examples of how to use Bambi to conduct different statistical analysis,
can be found at https://bambinos.github.io/bambi/.
The version of Bambi used for this article is 0.8.0. All analyses are supported by extensive
documentation in the form of interactive Jupyter notebooks (Kluyver et al. 2016) available
in the paper repository on GitHub https://github.com/bambinos/paper, enabling readers
to re-run, modify, and otherwise experiment with the models described here on their own
machines. This repository also includes instructions on how to set up an environment with all
the dependencies used when writing this manuscript. We notice that given the PyMC version
used in this manuscript, 3.11.5, the function plot_priors is not entirely reproducible, even
when passing a random seed. This has been fixed in Bambi version 0.9.0, which has PyMC 4.0
as inference backend.

2. A model overview
This section provides a brief review of GLMMs, the family of models supported by Bambi,
and introduces the ‘Model’ class, which is the class we use to create models in Bambi.
Generalized linear models (GLMs) extend standard linear regression models to include non-
Gaussian response distributions and nonlinear functions of the mean. GLMMs then extend
GLMs to incorporate group specific effects (also known as random effects in frequentist litera-
ture). This allows the modeling of hierarchically structured data, taking complex dependency
structures into account.
A generalized linear multilevel model is defined as

Yi ∼ D(g−1(ηi), θ)

In this equation, Yi represents the random variable we want to model, D represents the
distribution family parameterized by the mean, and θ represents auxiliary parameters specific
to each family such as the standard deviation σ in Gaussian models or the shape parameter
α in Gamma models. g is a differentiable and monotonic function known as the link function,
and ηi is a linear combination of the predictors known as the linear predictor.
We can write the linear predictor for all the observations as

η = Xβ + Zu

where β and u are the coefficients for the common effects and group specific effects respectively
and, X and Z are their corresponding design matrices. In contrast to the frequentist paradigm,
where β is treated as an unknown fixed vector of coefficients and u is treated as an unobserved
random effect that is part of the error term, we treat both vectors of coefficients β and u as
random variables whose joint posterior distribution is estimated from the data.
All models in Bambi are instances of the ‘Model’ class. These objects contain all the methods
we use to specify, fit, and analyze Bayesian models. For a complete description of all the

https://pypi.org/project/bambi/
https://github.com/bambinos/bambi
https://bambinos.github.io/bambi/
https://github.com/bambinos/paper

4 Bambi: Fitting Bayesian Linear Models in Python

arguments in the ‘Model’ class. We now briefly discuss the arguments most relevant for most
users; formula, data, family, priors, and link.

• formula: A string that describes the model we want to fit using a formula notation
very close to the one in the R language. As in the R library lme4, the pipe operator |
is used to specify group specific terms. A more detailed review of formulas is given in
Section 5.

• data: The dataset where variables in the model are taken from. This is a pandas
(McKinney 2010) DataFrame, or the path to a CSV file that can be read as such.

• family: The model family, analogous to families in R. This can be a string with the
name of a built-in family (see Table 2) or a custom family created with the ‘Family’
class. The default is "gaussian".

• priors: An optional dictionary containing specifications for prior distributions for one
or more terms in a model. If no priors are specified, Bambi will choose priors for the
parameters according to the methods in Section 4. Section 3.3 contains an example on
how to use this argument to specify custom priors.

• link: The name of the link function to use. Bambi comes with several built-in link
functions. If the user does not specify a link function, it is automatically determined
by Bambi according to the family (See Table 2).

3. Usage examples
In this section, we provide a high-level overview of the Bambi package and the supported
models. We illustrate its use via a series of increasingly complex applications, beginning with
a straightforward multiple regression model, and culminating with a linear mixed model that
involves custom priors.

3.1. Multiple linear regression
We begin with an example from personality psychology. The data that we consider come from
the Eugene-Springfield community sample (Goldberg 1999), a longitudinal study of hundreds
of adults who completed dozens of different self-reports and behavioral measures over the
course of 15 years. Among the behavioral measures is a numerical index of illegal drug use
(the “drugs” from the Behavioral Report Inventory; for details, see Grucza and Goldberg
2007). We wish to know: which personality traits are associated with higher or lower levels
of drug use? In particular, how do participants’ standings on the “Big Five” dimensions
predict drug use? The “Big Five” personality dimensions are openness to experience (o),
conscientiousness (c), extroversion (e), agreeableness (a), and neuroticism (n). This dataset
can be loaded as a pandas DataFrame using the function load_data() from Bambi. Then it
is simple to specify a multiple regression model using a formula-like interface:

import bambi as bmb
data = bmb.load_data("ESCS")
model = bmb.Model("drugs ~ o + c + e + a + n", data)
idata = model.fit(draws = 2000)

Journal of Statistical Software 5

This fully specifies a Bambi model and fits it. By default, Bambi uses a Gaussian response
and the identity link function. Notice that we have not specified prior distributions for any
of the parameters. When no priors are explicitly specified by the user, Bambi will choose
default priors for the parameters of the model. See Section 4 for details. We can obtain a
summary of the model together with the priors by printing the model object

Formula: drugs ~ o + c + e + a + n
Family name: Gaussian
Link: identity
Observations: 604
Priors:

Common-level effects
Intercept ~ Normal(mu: 2.2101, sigma: 21.1938)
o ~ Normal(mu: 0.0, sigma: 0.0768)
c ~ Normal(mu: 0.0, sigma: 0.0868)
e ~ Normal(mu: 0.0, sigma: 0.0816)
a ~ Normal(mu: 0.0, sigma: 0.0973)
n ~ Normal(mu: 0.0, sigma: 0.0699)

Auxiliary parameters
sigma ~ HalfStudentT(nu: 4, sigma: 0.6482)

We can also inspect the priors visually using the command:

model.plot_priors()

This will return a figure similar to Figure 1, which shows estimates for the prior distributions
based on computationally simulated draws. While not as mathematically precise as closed-
formed expressions, the use of simulation removes mathematical limitations by allowing the
user to explore complex priors specifications and compute posteriors that might not have
closed-form solutions.
Notice that the standard deviations of the priors for the slopes seem to be quite small, with
most of the probability density being between -0.15 and 0.15. This is due to the relative scales
of the outcome and the predictors: the outcome, drugs, is a mean score that ranges from 1
to about 4, while the predictors are all sum scores that range from about 20 to 180. So a
one unit change in any of the predictors, which is a trivial increase on their scale, is likely to
lead to a very small absolute change in the outcome. These priors are actually quite wide (or
weakly informative).
By default, Bambi fits models using an adaptive dynamic Hamiltonian Monte Carlo algo-
rithm, (Hoffman and Gelman 2014; Betancourt 2018) which samples from the joint posterior
distribution of the parameters. Bambi will attempt to use the available number of CPUs
cores in the system to run between 2 and 4 chains in parallel. Running more than one chain
is useful to run inference diagnostics (see Table 1).
In the above example, the optional argument draws indicates that we want to obtain 2000
draws, per chain, from the posterior distribution. Bambi will also run a certain number of
iterations to tune the sampling algorithm (defaults to 1000). These tuning draws will be
discarded by default, as they are not valid draws from the posterior distribution.

6 Bambi: Fitting Bayesian Linear Models in Python

75 50 25 0 25 50 75

-37 41

94% HDI

mean=1.7

Intercept

0.2 0.1 0.0 0.1 0.2

-0.14 0.15

94% HDI

mean=-0.00063

o

0.2 0.0 0.2 0.4

-0.16 0.16

94% HDI

mean=-0.0016

c

0.3 0.2 0.1 0.0 0.1 0.2 0.3

-0.14 0.16

94% HDI

mean=-0.00039

e

0.3 0.2 0.1 0.0 0.1 0.2 0.3

-0.17 0.19

94% HDI

mean=0.0034

a

0.2 0.1 0.0 0.1 0.2

-0.14 0.13

94% HDI

mean=-0.001

n

0 2 4 6 8 10 12

5.7e-05 1.7

94% HDI

mean=0.65

drugs_sigma

Figure 1: Density estimates based on 5000 samples from the prior distribution for all the
regression coefficients. If the user does not explicitly state the priors to be used for the model
parameters, Bambi will choose default prior distributions sensible in a wide range of use cases.

mean sd hdi_3% hdi_97% mcse_mean mcse_sd ess_bulk ess_tail r_hat
Intercept 3.307 0.355 2.658 4.007 0.004 0.003 7067.0 5811.0 1.0
o 0.006 0.001 0.004 0.008 0.000 0.000 7723.0 6634.0 1.0
c −0.004 0.001 −0.007 −0.001 0.000 0.000 7295.0 6527.0 1.0
e 0.003 0.001 0.001 0.006 0.000 0.000 7863.0 6782.0 1.0
a −0.012 0.001 −0.015 −0.010 0.000 0.000 9948.0 6628.0 1.0
n −0.002 0.001 −0.004 0.001 0.000 0.000 7192.0 5947.0 1.0
drugs_sigma 0.592 0.017 0.560 0.624 0.000 0.000 9394.0 6474.0 1.0

Table 1: Numerical summary of the posterior and sample diagnostics. The first four columns,
mean, sd (standard deviation), hdi_3% and hdi_97% (the boundaries of the highest density in-
tervals 94%) provide posterior summaries. The rest of the columns are sample diagnostics that
could help us to assess the quality of the approximated posterior. mcse_mean and mcse_sd,
are the Monte Carlo standard error for the mean and standard deviation, respectively. The
ess represents the effective sample size, the closest this number to the total number of draws
(chains × draws) the better, and it should not be lower than (chains × 50). The ess is not
the same for different regions of the parameter space, thus here we show it for the bulk of
the distribution and tails. r_hat is the R̂ diagnostic. Ideally, this number should be smaller
than 1.01. Larger numbers indicate convergence issues of the sampling method (Vehtari et al.
2020).

Once the posterior sampling finishes, the result is saved into an InferenceData object, like
the idata object in the above example. Such objects contain data related to the model
divided into groups, like posterior, observed_data, posterior_predictive, etc., as can
be seen in Figure 2. The InferenceData objects can be passed to many functions in ArviZ to

Journal of Statistical Software 7

Figure 2: HTML representation of an InferenceData object. We can see information is
stored into four groups: posterior, log_likelihood, sample_stats, and observed_data.
Other groups not shown here are also possible. The posterior group is unfolded showing
information like the Dimensions (4 chains with 2000 draws each), and the Data variables
including the coefficients for the predictors o, c, e, a, n we explicitly added when defining the
model plus an Intercept and the standard deviation of the Gaussian likelihood drugs_sigma.
Metadata information like which libraries’ version was used and date of creation of files are
also available.

obtain numerical and visual diagnostics, and plots in general. For example, with the command
az.summary(idata) we can get a summary of the posterior (including the mean, standard
deviation, and highest density intervals) and also diagnostics of the sampling, (including the
Monte Carlo standard error, effective size samples and R̂ (Vehtari et al. 2020)). Table 1 shows
an example.
A common way to visually explore the posterior is with the command az.plot_trace(idata).
This command results in Figure 3. The left panels show the kernel density estimates of the
marginal posterior distributions for all the model’s parameters, i.e., the probability distribu-
tion of the plausible values of the regression coefficients, given the model and data we have
observed. These posterior density plots show four overlaid distributions because we run four
chains. The right panels of Figure 3 show the sampling paths (or traces) of the four chains as
they wander through the parameter space, this is after tuning draws were discarded. These

8 Bambi: Fitting Bayesian Linear Models in Python

Figure 3: The left panels show the kernel density estimates for the marginal posterior dis-
tributions for all the model’s parameters, which summarize the most plausible values of the
regression coefficients, given the data we have observed. These posterior density plots have
four overlaid distributions because we ran four chains in parallel. The panels on the right are
“trace plots” the sampling paths of the four chains as they wander through the parameter
space. If any of these paths exhibited high autocorrelation we would be concerned about the
convergence of the chains.

trace plots are useful for sampling diagnostic purposes (Raftery and Lewis 1996). In this
example, the traces mix well and show a stationary pattern. If any of these paths did not mix
well or showed a trend, we would be concerned about convergence, and we should work to
fix the convergence issues before continuing with other analysis (Gelman et al. 2020; Martin,
Kumar, and Lao 2021).
From the left-panel in the Figure 3 we can see the model results suggest that 4 of the 5
personality dimensions, all but neuroticism (n), have at least some non-trivial association

Journal of Statistical Software 9

0.4 0.2 0.0 0.2 0.4
Partial correlation

0

2

4

6

8

10

0.00 0.05 0.10 0.15 0.20
Squared partial correlation

0

50

100

150

200

250

300

350

400

Openness to experience Conscientiousness Extraversion Agreeableness Neuroticism

Figure 4: Posterior distributions of the relationships between the Big Five predictors and
drug use on the partial correlation (left) and squared partial correlation scales (right).

with drug use. According to the sign of their coefficients, we can conclude that higher scores
for openness (o) and extraversion (e) are associated with a higher drug use index, while
higher scores for consciousness (c) and Agreeableness (a) are related to lower values of the
drug use index. Finally, since the marginal posterior of neuroticism (n) has a non-negligible
probability around zero, we conclude it is not associated with drug use if we are already
taking into account all the other variables in the model.
We may further be interested in asking: which of these personality dimensions matter more
for the prediction of drug use? There are many possible ways to think about what it means
for one predictor to be relatively “more important” another predictor (Hunsley and Meyer
2003; Westfall and Yarkoni 2016), but one conceptually straightforward way to approach the
issue is to compare partial correlations between each predictor with the outcome, controlling
for all the other predictors. These comparisons are somewhat challenging using traditional
frequentist methods, perhaps requiring a bootstrapping approach, but they can be formulated
very naturally in the Bayesian framework thanks to Bambi and the libraries it relies on. We
can simply apply the relevant transformation to all the posterior samples to obtain the joint
posterior distribution on the (squared) partial correlation scale.
Pearson’s partial correlation is a measure of linear association between a predictor and the
outcome after controlling for the set of all other predictors in the model. In plain English,
the partial correlation of a given predictor is a measure of how much information about the
outcome is explained by that predictor itself, and not by the others. It is possible to convert
the regression coefficient into a partial correlation by multiplying it by a constant that depends
on the variability of the predictor and the outcome, and the degree of linear association with
the set of other predictors. The derivation of this term, together with the code we used, is
included in the Appendix A as well as in the online notebooks. That is what we have done to
the slope samples before obtaining Figure 4. These marginal posteriors allow us to visualize
the plausible values for the partial correlations and squared partial correlation and quickly
see, for example, that there is a negative association between Agreeableness (a) and the drugs
index or that openness (o) contains more information about drug usage than extroversion (e)
because the marginal posterior of the former is concentrated around larger values on the right
panel.

10 Bambi: Fitting Bayesian Linear Models in Python

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
Openness to experience

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Co
ns

cie
nt

io
us

ne
ss

Figure 5: Draws from the 2-dimensional joint posterior of openness and conscientiousness in
terms of squared partial correlation. Orange dots represent draws where conscientiousness
has a larger squared partial correlation than openness, and blue dots represent draws where
openness is the one with larger values. The percentage of blue dots (93%) represents the
probability that openness is a stronger predictor than conscientiousness.

1 0 1 2 3 4 5
drugs / drugs

Posterior predictive
Observed
Posterior predictive mean

Figure 6: Posterior predictive plot of Big Five personality dimensions. The blue lines represent
samples from the posterior predictive distribution, and the black line represents the observed
data. The posterior predictions seem to adequately represents the observed data in all regions
except near the value of 1, where the observed data and predictions diverge.

We can also use the joint posterior to draw conclusions about questions involving the partial
correlation of more than one predictor. For example, we can conclude that the probability
that openness to experience (o) is a stronger predictor than conscientiousness (c) is about 93%
(Figure 5) or that the probability that Agreeableness is the strongest of the five predictors is
about 99% (No figure is shown, as this involves a 5-dimensional posterior).
We may also use the posterior distribution to compute the posterior predictive distribution.
As the name implies, these are predictions assuming the model’s parameters are distributed

Journal of Statistical Software 11

per the estimated posterior. Thus, the posterior predictive includes the uncertainty about
the parameters. The posterior predictive evaluated at the observed values of the predictors
is a common method to diagnose a model’s fit, and can also be used to compare two or more
models. Using Bambi, the posterior predictive distribution, evaluated at the observed values
of the predictors, can be computed using model.predict(idata, kind = "pps"). This
.predict() method, which we discuss more deeply in the following example, automatically
adds the posterior predictive sample to the InferenceData object idata. We can then use
ArviZ to plot Figure 6.

model.predict(idata, kind = "pps")
az.plot_ppc(idata)

3.2. Logistic regression
Our next example involves an analysis of the American National Election Studies (ANES)
data. The ANES is a nationally representative, cross-sectional survey used extensively in
political science. We will use a dataset from the 2016 pilot study, consisting of responses from
1200 voting-age US citizens, from https://electionstudies.org/. From this dataset, we
extracted the subset of 421 respondents who had observed values on the following variables:

• vote: If the 2016 presidential election were between Hillary Clinton for the Democrats
and Donald Trump for the Republicans, would the respondent vote for Hillary Clinton,
Donald Trump, someone else, or probably not vote? Observed answers are coded as
"clinton", "trump", and "someone_else".

• party_id: With which US political party does the respondent usually identify? For
example, Republican, Democrat, or Independent. Observed answers are "democrat",
"republican", and "independent".

• age: Computed from the respondent’s birth year. This is a numerical variable that
ranges from 18 to 95.

For brevity of presentation, we focus only on data from respondents who indicated that they
would vote for either Clinton or Trump, and we will model the probability of voting for
Clinton.
As expected, respondents who self-identify as Democrats are more likely to say they would
vote for Clinton over Trump; respondents who self-identify as Republicans report an intention
to vote for Trump over Clinton; and Independent respondents fall somewhere in between.
What we are interested in is the relationship between respondent age and intentions to vote
for Clinton, and in particular, how age may interact with party identification in predicting
voting intentions.
As before, we load the data as a pandas DataFrame using the bmb.load_data() function.
Then we can specify and fit the logistic regression model using the following commands:

data = bmb.load_data("ANES")
data = data.loc[data["vote"].isin(["clinton", "trump"]), :]
model = bmb.Model("vote[clinton] ~ party_id + party_id:scale(age)", data,

family = "bernoulli")
idata = model.fit(draws = 2000, tune = 2000)

https://electionstudies.org/

12 Bambi: Fitting Bayesian Linear Models in Python

1.5 2.0 2.5 3.0 3.5

Intercept

0 1000 2000 3000 4000 5000 6000 7000 8000
Rank (all chains)

0

1

2

3

Ch
ai

n

Intercept

3.5 3.0 2.5 2.0 1.5

party_id
independent

0 1000 2000 3000 4000 5000 6000 7000 8000
Rank (all chains)

0

1

2

3

Ch
ai

n

party_id
independent

10 9 8 7 6 5 4

party_id
republican

0 1000 2000 3000 4000 5000 6000 7000 8000
Rank (all chains)

0

1

2

3

Ch
ai

n

party_id
republican

0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.25

party_id:scale(age)
democrat

0 1000 2000 3000 4000 5000 6000 7000 8000
Rank (all chains)

0

1

2

3

Ch
ai

n

party_id:scale(age)
democrat

1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0

party_id:scale(age)
independent

0 1000 2000 3000 4000 5000 6000 7000 8000
Rank (all chains)

0

1

2

3

Ch
ai

n

party_id:scale(age)
independent

4 3 2 1 0 1

party_id:scale(age)
republican

0 1000 2000 3000 4000 5000 6000 7000 8000
Rank (all chains)

0

1

2

3

Ch
ai

n

party_id:scale(age)
republican

Figure 7: The left panels show the kernel density estimates for the marginal posterior dis-
tributions for all the model’s parameters. The right panels show rank plots. This type of
visualization is based on histograms of the ranked posterior draws (ranked over all chains)
plotted separately for each chain. If all the chains are targeting the same posterior, we expect
the ranks in each chain to be uniform, whereas if one chain has a different location or scale
parameter, this will be reflected in the deviation from uniformity (Vehtari et al. 2020). The
similarity of the rank plots in this example indicates the chains mixed well.

We name the model model and we use vote[clinton] to tell Bambi that we are modeling
the probability of voting for Clinton. The latter is optional syntax that we use on the left-
hand-side of the formula to explicitly ask Bambi to model the probability the variable vote

Journal of Statistical Software 13

family Response Available links
bernoulli Bernoulli logit, probit, cloglog, identity
beta Beta logit, probit, cloglog, identity
binomial Binomial logit, probit, cloglog, identity
gamma Gamma inverse, identity, log
gaussian Normal identity, log, inverse
negativebinomial Negative Binomial log, identity, cloglog
poisson Poisson log, identity
t Student-t identity, log, inverse
vonmises VonMises tan(x / 2)
wald Inverse Gaussian inverse_squared, inverse, identity, log

Table 2: Summary of the currently available families and the link functions they can use
(the first options are the defaults). These families are represented in Bambi with a ‘Family’
class. This class contains the conditional distribution of the response (as the name of a valid
PyMC distribution), the name of the mean parameter for this distribution, as well as the link
function transforming the mean parameter into the linear predictor.

is equal to clinton (case-sensitive). If unlike clinton, the response we would like to model
had spaces, we would have had to wrap it within single quotes, for example, vote['hillary
clinton']. Note however this step is not strictly necessary, as Bambi will pick a reference
category and include it in the output if we do not pass one explicitly. Another option is to
encode vote as a 0-1 variable before creating the model and Bambi will model the probability
the variable is equal to 1. We set family = "bernoulli" because the outcome variable,
vote, represents Bernoulli trials, where vote == "clinton" represents a success and vote
== "trump" represents a failure. We could have also specified link = "logit" to indicate
the link function of the GLM, but the logit link function is the default when family =
"bernoulli" (see Table 2). As before, we instruct Bambi to sample 2000 draws from the
joint posterior, but now we also ask for 2000 tune steps.
We can also see the variable age is wrapped with the function scale(). This function
standardizes the variable before entering the model by subtracting its mean and dividing by
its standard deviation. As a result, we get roughly a 2x speedup in the sampling process for
this particular example.
scale() is one of the built-in stateful transformations provided by formulae (Capretto 2021),
the library Bambi uses it to translate model formulas into design matrices. These transfor-
mations are stateful because they remember the state of the original dataset, and use it in
transforming new datasets. For example, the scale() transformation remembers the mean
and standard deviation of the variable age in the original dataset data. These values are
used later when making predictions for a new dataset to standardize the new age values with
the original mean and standard deviation.
Again, we can use the command az.plot_trace(idata) to obtain plots for the marginal
posteriors. Figure 7 shows the output of az.plot_trace(idata, kind = "rank_bars").
The argument kind = "rank_bars" indicates to use a rank plot based on bars instead of the
classic trace plot to explore the mixing and convergence of the chains.
The left panel in Figure 7 shows the marginal posterior distributions of all the coefficients in
the model. Panels with the party_id:scale(age) header are marginal posteriors for the in-

14 Bambi: Fitting Bayesian Linear Models in Python

20 30 40 50 60 70 80 90
Age

0.0

0.2

0.4

0.6

0.8

1.0

P(
vo

te
=c

lin
to

n
| a

ge
)

Democrat Republican Independent

Figure 8: Spaghetti plot showing the model predictions and associated uncertainty.
The full version of the code that produces this figure can be found in the notebook
02_logistic_regression.ipynb in the associated GitHub repository.

teraction between party affiliation and age, which indicate the slopes for the standardized age
predictor in each party affiliation group. These distributions show that, among Democrats,
there is not much association between age and voting intentions because the posterior distri-
bution has considerable probability density around zero. However, among both Republicans
and Independents, there is a distinct tendency for older respondents to be less likely to indi-
cate an intent to vote for Clinton since their marginal posteriors have most of their density
around negative values.
Key results from the model are summarized in Figure 8. This is a spaghetti plot showing
plausible logistic regression curves for each party identification category, given the data we
have now observed. These are obtained by taking parameter values sampled from the posterior
and plotting the logistic regression curve implied by those sampled parameters. The spaghetti
plot shows the model predictions as well as the uncertainty around those predictions. As we
have previously mentioned, for Democrats, the probability of voting for Clinton is not related
to age (the probability is almost constant around 0.9 for all ages). However, both older
Republicans and older Independents are less likely to vote for Clinton.
Bambi models have a .predict() method that can be used to obtain both in-sample and out-
of-sample predictions. Its only mandatory argument is the InferenceData object returned
from the sampling process. This object is modified in-place unless we explicitly add inplace =
False in the call. There is also an argument kind indicating the type of prediction, which can
be either "mean" (default) or "pps". The first returns draws from the posterior distribution
of the mean, while the latter returns the draws from the posterior predictive distribution.
Other possible arguments are data and draws. The former is used to pass a new DataFrame
with values for the predictors in order to obtain out-of-sample predictions (if omitted, the
original dataset is used), and draws is the number of random draws per chain when using
kind = "pps".
In the following code block we use model.predict() to compute the posterior of the mean
probability of voting for Clinton for observations in a new dataset (with ages ranging from

Journal of Statistical Software 15

18 to 90) that is created to obtain the spaghetti plot in Figure 8. Notice we create values for
the variable age in the original scale and Bambi automatically handles the transformation for
us. Also, since we are not passing any further options, this call computes the posterior of the
mean for the new data and modifies idata in-place.

age = np.arange(18, 91)
parties = ["democrat", "republican", "independent"]
new_data = pd.DataFrame({

"age": np.tile(age, 3),
"party_id": np.repeat(parties, len(age))

})
model.predict(idata, data = new_data)
posterior_mean = idata.posterior["vote_mean"].values.mean(0)
posterior_mean = posterior_mean[:500, :].T
for i, party in enumerate(["democrat", "republican", "independent"]):

idx = new_data.index[new_data["party_id"] == party]
plt.plot(age, posterior_mean[idx], alpha = 0.05, color = f"C{i}")

The call model.predict(idata, data = new_data) in the previous block of code adds a
new variable "vote_mean" to the posterior group in the idata object. The name of the
new variable is the name of the response, plus "_mean" as a suffix. This variable represents a
3-dimensional object with shape (n_chains, n_draws, n_obs). These stand for the number
of chains and the number of draws per chain we sampled from the posterior, and the number
of observations in the new dataset.

3.3. Hierarchical models

Bambi makes it easy to fit hierarchical (generalized) linear models2 with common and group
specific terms (also known as fixed and random effects, respectively). To illustrate, we con-
duct a Bayesian reanalysis of the data reported in a registered replication report (RRR)
(Wagenmakers et al. 2016) of a highly-cited study by Strack, Martin, and Stepper (1988).
The original study tested the facial feedback hypothesis, which holds that emotional responses
are, in part, driven by facial expressions. Strack and colleagues reported in their study that
participants rated cartoons as funnier when holding a pen between their teeth (unknowingly
inducing a smile) than when holding a pen between their lips (unknowingly inducing a pout).
The article has been cited over 1400 times, and has been influential in popularizing the view
that emotional experience not only shapes, but can also be shaped by, emotional expression.
Yet in a 2016 RRR led by Wagenmakers and colleagues at 17 independent sites (Wagenmak-
ers et al. 2016), spanning over 2500 participants, no evidence in support of the original effect
could be found.
We reanalyze and extend the analysis in this RRR using a Bayesian hierarchical model.
We fit a hierarchical linear model containing the following terms: (1) the common effect of
experimental condition (“smile” vs. “pout”), which is the primary variable of interest; (2)
group specific intercepts for the 17 studies; (3) group specific condition slopes for the 17
different study sites; (4) group specific intercepts for all subjects; (5) group specific intercepts
for the 4 stimuli used at all sites; and (6) common terms for age and gender (since they
are included in the dataset, and could conceivably account for variance in the outcome).

2These types of models are also known as multilevel or mixed effects models.

16 Bambi: Fitting Bayesian Linear Models in Python

Our model departs from the meta-analytic approach used by Wagenmakers et al. (2016) in
that the latter allows for study-specific subject and error variances (though in practice, such
differences are unlikely to impact the estimate of the experimental condition effect). On the
other hand, our approach properly accounts for the fact that the same stimuli were presented
in all 17 studies. By explicitly modeling the stimulus as a random variable, we ensure that our
inferences can be generalized over a population of stimuli like the ones (Wagenmakers et al.
2016) used, rather than applying only to the exact 4 Far Side cartoons that were selected
(Judd, Westfall, and Kenny 2012; Westfall, Judd, and Kenny 2015).
Bambi allows us to specify priors in two different ways. The first is at model instantiation
via the priors argument. We can pass a dictionary where the keys are names of terms
in the model, "common" or, "group_specific" and the values are instances of bmb.Prior.
Priors that are passed via the "common" or the "group_specific" keys are applied to all the
common and group specific effects, respectively. The other option is to specify priors after
the model is created via the .set_priors() method. Here we have three arguments: priors,
common, and group_specific. The argument priors expects a dictionary where the keys are
term names and the values are instances of bmb.Prior, while common and group_specific
work with bmb.Prior directly.
In the following block of code, we create and fit a model with custom priors using the
.set_priors() method.

model = bmb.Model(
"value ~ condition + age + gender + (1|uid) + (condition|study + stimulus)"
data = long, dropna = True

)
common_prior = bmb.Prior("Normal", mu = 0, sigma = 0.5)
model.set_priors(common = common_prior)
group_specific_sd = bmb.Prior("HalfNormal", sigma = 1)
group_specific_prior = bmb.Prior("Normal", mu = 0, sigma = group_specific_sd)
model.set_priors(group_specific = group_specific_prior)
priors = {

"Intercept": bmb.Prior("Normal", mu = 0, sigma = 3),
"age": bmb.Prior("Normal", mu = 0, sigma = 0.3)

}
model.set_priors(priors = priors)
idata = model.fit(target_accept = 0.95)

We have omitted the steps necessary to obtain the long dataset, as these are unrelated to
Bambi. These steps, together with all the code to reproduce this example, are included in the
notebook 03_hierarchical_model.ipynb, which is in the GitHub repository of this paper.
There are some novel features in the code block above that are worth mentioning. Notice
the (condition|study + stimulus) term in the model formula. This is a shorthand that
leverages the distributive property of the | operator and is equivalent to have written both
condition|study and condition|stimulus. We also used dropna = True to tell Bambi to
discard any rows with missing values in any of the columns in the model. This automatically
dropped 33 out of 6940 rows from the dataset.
Next, we specified custom priors. Specifically, we first indicated that all common terms have
a Normal prior with mean 0 and standard deviation of 0.5. Then, we indicated the variances

Journal of Statistical Software 17

1 2 3 4 5 6 7

Intercept

0 200 400 600 800

2

4

6

Intercept

0.03 0.04 0.05 0.06 0.07

age

0 200 400 600 800

0.04

0.06

age

0.3 0.2 0.1 0.0 0.1

gender

0 200 400 600 800
0.3

0.2

0.1

0.0

0.1

gender

0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8

condition

0 200 400 600 800
0.5

0.0

0.5

condition

2.18 2.20 2.22 2.24 2.26 2.28 2.30 2.32

value_sigma

0 200 400 600 800

2.20

2.25

2.30

value_sigma

Figure 9: Marginal posterior distributions and sample traces (right) of parameter estimates
for common terms. The parameter labeled value_sigma is the residual standard error, usually
denoted σ.

of all group specific terms to be modeled using a HalfNormal distribution with sigma = 1.
And finally, we specified priors for the intercept and the age terms. These are given by Normal
distributions centered at 0 with standard deviations equal to 3 and 0.3, respectively. These
non-default prior has no discernible impact on the posterior because the dataset is relatively
large, but results in an improved sampling performance compared to using the default priors.
As the package documentation explains, one can easily specify a completely different prior for
each model term, and any one of the many preexisting distributions implemented in PyMC
can be assigned. Finally, we have increased target_accept from the default 0.8 to 0.95.
This is a parameter that is passed to NUTS, the sampler, so the step size is tuned such
that it approximates this acceptance rate. Higher values often work better for problematic
posteriors.
Inspection of the results from Figures 9 and 10 reveals essentially no effect of the experimental
manipulation, consistent with the findings reported in Wagenmakers et al. (2016), including
the observation that the variation across sites is surprisingly small in terms of both the group
specific intercepts (1|study) and the group specific slopes (condition|study). One impli-
cation of this observation is that the constitution of the sample, the language of instruction,
or any of the hundreds of other potential between-site differences, appear to make much less
of a difference to participants’ comic ratings than one might have intuitively supposed. In-
terestingly, our model also highlights an additional point of interest not discernible from the

18 Bambi: Fitting Bayesian Linear Models in Python

Figure 10: Marginal posterior distributions and sample traces of parameter estimates for all
group specific terms. The terms with the suffix _sigma are the standard deviations of group
specific terms (e.g., 1|uid_sigma is the SD of the means of the individual subject intercepts).

results reported by Wagenmakers et al. (2016): the posteriors for 1|stimulus are much wider
than the posteriors for the other factors, which means the stimulus level variance is very large
compared to the others. This is problematic, because it suggests that any effects one identifies
using a conventional analysis that fails to model stimulus effects could potentially be driven

Journal of Statistical Software 19

by idiosyncratic differences in the selected comics. Note that this is a problem that affects
both the RRR and the original Strack study equally. In other words, regardless of whether the
RRR would have obtained a statistically significant replication of the Strack study given dif-
ferent stimuli, if the effect is strongly driven by idiosyncratic properties of the specific stimuli
used in the experiment — which is not unlikely, given that the results are based on just four
stimuli drawn from a stimulus population — that is likely quite heterogeneous, then there
would have been little basis for drawing strong conclusions from that result in the first place.
Either way, the moral of the story is that any factor that can be viewed as a sample from
some population that one intends to generalize one’s conclusions over (such as the population
of funny comics) should be explicitly included in one’s model (Judd et al. 2012; Westfall et al.
2015). Bambi makes it very easy to fit such models within a Bayesian framework.

4. Default prior choice
The goal of the default prior implementation in Bambi is to automatically provide prior dis-
tributions that are weakly informative for a wide range of use cases. Such weakly informative
priors aim to provide slight regularization and help stabilize the computation, rather than
incorporating prior domain knowledge into the model. These priors work well in many appli-
cations, however it is not possible to guarantee that they will be suitable for every scenario.
Thus, users are advised to follow good practices, including the use of convergence diagnostics
and model checking (Gelman et al. 2020; Martin et al. 2021).
Bambi obtains default priors using a procedure very similar to the one in the rstanarm library,
whose online documentation can be found in https://mc-stan.org/rstanarm/articles/
priors.html.

4.1. Regression coefficients for common effects

For all models and families, we use independent Normal priors centered at 0 for the common
effects regression coefficients. Their standard deviation depends on the model family, and the
scale of the response and the predictor.
Suppose we have a response Y and a predictor Xk. Then, the default prior for the regression
coefficient βk is

βk ∼ Normal
(

0, 2.5 · sd(Y)
sd(Xk)

)
where sd(Xk) is the sample standard deviation of the predictor Xk and sd(Y) is the sample
standard deviation of the response Y if the model family is either "gaussian" or "t", and 1
otherwise.

4.2. Intercept

The default prior for the intercept β0 follows a different scheme for two reasons. First, it is
represented as a constant predictor of ones in the design matrix. And second, Bambi centers
the predictors when the model contains an intercept, which means the prior for the intercept
actually refers to the prior of the centered intercept.
We first note that in Ordinary Least Squares (OLS) regression we have β0 = Ȳ − β1X̄1 −

https://mc-stan.org/rstanarm/articles/priors.html
https://mc-stan.org/rstanarm/articles/priors.html

20 Bambi: Fitting Bayesian Linear Models in Python

family Auxiliary parameter Default prior
beta κ Half-Cauchy (β = 1)
gamma α Half-Cauchy (β = 1)
gaussian σ Half-Student-t (ν = 4, σ = sd(y))
negativebinomial α Half-Cauchy (β = 1)

t σ
ν

Half-Student-t (ν = 4, σ = sd(y))
Gamma (α = 2, β = 0.1)

vonmises κ Half-Normal (σ = 1)
wald λ Half-Cauchy (β = 1)

Table 3: Built-in families, auxiliary parameters, and their default priors. The meaning of
these parameters is the one given in the PyMC library.

β2X̄2 − . . . where Ȳ represents the mean of Y , so we can set the mean of the prior on β0 to

E[β0] = Ȳ − E[β1]X̄1 − E[β2]X̄2 − . . .

In practice, both the priors on the slopes and the centered predictors will have a zero mean,
so the mean of the prior on β0 will typically reduce to Ȳ .
Now for the variance, and assuming independence of the slope priors, we have:

VAR(β0) = VAR(Y)
n

+ X̄2
1 VAR(β1) + X̄2

2 VAR(β2) + . . . (1)

In other words, once we have defined the priors on the slopes, we can combine this with the
means of the predictors to find the implied variance of β0. Our default prior for intercepts is
a Normal distribution with mean and variance defined as above, except that the VAR(Y)

n term
in the Equation 1 is replaced by VAR(Y), so that the intercept prior will not be too narrow
when the predictors are centered and the sample size is large.

4.3. Auxiliary parameters

Some likelihood functions in the built-in families have other parameters than the mean µ.
Some examples are the standard deviation in a Normal likelihood or the shape parameter in a
Gamma. These parameters are not modeled by a transformation of the linear predictor, and
we thus put a prior on them. Table 3 summarizes the auxiliary parameters for these families
and their default priors.

4.4. Group specific effects

As is customary with mixed models, group specific (random) effects are assumed to be Nor-
mally distributed. The default prior variances of those Normal distributions are based on
the idea that, generally speaking, the greater the prior variance is of the corresponding com-
mon effect coefficient, the greater should be the prior variance of the group specific effect
variance. We implement this idea by using Half-Normal distributions for the group specific
effect standard deviations, each with parameter σ set equal to the prior standard deviation
of the corresponding common effect. If the common part of the model does not include the
corresponding common effect, then we consider an augmented model in which the common
part of the model does include the corresponding common effect, and we compute what would

Journal of Statistical Software 21

be the mean and standard deviation of the prior for this common effect using the methods
described previously, and then set σ equal to this implied prior standard deviation.

4.5. Previous default priors

Bambi originally implemented an algorithm that would set default priors on the scale of
the implied partial correlation between the predictors and the response that is described in
Westfall (2017).
One of the major drawbacks of this method is that it depends on maximum likelihood esti-
mates (MLE) for the parameters in the model, meaning it is not available whenever the MLE
does not exist, as it is in the case of complete separation or when there are more columns
than observations in the design matrix. In addition, the implementation uses the GLM module
from the statsmodels library to compute maximum likelihood estimates. Thus, the range of
models that were implemented in Bambi was limited by the models available in statsmodels
which lacks families such as the "beta" or "t" that are now part of Bambi.
At the moment of writing, this default prior algorithm is still available, but it is not the default
choice anymore and will be removed in the future. For now, users can use this method by
setting automatic_priors = "mle" when instantiating a ‘Model’.

4.6. Limitations and future extensions

Our default prior system is based on independent Normal priors for all slopes (either common
or group specific), so that their joint prior distribution is multivariate Normal with a diagonal
covariance matrix. It is possible that allowing this multivariate Normal to have non-zero
covariances would make sense. We have recently added a new feature that allows group
specific coefficients to have multivariate Normal prior whose covariance matrix has a LKJ
prior. This approach is inspired on the prior for the group specific coefficients in rstanarm
(Goodrich et al. 2020).
Even though our default priors work well in practice, we have performed simulations with
fake data to explore the weaknesses of our proposal. The results suggest that there can
be cases where the resulting priors are too narrow, and consequently the regularization is
inadvertently greater than one might expect. This could also pose a problem for the sampler,
which is often manifested as a high number of divergences. For example, if in a regression
setting the variability of Xj is much higher than the variability of Y and |βj | ≫ 0, we may
end up with a prior on βj that puts very little probability around its true value.
We also believe the priors for auxiliary parameters could be further improved. For example,
the peak of the Half-Student-t prior for σ in the "gaussian" and "t" families is at 0, which
implies a coefficient of determination R2 = 1. On the other hand, this prior has a heavy tail,
so the bulk of the distribution is away from zero. In a future work, we could compare the
current approach with one that uses a right skewed distribution whose peak is not at 0 and
see which one tends to work best in most situations.

5. Formula specification
A model formula is a string of the form "resp ~ expr", where resp indicates the response
variable and expr is an expression that determines the design matrices X and Z for the
common and group specific effects, respectively. Bambi uses formulae (Capretto 2021), an
implementation of model formulas written by Bambi developers.

22 Bambi: Fitting Bayesian Linear Models in Python

Operator Description

** Power operator. It takes a set of terms on the left, an integer n on the
right, and returns all the interaction between the terms up to order n.

: Interaction between operands.

* Full interaction. Includes the interaction between operands as well as the
operands themselves. a*b is a shorthand for a + b + a:b.

/
a / b is a shorthand for a + a:b. It is rightward distributive but not
leftward distributive over +. a / (b + c) is equal to a + a:b + a:c but
(a + b)/c is equal to a + b + a:b:c.

+ Computes a set union between terms on the left and terms on the right.
This means that a+a is a.

-
Computes a set difference between terms on the left and terms on the
right. But since we parse from left to right, x + y - x is y but
y - x + x is equal to y + x.

|
Interaction-like operator that indicates a group specific effect.
The expression on the left-hand side contains an implicit intercept. The
right-hand side is interpreted as a categorical grouping variable.

~
Separates the left-hand side and right-hand side of a formula.
The left-hand side represents the response while the right-hand side
is an expression that determines the design matrices X and Z.

Table 4: Built-in operators.

5.1. Formulae

formulae is very similar to the model formula implementation in R in both its syntax and
semantics. Most formulas that work in R are expected to work in formulae similarly as long
as you write Python code instead of R when including function calls.

Available operators
A list of available operators together with their description can be found in Table 4. There,
operators are sorted from highest to lowest precedence. Operators in the same section, delim-
ited by a horizontal line, have the same precedence level. Also, note that formula expressions
are interpreted from left to right, but as may be naturally expected, expressions within paren-
thesis are resolved first, and then they can be used to override precedence rules.

Group specific effects
Group specific effects are specified and interpreted by formulae in the same way as in the
R package lme4, with the exception that formulae lacks the || operator to specify uncor-
related group specific intercept and slope. That is, group specific effects are of the form
(expr|factor)3. The expression expr is evaluated as a model formula itself, producing a
design matrix following the same rules than those for common effects, and factor is inter-
preted as a grouping variable. Then, the computation of the group specific effects matrix, Z,
is carried out exactly as specified in Section 2.3 of Bates et al. (2015).

3Parentheses are optional, but we almost always use them because the pipe operator has lower precedence
than all the operators, except for the tilde ~.

Journal of Statistical Software 23

Differences with R and Patsy
Earlier versions of Bambi relied on Patsy (Smith et al. 2018) to parse model formulas and
construct design matrices. But its lack of built-in support for mixed effects made it cumber-
some to specify group level effects, which had to be passed as a separate list. For example,
to fit a regression of y on x, with each group in g having a group specific intercept and slope,
the user would write

model.fit("y ~ x", group_specific = ["x|g"])

Instead, formulae enables the specification of group level effects via the | operator within a
single model formula. Then, the previous method call is simplified to

model.fit("y ~ x + (x|g)")

The main difference between formulae and R relies on how we encode categorical variables
when constructing design matrices. For some specifications that include categorical variables
R produces over- or under-specified model matrices. To avoid that, formulae uses an algorithm
introduced in Patsy to decide whether to use a full- or reduced-rank coding for categorical
variables that ensures it always returns model matrices that are full-rank. But in contrast to
Patsy, only a reference term encoding is available in formulae for now.
formulae also includes some syntactic sugar to improve the user experience. For example, to
disambiguate an operation like a sum between two terms, R requires wrapping the sum with
the I() function call, such as in I(x + y). In formulae it can be simplified to {x + y}, but
the R version still works. Also, while non-syntactic names like My question? have to be
wrapped with Q() in Patsy, they can be escaped with the backtick operator in formulae such
as in "response ~ `My question?`".
formulae is not Patsy nor R, but our attempt to take the best of R and Patsy and make it
available for Bambi. The result is an implementation of the formula language where you can
specify common and group specific effects in a single string, you have an algorithm to build
model matrices that ensures the result is structurally full rank, and we as Bambi developers
have the possibility to modify the source code to incorporate (or modify) features in order to
make it easier to work with Bayesian GLMMs.

6. Discussion and conclusions
We have introduced a high-level Bayesian model building interface that combines a formula
notation similar to those found in the popular R packages lme4 and brms with the flexibility
and power of the stat-of-the-art probabilistic programming framework PyMC. The exam-
ple applications presented here illustrate how Bambi makes it possible to fit sophisticated
Bayesian generalized linear multilevel models with little programming knowledge, using a
formula-based syntax that will already be familiar to many users, or that is easy to learn for
those unfamiliar with it.
The Bayesian approach to fitting generalized linear multilevel models is attractive for several
reasons. Practically speaking, the ability to inject outside information into the analysis in a
principled way, in the form of the prior distributions of the parameters, can have a beneficial
regularizing effect on parameter estimates that are computationally difficult to pin down. For

24 Bambi: Fitting Bayesian Linear Models in Python

example, the variances of group effect terms can often be quite hard to estimate precisely,
especially for small datasets and unbalanced designs. In the traditional maximum likelihood
setting, these difficulties often manifest in point estimates of the variances and covariances
that defy common sense, or in outright failure of the model to successfully converge to a
satisfactory solution. Setting an informative Bayesian prior on these variance estimates can
help bring the model estimates back down to earth, resulting in a convergent fitted model
that is much more believable (Chung, Gelman, Rabe-Hesketh, Liu, and Dorie 2015). As a
second example, it is well known that categorical outcome models such as logistic regression
can suffer problems due to quasi-complete separation of the outcome with respect to the
predictors included in the model, which has the effect of driving the parameter estimates
toward unrealistic values approaching minus or plus infinite. These problems are further
exacerbated in mixed-effects logistic regression, where separation in some individual clusters
can easily distort the overall common parameter estimates, even though there is no separation
at the level of the whole dataset. Again, informative priors can help to rein in these diverging
parameter estimates (Gelman, Jakulin, Pittau, and Su 2008).
For users with more programming experience, the probabilistic programming paradigm that
PyMC supports may also confer additional benefits. A key benefit of this approach is that
researchers can theoretically fit any model they can write down; no analytical derivation of
a solution is required. Because Bambi is simply a high-level interface to PyMC, in practice,
researchers can use Bambi to very quickly specify a model, and subsequently elaborate on,
or extend that model, in native Python code. Subject to limitations of the state-of-the art
Bayesian inference methods, users can in principle fit any model that allows variables to be
modeled as probability distributions, including arbitrary non-linear transformations.
When working with Bayesian models, there are a series of related tasks that need to be ad-
dressed besides inference itself (Kumar et al. 2019; Gelman et al. 2020; Martin et al. 2021).
These tasks include diagnosing the quality of the inference, model criticism and model com-
parison. While Bambi is an interface for model building and inference, its tight integration
with ArviZ helps users to perform this non-inferential tasks in a more fluid manner.
Importantly, the open source nature of Bambi, and in particular, its reliance on numerical
packages that already have well-established user bases and developer communities, means that
the available functionality will continue to grow rapidly. Our hope is that many researchers
accustomed to frequentist methods will find Bambi sufficiently intuitive and familiar to war-
rant adopting a Bayesian approach for at least some classes of common analysis problems. In
the future, we would like to improve Bambi’s default priors, which is a topic that will benefit
from more research. On a more immediate future, we would like to include features that are
currently missing, such as support for splines or Gaussian processes.

Acknowledgments

The work was supported by the National Agency of Scientific and Technological promotion,
ANPCyT (Grant No PICT-0218). We acknowledge the computational resources provided
by the Aalto Science-IT project and support by the Academy of Finland Flagship program:
Finnish Center for Artificial Intelligence, FCAI, and the Technology Industries of Finland
Centennial Foundation (grant 70007503; Artificial Intelligence for Research and Develop-
ment).

Journal of Statistical Software 25

References

Bates D, Mächler M, Bolker B, Walker S (2015). “Fitting Linear Mixed-Effects Models Using
lme4.” Journal of Statistical Software, 67(1), 1–48. doi:10.18637/jss.v067.i01.

Bessiere P, Mazer E, Ahuactzin JM, Mekhnacha K (2013). Bayesian Programming. Chapman
& Hall/CRC, Boca Raton. ISBN 978-1-4398-8032-6.

Betancourt M (2018). “A Conceptual Introduction to Hamiltonian Monte Carlo.” arXiv
1701.02434v2, arXiv.org E-Print Archive. doi:10.48550/arXiv.1701.02434.

Bürkner PC (2017). “brms: An R Package for Bayesian Multilevel Models Using Stan.”
Journal of Statistical Software, 80(1), 1–28. doi:10.18637/jss.v080.i01.

Capretto T (2021). formulae. A Python Implementation of Wilkinson’s Formula Language
for Statistical Models. URL https://github.com/bambinos/formulae.

Carpenter B, Gelman A, Hoffman MD, Lee D, Goodrich B, Betancourt M, Brubaker M, Guo
J, Li P, Riddell A (2017). “Stan: A Probabilistic Programming Language.” Journal of
Statistical Software, 76(1), 1–32. doi:10.18637/jss.v076.i01.

Chung Y, Gelman A, Rabe-Hesketh S, Liu J, Dorie V (2015). “Weakly Informative Prior for
Point Estimation of Covariance Matrices in Hierarchical Models.” Journal of Educational
and Behavioral Statistics, 40(2), 136–157. doi:10.3102/1076998615570945.

Daniel Roy (2015). “Probabilistic Programming.” URL http://
probabilistic-programming.org/wiki/Home.

Gelman A, Jakulin A, Pittau MG, Su YS (2008). “A Weakly Informative Default Prior
Distribution for Logistic and Other Regression Models.” The Annals of Applied Statistics,
2(4), 1360–1383. doi:10.1214/08-aoas191.

Gelman A, Vehtari A, Simpson D, Margossian CC, Carpenter B, Yao Y, Kennedy L, Gabry
J, Bürkner PC, Modrák M (2020). “Bayesian Workflow.” arXiv 2011.01808, arXiv.org
E-Print Archive. doi:10.48550/arXiv.2011.01808.

Ghahramani Z (2015). “Probabilistic Machine Learning and Artificial Intelligence.” Nature,
521(7553), 452–459. doi:10.1038/nature14541.

Goldberg LR (1999). Personality Psychology in Europe, Volume 7: Selected Papers from the
Eighth European Conference on Personality Held in Ghent, Belgium, July 1996. European
Conference on Personality. Tilburg University Press.

Goodrich B, Gabry J, Ali I, Brilleman S (2020). Rstanarm: Bayesian Applied Regression
Modeling via Stan. R package version 2.21.3, URL https://mc-stan.org/rstanarm.

Grucza RA, Goldberg LR (2007). “The Comparative Validity of 11 Modern Personality
Inventories: Predictions of Behavioral Acts, Informant Reports, and Clinical Indicators.”
Journal of Personality Assessment, 89(2), 167–187. doi:10.1080/00223890701468568.
17764394.

https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.48550/arXiv.1701.02434
https://doi.org/10.18637/jss.v080.i01
https://github.com/bambinos/formulae
https://doi.org/10.18637/jss.v076.i01
https://doi.org/10.3102/1076998615570945
http://probabilistic-programming.org/wiki/Home
http://probabilistic-programming.org/wiki/Home
https://doi.org/10.1214/08-aoas191
https://doi.org/10.48550/arXiv.2011.01808
https://doi.org/10.1038/nature14541
https://mc-stan.org/rstanarm
https://doi.org/10.1080/00223890701468568
17764394

26 Bambi: Fitting Bayesian Linear Models in Python

Hoffman MD, Gelman A (2014). “The No-U-Turn Sampler: Adaptively Setting Path Lengths
in Hamiltonian Monte Carlo.” Journal of Machine Learning Research, 15(1), 1593–1623.

Hunsley J, Meyer GJ (2003). “The Incremental Validity of Psychological Testing and As-
sessment: Conceptual, Methodological, and Statistical Issues.” Psychological Assessment,
15(4), 446–455. doi:10.1037/1040-3590.15.4.446. 14692841.

Judd CM, Westfall J, Kenny DA (2012). “Treating Stimuli as a Random Factor in Social Psy-
chology: A New and Comprehensive Solution to a Pervasive but Largely Ignored Problem.”
Journal of Personality and Social Psychology, 103(1), 54–69. doi:10.1037/a0028347.

Kluyver T, Ragan-Kelley B, Pérez F, Granger B, Bussonnier M, Frederic J, Kelley K, Hamrick
J, Grout J, Corlay S, Ivanov P, Avila D, Abdalla S, Willing C (2016). “Jupyter Notebooks –
A Publishing Format for Reproducible Computational Workflows.” In F Loizides, B Schmidt
(eds.), Positioning and Power in Academic Publishing: Players, Agents and Agendas, pp.
87–90. IOS Press.

Kumar R, Carroll C, Hartikainen A, Martin OA (2019). “ArviZ a Unified Library for Ex-
ploratory Analysis of Bayesian Models in Python.” Journal of Open Source Software, 4(33),
1143. doi:10.21105/joss.01143.

Martin O, Hartikainen A, Colin, Abril-Pla O, Kumar R, Naeem R, Gautam P, Arroyuelo
A, rpgoldman, Banerjea A, Pasricha N, Sanjay R, Gruevski P, Rochford A, Mahweshwari
U, Phan D, Kazantsev VV, Arunava, Shekhar M, ANDORRA A, Carrera E, Gorelli ME,
Kumar A, Hector (2022). ArviZ. doi:10.5281/zenodo.6380702.

Martin OA, Kumar R, Lao J (2021). Bayesian Modeling and Computation in Python. 1st
edition. Chapman and Hall/CRC, Boca Raton. ISBN 978-0-3678-9436-8.

McKinney W (2010). “Data Structures for Statistical Computing in Python.” In S Van der
Walt, J Millman (eds.), Proceedings of the 9th Python in Science Conference, pp. 56–61.

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Pret-
tenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M,
Perrot M, Duchesnay É (2011). “Scikit-Learn: Machine Learning in Python.” Journal
of Machine Learning Research, 12(85), 2825–2830. URL http://jmlr.org/papers/v12/
pedregosa11a.html.

Raftery AE, Lewis SM (1996). Markov Chain Monte Carlo in Practice. 1st edition. Chapman
& Hall/CRC, Boca Raton. ISBN 978-0-412-05551-5.

R Core Team (2022). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Salvatier J, Wiecki T, Patil A, Kochurov M, Engels B, Lao J, Colin, Martin OA, Seyboldt A,
Rochford A, Goldman RP, Meyer K, Paz L, Coyle P, Osthege M, Gorelli M, Yoshioka T,
Ho G, Kluyver T, Kumar R, Beauchamp K, Pananos D, Spaak E, Edwards B, Viera R, Ma
E, Domenzain LM, Vasyura-Bathke H, Willard BT, Andorra A (2021). pymc-devs/pymc3:
PyMC3 3.11.2 (14 March 2021). doi:10.5281/zenodo.4603971.

Salvatier J, Wiecki TV, Fonnesbeck C (2016). “Probabilistic Programming in Python Using
PyMC3.” PeerJ Computer Science, 2, e55. doi:10.7717/peerj-cs.55.

https://doi.org/10.1037/1040-3590.15.4.446
14692841
https://doi.org/10.1037/a0028347
https://doi.org/10.21105/joss.01143
https://doi.org/10.5281/zenodo.6380702
http://jmlr.org/papers/v12/pedregosa11a.html
http://jmlr.org/papers/v12/pedregosa11a.html
https://www.R-project.org/
https://doi.org/10.5281/zenodo.4603971
https://doi.org/10.7717/peerj-cs.55

Journal of Statistical Software 27

Seabold S, Perktold J (2010). “statsmodels: Econometric and Statistical Modeling with
Python.” Proceedings of the 9th Python in Science Conference, 2010. URL http:
//conference.scipy.org/proceedings/scipy2010/pdfs/seabold.pdf.

Smith NJ, Hudon C, broessli, Seabold S, Quackenbush P, Hudson-Doyle M, Humber M,
Leinweber K, Kibirige H, Davidson-Pilon C, Portnoy A (2018). Pydata/Patsy: V0.5.1.
doi:10.5281/zenodo.1472929.

Strack F, Martin LL, Stepper S (1988). “Inhibiting and Facilitating Conditions of the Human
Smile: A Nonobtrusive Test of the Facial Feedback Hypothesis.” Journal of Personality
and Social Psychology, 54(5), 768–777. doi:10.1037/0022-3514.54.5.768. 3379579.

Van Rossum G, et al. (2011). Python Programming Language. URL https://www.python.
org.

Vehtari A, Gelman A, Simpson D, Carpenter B, Bürkner PC (2020). “Rank-Normalization,
Folding, and Localization: An Improved R̂ for Assessing Convergence of MCMC.” Bayesian
Analysis. doi:10.1214/20-ba1221.

Wagenmakers EJ, Beek T, Dijkhoff L, Gronau QF, Acosta A, R B Adams J, Albohn DN,
Allard ES, Benning SD, Blouin-Hudon EM, Bulnes LC, Caldwell TL, Calin-Jageman RJ,
Capaldi CA, Carfagno NS, Chasten KT, Cleeremans A, Connell L, DeCicco JM, Dijkstra K,
Fischer AH, Foroni F, Hess U, Holmes KJ, Jones JLH, Klein O, Koch C, Korb S, Lewinski
P, Liao JD, Lund S, Lupianez J, Lynott D, Nance CN, Oosterwijk S, Ozdoǧru AA, Pacheco-
Unguetti AP, Pearson B, Powis C, Riding S, Roberts TA, Rumiati RI, Senden M, Shea-
Shumsky NB, Sobocko K, Soto JA, Steiner TG, Talarico JM, van Allen ZM, Vandekerckhove
M, Wainwright B, Wayand JF, Zeelenberg R, Zetzer EE, Zwaan RA (2016). “Registered
Replication Report: Strack, Martin, & Stepper (1988).” Perspectives on Psychological
Science, 11(6), 917–928. doi:10.1177/1745691616674458.

Westfall J (2017). “Statistical Details of the Default Priors in the Bambi Library.” arXiv
1702.01201v2, arXiv.org E-Print Archive. doi:10.48550/arXiv.1702.01201.

Westfall J, Judd CM, Kenny DA (2015). “Replicating Studies in Which Samples of Par-
ticipants Respond to Samples of Stimuli.” Perspectives on Psychological Science, 10(3),
390–399. doi:10.1177/1745691614564879.

Westfall J, Yarkoni T (2016). “Statistically Controlling for Confounding Constructs Is Harder
than You Think.” PLOS One, 11(3), e0152719. doi:10.1371/journal.pone.0152719.

http://conference.scipy.org/proceedings/scipy2010/pdfs/seabold.pdf
http://conference.scipy.org/proceedings/scipy2010/pdfs/seabold.pdf
https://doi.org/10.5281/zenodo.1472929
https://doi.org/10.1037/0022-3514.54.5.768
3379579
https://www.python.org
https://www.python.org
https://doi.org/10.1214/20-ba1221
https://doi.org/10.1177/1745691616674458
https://doi.org/10.48550/arXiv.1702.01201
https://doi.org/10.1177/1745691614564879
https://doi.org/10.1371/journal.pone.0152719

28 Bambi: Fitting Bayesian Linear Models in Python

A. Multiple linear regression
In the context of Ordinary Least Squares (OLS) regression, it is possible to convert the
regression coefficient of a given predictor into a partial correlation by multiplying it by a
constant. Given an outcome Y , a predictor Xk, and a set of predictors X−k not containing
Xk, one can convert the estimated slope for Xj to a partial correlation between Xk and Y
controlling for X−k using the following identity

ρXjY ·X−k
= βk

sd(Xk)
sd(Y)

√√√√1 − R2
XkX−k

1 − R2
Y X−k

(2)

where βk is the estimated slope for Xk, R2
XkX−k

is the R2 from a regression of Xk on X−k,
and R2

Y X−k
is the R2 from a regression of Y on X−k.

For the calculations in this section, we used the posterior object contained in idata
InferenceData object. Also, we require that pandas and statsmodels API are loaded as
pd and sm, respectively. We first compute the needed statistics, and then we convert the
slopes to partial correlations.

terms = [t for t in model.common_terms.values() if t.name != "Intercept"]
x_matrix = [pd.DataFrame(x.data, columns = x.levels) for x in terms]
x_matrix = pd.concat(x_matrix, axis = 1)
samples = idata.posterior
varnames = ["o", "c", "e", "a", "n"]
sd_x = x_matrix.std()
sd_y = data["drugs"].std()
r2_x = pd.Series(

{
x: sm.OLS(

endog = x_matrix[x],
exog = sm.add_constant(x_matrix.drop(x, axis = 1))

)
.fit()
.rsquared
for x in list(x_matrix.columns)

}
)
r2_y = pd.Series(

[
sm.OLS(

endog = data["drugs"],
exog = sm.add_constant(data[[p for p in varnames if p != x]]),

)
.fit()
.rsquared
for x in varnames

],
index = varnames

Journal of Statistical Software 29

)
constant = (sd_x[varnames] / sd_y) * ((1 - r2_x[varnames]) / (1 - r2_y))**0.5
pcorr_samples = samples[varnames] * constant

Notice, however, this practical approach is not free of caveats. As we mentioned in the first
paragraph of this section, formula 2 is valid in the context of OLS regression, where the βk

and R2 values are considered fixed quantities. In our case, we are plugging R2 values obtained
from a OLS regression fit together with posterior draws to obtain an approximation to the
posterior distribution of the partial correlations.

Affiliation:
Osvaldo A. Martin
IMASL-CONICET
Universidad Nacional de San Luis
San Luis, Argentina
and
Department of Computer Science
Aalto University
Espoo, Finland
E-mail: omarti@unsl.edu.ar
URL: https://aloctavodia.github.io/

Journal of Statistical Software https://www.jstatsoft.org/
published by the Foundation for Open Access Statistics https://www.foastat.org/
August 2022, Volume 103, Issue 15 Submitted: 2020-12-19
doi:10.18637/jss.v103.i15 Accepted: 2021-12-01

mailto:omarti@unsl.edu.ar
https://aloctavodia.github.io/
https://www.jstatsoft.org/
https://www.foastat.org/
https://doi.org/10.18637/jss.v103.i15

