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Abstract

Embarrassingly parallel Markov Chain Monte
Carlo (MCMC) exploits parallel computing
to scale Bayesian inference to large datasets
by using a two-step approach. First, MCMC
is run in parallel on (sub)posteriors defined
on data partitions. Then, a server combines
local results. While efficient, this framework
is very sensitive to the quality of subposte-
rior sampling. Common sampling problems
such as missing modes or misrepresentation
of low-density regions are amplified – instead
of being corrected – in the combination phase,
leading to catastrophic failures. In this work,
we propose a novel combination strategy to
mitigate this issue. Our strategy, Parallel Ac-
tive Inference (PAI), leverages Gaussian Pro-
cess (GP) surrogate modeling and active learn-
ing. After fitting GPs to subposteriors, PAI
(i) shares information between GP surrogates
to cover missing modes; and (ii) uses active
sampling to individually refine subposterior
approximations. We validate PAI in challeng-
ing benchmarks, including heavy-tailed and
multi-modal posteriors and a real-world ap-
plication to computational neuroscience. Em-
pirical results show that PAI succeeds where
previous methods catastrophically fail, with
a small communication overhead.

1 INTRODUCTION
Markov Chain Monte Carlo (MCMC) methods have
become a gold standard in Bayesian statistics (Gelman
et al., 2013; Carpenter et al., 2017). However, scaling
MCMC methods to large datasets is challenging due to
their sequential nature and that they typically require
many likelihood evaluations, implying repeated sweeps
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through the data. Various approaches that leverage
distributed computing have been proposed to mitigate
these limitations (Angelino et al., 2016; Robert et al.,
2018). In general, we can split these approaches be-
tween those that incur constant communication costs
and those requiring frequent interaction between server
and computing nodes (Vehtari et al., 2020).

Embarrassingly parallel MCMC (Neiswanger et al.,
2014) is a popular class of methods which employs
a divide-and-conquer strategy to sample from a tar-
get posterior, requiring only a single communication
step. For dataset D and model parameters θ ∈ RD,
suppose we are interested in the Bayesian posterior
p (θ|D) ∝ p(θ)p(D|θ), where p(θ) is the prior and p(D|θ)
the likelihood. Embarrassingly parallel methods be-
gin by splitting the data D into K smaller partitions
D1, . . . ,DK so that we can rewrite the posterior as

p (θ|D) ∝
K∏
k=1

p(θ)1/Kp(Dk|θ) ≡
K∏
k=1

pk(θ). (1)

Next, an MCMC sampler is used to draw samples
Sk from each subposterior pk(θ), for k = 1 . . .K, in
parallel. Then, the computing nodes send the local
results to a central server, for a final aggregation step.
These local results are either the samples themselves
or approximations q1, . . . , qK built using them.

Works in embarrassingly parallel MCMC mostly focus
on combination strategies. Scott et al. (2016) employ a
weighted average of subposterior samples. Neiswanger
et al. (2014) propose using multivariate-normal surro-
gates as well as non-parametric and semi-parametric
forms. Wang et al. (2015) combine subposterior sam-
ples into a hyper-histogram with random partition trees.
Nemeth and Sherlock (2018) leverage density values
computed during MCMC to fit Gaussian process (GP)
surrogates to log-subposteriors. Mesquita et al. (2019)
use subposterior samples to fit normalizing flows and
apply importance sampling to draw from their product.

Despite these advances, parallel MCMC suffers from an
unaddressed limitation: its dependence on high-quality
subposterior sampling. This requirement is especially



Parallel MCMC Without Embarrassing Failures

difficult to meet when subposteriors are multi-modal or
heavy-tailed, in which cases MCMC chains often visit
only a subset of modes and may underrepresent low-
density regions. Furthermore, the surrogates (qk)Kk=1
built only on local MCMC samples might match poorly
the true subposteriors if not carefully tuned.
Outline and contributions. We first discuss the
failure modes of parallel MCMC (Section 2). Draw-
ing insight from this discussion, Section 3 proposes
a novel GP-based solution, Parallel Active Inference
(PAI). After fitting the subposterior surrogates, PAI
shares a subset of samples between computing nodes
to prevent mode collapse. PAI also uses active learning
to refine low-density regions and avoid catastrophic
model mismatch. Section 4 validates our method on
challenging benchmarks and a real-world neuroscience
example. Finally, Section 5 reviews related work and
Section 6 discusses strengths and limitations of PAI.

2 EMBARRASSINGLY PARALLEL
MCMC: HOW CAN IT FAIL?

We recall the basic structure of a generic embarrassingly
parallel MCMC algorithm in Algorithm 1. This schema
has major failure modes that we list below, before
discussing potential solutions. We also illustrate these
pathologies in Fig 1. In this paper, for a function f
with scalar output and a set of points S = {s1, . . . , sN},
we denote with f(S) ≡ {f(s1), . . . , f(sN )}.

Algorithm 1 Generic embarrassingly parallel MCMC
Input: Data partitions D1, . . . ,DK ; prior p(θ); likelihood

function p(D|θ).
1: parfor 1 . . .K do . Parallel steps
2: Sk ←MCMC samples from pk(θ) ∝ p(θ)1/Kp(Dk|θ)
3: build subposterior model qk(θ) from Sk

4: end parfor
5: Combine: q(θ) ∝

∏K

k=1 qk(θ) . Centralized step

2.1 Failure modes
I: Mode collapse. It is sufficient that one subpos-
terior qk misses a mode for the combined posterior q
to lack that mode (see Fig 1A). While dealing with
multiple modes is an open problem for MCMC, here
the issue is exacerbated by the fact that a single failure
propagates to the final solution. A back-of-the-envelope
calculation shows that even if the chance of missing a
mode is small, ε > 0, the probability of mode collapse
in the combined posterior is ≈ (1 − ε)K making it a
likely occurrence for sufficiently large K.

Insight 1: For multimodal posteriors, mode
collapse is almost inevitable unless the comput-
ing nodes can exchange information about the
location of important posterior regions.

II: Catastrophic model mismatch. Since the qk
are approximations of the true subposteriors pk, small
deviations between them are expected – this is not
what we refer to here. Instead, an example of catas-
trophic model mismatch is when a simple parametric
model such as a multivariate normal is used to model a
multimodal posterior with separate modes (see Section
4). Even nonparametric methods can be victims of this
failure. For example, GP surrogates are often used to
model nonparametric deviations of the log posterior
from a parametric ‘mean function’. While these mod-
els can well represent multimodal posteriors, care is
needed to avoid grossly mismatched solutions in which
a qk ‘hallucinates’ posterior mass due to an improper
placement of the GP mean function (Fig 1B).

Insight 2: We cannot take subposterior models
at face value. Reliable algorithms should check
and refine the qk’s to avoid catastrophic failures.

III: Underrepresented tails. This effect is more
subtle than the failure modes listed above, but it con-
tributes to accumulating errors in the estimate of the
combined posterior. The main issue here is that, by
construction, MCMC samples and subposterior models
based on these samples focus on providing information
about the high-posterior-mass region of the subpos-
terior. However, different subposteriors may overlap
only in their tail regions (Fig 1C), implying that the
tails and the nearby ‘deep’ regions of each subposterior
might actually be the most important in determining
the exact shape of the combined posterior.

Insight 3: Subposterior models built only from
MCMC samples (and their log density) can
miss important information about the tails and
nearby regions of the subposterior which would
also contribute to the combined posterior.

2.2 Past solutions
Since there is no guarantee that q approximates well the
posterior p, Nemeth and Sherlock (2018) refine q with
an additional parallel step, called Distributed Impor-
tance Sampler (DIS). DIS uses q as a proposal distribu-
tion and draws samples S ∼ q, that are then sent back
for evaluation of the log density log pk(S) at each paral-
lel node. The true log density log p(S) =

∑
k log pk(S)

is then used as a target for importance sampling/re-
sampling (Robert and Casella, 2013). Technically, this
step makes the algorithm not ‘embarrassingly paral-
lel’ anymore, but the prospect of fixing catastrophic
failures outweighs the additional communication cost.
However, DIS does not fully solve the issues raised in
Section 2.1. Notably, importance sampling will not
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Figure 1: Failure modes of embarrassingly parallel MCMC. A–C. Each column illustrates a distinct
failure type described in Section 2.1. For each column, the top rows show two subposteriors pk(θ) (black dashed
line: ground truth; blue circles: MCMC samples), and the bottom row shows the full posterior p(θ|D) with the
approximate posterior combined using the method specified in the legend (orange line). These failure modes are
general and not unique to the displayed algorithms (see Appendix A for details and further explanations).

help recover the missing regions of the posterior if q
does not cover them in the first place. DIS can help
in some model mismatch cases, in that ‘hallucinated’
regions of the posterior will receive near-zero weights
after the true density is retrieved.

2.3 Proposed solution
Drawing from the insights in Section 2.1, we propose
two key ideas to address the blind spots of embarrass-
ingly parallel MCMC. Here we provide an overview of
our solution, which is described in detail in Section
3. The starting point is modeling subposteriors via
Gaussian process surrogates (Fig 2A).

Sample sharing. We introduce an additional step
in which each node shares a selected subset of MCMC
samples with the others (Fig 2B). This step provides
sufficient information for local nodes to address mode
collapse and underrepresented tails. While this com-
munication step makes our method not strictly ‘em-
barrassingly’ parallel, we argue it is necessary to avoid

posterior density collapse. Moreover, existing methods
already consider an extra communication step (Nemeth
and Sherlock, 2018), as mentioned in Section 2.2.

Active learning. We use active learning as a gen-
eral principle whenever applicable. The general idea is
to select points that are informative about the shape of
the subposterior, minimizing the additional communi-
cation required. Active learning is used here in multiple
steps: when selecting samples from MCMC to build
the surrogate model (as opposed to thinning or ran-
dom subsampling); as a way to choose which samples
from other nodes to add to the current surrogate model
of each subposterior qk (only informative samples are
added); to actively sample new points to reduce un-
certainty in the local surrogate qk (Fig 2C). Active
learning contributes to addressing both catastrophic
model mismatch and underrepresented tails.

Combined, these ideas solve the failure modes discussed
previously (Fig 2D).
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Figure 2: Parallel active inference (PAI). A. Each log subposterior log pk(θ) (black dashed line) is modeled
via Gaussian process surrogates (orange dashed line: mean GP; shaded area: 95% confidence interval) trained
on MCMC samples Sk (blue circles) and their log-density log pk(Sk). Here, MCMC sampling on the second
subposterior has missed a mode. B. Selected subsets of MCMC samples are shared across nodes, evaluated locally
and added to the GP surrogates. Here, sample sharing helps finding the missing mode in the second subposterior,
but the GP surrogate is now highly uncertain outside the samples. C. Subposteriors are refined by actively
selecting new samples (stars) that resolve uncertainty in the surrogates. D. Subposteriors are combined into the
full approximate log posterior (orange line); here a perfect match to the true log posterior (black dashed line).

3 PARALLEL ACTIVE INFERENCE

In this section, we present our framework, which we call
Parallel Active Inference (PAI), designed to address the
issues discussed in Section 2. The steps of our method
are schematically explained in Fig 2 and the detailed
algorithm is provided in Appendix C.

3.1 Subposterior modeling via GP regression

As per standard embarrassingly parallel algorithms, we
assume each node computes a set of samples Sk and
their log density, log pk(Sk), by running MCMC on
the subposterior pk. We model each log-subposterior
Lk(θ) ≡ log qk(θ) using GP regression (Fig 2A; see
Rasmussen and Williams (2006); Nemeth and Sherlock
(2018); Görtler et al. (2019) and Appendix B for more
information). We say that a GP surrogate model is
trained on Sk as a shorthand for (Sk, log pk(Sk)).

When building the GP model of the subposterior, it is
not advisable to use all samples Sk because: (1) exact
inference in GPs scales cubically in the number of train-
ing points (although see Wang et al. (2019)); (2) we
want to limit communication costs when sharing sam-
ples between nodes; (3) there is likely high redundancy
in Sk about the shape of the subposterior. Nemeth and
Sherlock (2018) simply choose a subset of samples by
‘thinning’ a longer MCMC chain at regular intervals.
Instead, we employ active subsampling as follows.

First, we pick an initial subset of n0 samples S(0)
k ⊂ Sk,

that we use to train an initial GP (details in Appendix
C.1). Then, we iteratively select points θ? from Sk by
maximizing the maximum interquantile range (MAX-
IQR) acquisition function (Järvenpää et al., 2021):

θ? = arg max
θ

{
em(θ;S(t)

k
)sinh

(
u · s(θ;S(t)

k )
)}

, (2)

where m(θ;S(t)
k ) and s(θ;S(t)

k ) are, respectively, the
posterior latent mean and posterior latent standard
deviation of the GP at the end of iteration t ≥ 0;
and sinh(z) = (exp(z) − exp(−z))/2 for z ∈ R is the
hyperbolic sine. Eq. 2 promotes selection of points
with high posterior density for which the GP surrogate
is also highly uncertain, with the trade-off controlled by
u > 0, where larger values of u favor further exploration.
In each iteration t + 1, we greedily select a batch of
nbatch points at a time from Sk \ S(t)

k using a batch
version of MAXIQR (Järvenpää et al., 2021). We add
the selected points to the current training set, S(t+1)

k ,
and retrain the GP after each iteration (see Appendix
C.1). After T iterations, our procedure yields a subset
of points S ′k ≡ S

(T )
k ⊆ Sk that are highly informative

about the shape of the subposterior.

3.2 Sample sharing
In this step, each node k shares the selected samples S ′k
with all other nodes (Fig 2B). Thus, node k gains access
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to the samples S ′\k ≡
⋃
j 6=k S ′j . Importantly, S ′\k might

contain samples from relevant subposterior regions that
node k has has not explored. As discussed in Section
3.1, for efficiency we avoid adding all points S ′\k to the
current GP surrogate for subposterior k. Instead, we
add a sample θ? ∈ S ′\k to the GP training set only if
the prediction of the current GP surrogate deviates
from the true subposterior log pk(θ?) in a significant
way (see Appendix C.2 for details). After this step,
we obtain an expanded set of points S ′′k that includes
information from all the nodes, minimizing the risk of
mode collapse (see Section 2.1).

3.3 Active subposterior refinement
So far, the GP models have been trained using selected
subsets of samples from the original MCMC runs. In
this step, we refine the GP model of each subposterior
by sampling new points (Fig 2C). Specifically, each
node k actively selects new points by optimizing the
MAXIQR acquisition function (Eq. 2) over X ⊆ RD
(see Appendix C.3). New points are selected greedily
in batches of size nbatch, retraining the GP after each
iteration. This procedure yields a refined set of points
S ′′′k which includes new points that better pinpoint
the shape of the subposterior, reducing the risk of
catastrophic model mismatch and underrepresented
tails. The final log-subposterior surrogate model Lk is
the GP trained on S ′′′k .

3.4 Combining the subposteriors
Finally, we approximate the full posterior log p (θ|D) =∑K
k=1 log pk(θ) by combining all subposteriors together

(Fig 2D). Since each log-subposterior is approximated
by a GP, the approximate full log-posterior is a sum of
GPs and itself a GP, L(θ) =

∑K
k=1 Lk(θ). Note that

L(θ), being a GP, is still a distribution over functions.
We want then to obtain a point estimate for the (unnor-
malized) posterior density corresponding to expL(θ).
One choice is to take the posterior mean, which leads to
the expectation of a log-normal density (Nemeth and
Sherlock, 2018). We prefer a robust estimate and use
the posterior median instead (Järvenpää et al., 2021).
Thus, our estimate is

q(θ) ∝ exp
{

K∑
k=1

mk(θ;S ′′′k )
}
. (3)

In low dimension (D = 1, 2), Eq. 3 can be evaluated on
a grid. In higher dimension, one could sample from q(θ)
using MCMC methods such as NUTS (Hoffman and
Gelman, 2014), as done by Nemeth and Sherlock (2018).
However, q(θ) is potentially multimodal which does
not lend itself to easy MCMC sampling. Alternatively,
Acerbi (2018) runs variational inference on q(θ) using
as variational distribution a mixture of Gaussians with
a large number of components. Finally, for moderate D,

importance sampling/resampling with an appropriate
(adaptive) proposal would also be feasible.

As a final optional step, after combining the subposte-
riors into the full approximate posterior q(θ), we can
refine the solution using distributed importance sam-
pling (DIS) as proposed by Nemeth and Sherlock (2018)
and discussed in Section 2.2.

3.5 Complexity analysis
Similarly to conventional embarrassingly parallel
MCMC, we can split the cost of running PAI into
two main components. The first consists of local costs,
which involve computations happening at individual
computing nodes (i.e., model fitting and active refine-
ment). The second are global (or aggregation) costs,
which comprise communication and sampling from the
combined approximate posterior.

3.5.1 Model fitting
After sampling their subposterior, each computing node
k has to fit the surrogate model on the subset of their
samples, S ′k. These subsets are designed such that their
size is O(D) (see Appendix C). Thus, the cost of fitting
the surrogate GP models in each of the K computing
nodes is O(D3). The same applies for S ′′k and S ′′′k .

3.5.2 Communication costs
Traditional embarrassingly parallel MCMC methods
only require two global communication steps: (1) the
central server splits the N observations among K com-
puting nodes; (2) each node sends S subposterior sam-
ples of dimension D back to the server, assuming nodes
draw the same number of samples. Together, these
steps amount to O(N +KSD) communication cost.

PAI imposes another communication step, in which
nodes share their subposterior samples and incurring
O(KSD) cost. Furthermore, supposing PAI acquires A
active samples to refine each subposterior, the cost of
sending local results to servers is increased by O(KAD).
PAI also incur a small additional cost for sending back
the value of the GP hyperparameters O(KD). In sum,
since usually A � S, the asymptotic communication
cost of PAI is equivalent to traditional methods.

3.5.3 Active refinement costs
Active learning involves GP training and optimization
of the acquisition function, but only a small number of
likelihood evaluations. Thus, under the embarrassingly
parallel MCMC assumption that likelihood evaluations
are costly (e.g., due to large datasets), active learning
is relatively inexpensive (Acerbi, 2018). More impor-
tantly, as shown in our ablation study in Appendix
D.1, this step is crucial to avoid the pathologies of
embarrassingly parallel MCMC.
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3.5.4 Sampling complexity
Sampling from the aggregate approximate posterior
q(θ) only requires evaluating the GP predictive mean
for each subposterior and does not require access to
the data or all samples. The sampling cost is linear
in the number of subposteriors K and the size of each
GP O(D). Even if K is chosen to scale as the size of
the actual data, each GP only requires a small training
set, making them comparably inexpensive.

4 EXPERIMENTS
We evaluate PAI on a series of target posteriors with
different challenging features. Subsection 4.1 shows re-
sults for a posterior with four distinct modes, which is
prone to mode collapse (Fig 1A). Subsection 4.2 targets
a posterior with heavy tails, which can lead to under-
represented tails (Fig 1C). Subsection 4.3 uses a rare
event model to gauge how well our method performs
when the true subposteriors are drastically different.
Finally, Subsection 4.4 concludes with a real-world ap-
plication to a model and data from computational neu-
roscience (Acerbi et al., 2018). We provide implementa-
tion details in Appendix B.3 and source code is available
at https://github.com/spectraldani/pai.

Algorithms. We compare basic PAI and PAI with
the optional distributed importance sampling step (PAI-
DIS) against six popular and state-of-the-art (SOTA)
embarrassingly parallel MCMC methods: the paramet-
ric, non-parametric and semi-parametric methods by
Neiswanger et al. (2014); PART (Wang et al., 2015);
and two other GP-surrogate methods (Nemeth and
Sherlock, 2018), one using a simple combination of
GPs (GP) and the other using the distributed impor-
tance sampler (GP-DIS; see Section 2.2).

Procedure. For each problem, we randomly split
the data in equal-sized partitions and divide the tar-
get posterior into K subposteriors (Eq. 1). We run
MCMC separately on each subposterior using Stan
with multiple chains (Carpenter et al., 2017). The
same MCMC output is then processed by the differ-
ent algorithms described above, yielding a combined
approximate posterior for each method. To assess the
quality of each posterior approximation, we compute
the mean marginal total variation distance (MMTV),
the 2-Wasserstein (W2) distance, and the Gaussian-
ized symmetrized Kullback-Leibler (GsKL) divergence
between the approximate and the true posterior, with
each metric focusing on different features. For each
problem, we computed ground-truth posteriors using
numerical integration (for D ≤ 2) or via extensive
MCMC sampling in Stan (Carpenter et al., 2017). For
all GP-based methods (PAI, PAI-DIS, GP, GP-DIS),
we sampled from the potentially multimodal combined
GP (Eq. 3) using importance sampling/resampling

with an appropriate proposal. We report results as
mean ± standard deviation across ten runs in which
the entire procedure was repeated with different ran-
dom seeds. For all metrics, lower is better, and the
best (statistically significant) results for each metric are
reported in bold. See Appendix D.2 for more details.

4.1 Multi-modal posterior
Setting. In this synthetic example, the data consist
of N = 103 samples y1, . . . , yN drawn from the follow-
ing hierarchical model:

θ ∼ p(θ) = N (0, σ2
pI2)

y1, . . . , yN ∼ p(yn|θ) =
2∑
i=1

1
2N

(
Pi(θi), σ2

l

)
where θ ∈ R2, σp = σl = 1/4 and Pi’s are second-
degree polynomial functions. By construction, the
target posterior p(θ|y1, . . . , yN ) ∝ p(θ)

∏N
n=1 p(yn|θ) is

multimodal with four modes. We run parallel inference
on K = 10 equal-sized partitions of the data. We
provide more details regarding P1, P2 in Appendix D.3.

Results. Fig 3 shows the output of each parallel
MCMC method for a typical run, displayed as samples
from the approximate combined posterior overlaid on
top of the ground-truth posterior. Due to MCMC oc-
casionally missing modes in subposterior sampling, the
combined posteriors from all methods except PAI lack
at least one mode of the posterior (mode collapse, as
seen in Fig 1A). Other methods also often inappropri-
ately distribute mass in low-density regions (as seen in
Fig 1B). In contrast, PAI accurately recovers all the
high-density regions of the posterior achieving a near-
perfect match. Table 1 shows that PAI consistently
outperforms the other methods in terms of metrics.

Table 1: Multi-modal posterior.
Model MMTV W2 GsKL
Parametric 0.89±0.12 1.08±0.33 8.9±11× 102

Semi-param. 0.81±0.09 1.08±0.12 5.6±1.3× 101

Non-param. 0.81±0.09 1.12±0.09 5.0±1.8× 101

PART 0.55±0.09 1.06±0.33 7.3±14× 102

GP 0.93±0.16 1.01±0.36 1.2±1.3× 104

GP-DIS 0.87±0.18 1.04±0.34 4.8±14× 1016

PAI 0.037±0.011 0.028±0.011 1.6±1.7× 10−4

PAI-DIS 0.034±0.019 0.026±0.008 3.9±2.4× 10−5

Large datasets. To illustrate the computational
benefits of using PAI for larger datasets, we repeated
the same experiment in this section but with 105 data
points in each of the K = 10 partitions. Remarkably,
even for this moderate-sized dataset, we notice a 6×
speed-up – decreasing the total running time from 6
hours to 57 minutes, (50 for subposterior sampling + 7
from PAI; see Appendix D.4). Overall, PAI’s running

https://github.com/spectraldani/pai
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Figure 3: Multi-modal posterior. Each panel shows samples from the combined approximate posterior (red)
against the ground truth (blue). With exception of PAI, all methods completely miss at least one high-density
region. Moreover, PAI is the only method that does not assign mass to regions without modes.

Figure 4: Warped Student’s t. Top: Log marginal
posterior for θ1. Bottom: Log posterior density.
Thanks to active sampling, PAI better captures de-
tails in the depths of the tails.

time is in the same order of magnitude as the previous
SOTA (e.g. Wang et al., 2015; Nemeth and Sherlock,
2018). However, only PAI returns correct results while
other methods fail.

4.2 Warped Student’s t
Setting. We now turn to a synthetic example with
heavy tails. Consider the following hierarchical model:

θ ∼ p(θ) = N (0, σ2
pI2)

y1, . . . , yN ∼ p(yn|θ) = StudentT
(
ν, θ1 + θ2

2, σ
2
l

)

where θ ∈ R2, ν = 5 is the degrees of freedom of
the Student’s t-distribution, σp = 1, and σl =

√
2.

This model is a heavy-tailed variant of the Warped
Gaussian model studied in earlier work, e.g., Nemeth
and Sherlock (2018); Mesquita et al. (2019). As before,
we generate N = 103 samples and split the data into
K = 10 partitions for parallel inference.

Results. Fig 4 shows the full posterior and the
marginal posterior for θ1 obtained using the two best-
performing methods without DIS refinement, PAI and
GP (see Table 2). While PAI(-DIS) is very similiar to
GP(-DIS) in terms of metrics, Fig 4 shows that, unlike
GP(-DIS), PAI accurately captures the far tails of the
posterior which could be useful for downstream tasks,
avoiding failure mode III (Fig 1C).

Table 2: Warped Student’s t.
Model MMTV W2 GsKL
Parametric 0.51±0.01 0.71±0.07 1.9±0.1× 100

Semi-param. 0.50±0.03 0.57±0.05 1.1±0.2× 101

Non-param. 0.51±0.02 0.59±0.03 1.2±0.2× 101

PART 0.66±0.07 0.78±0.09 1.2±0.7× 102

GP 0.015±0.003 0.003±0.002 4.5±10.5× 10−4

GP-DIS 0.018±0.004 0.002±0.001 6.6±5.8× 10−5

PAI 0.015±0.003 0.002±0.001 1.2±0.8× 10−5

PAI-DIS 0.018±0.003 0.002±0.001 3.8±3.4× 10−5

4.3 Rare categorical events
Setting. To evaluate how our method copes with
heterogeneous subposteriors, we run parallel inference
for a synthetic example with Categorical likelihood
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and N = 103 discrete observations split among three
classes. To enforce heterogeneity, we make the first
two classes rare (true probability θ1 = θ2 = 1/N) and
the remaining class much more likely (true probability
θ3 = (N − 2)/N). Since we split the data into K = 10
equal-sized parts, some of them will not contain even
a single rare event. We perform inference over θ ∈ ∆2

(probability 2-simplex) with a symmetric Dirichlet prior
with concentration parameter α = 1/3.
Results. Fig 5 shows the samples from the combined
approximate posterior for each method. In this exam-
ple, PAI-DIS matches the shape of the target posterior
extremely well, followed closely by GP-DIS (see also
Table 3). Notably, even standard PAI (without the
DIS correction) produces a very good approximation of
the posterior – a further display of the ability of PAI of
capturing fine details of each subposterior, particularly
important here in the combination step due to the het-
erogeneous subposteriors. By contrast, the other meth-
ods end up placing excessive mass in very-low-density
regions (PART, Parametric, GP) or over-concentrating
(Non-parametric, Semi-parametric).

Table 3: Rare categorical events.
Model MMTV W2 GsKL
Parametric 0.26±0.14 0.15±0.19 1.1±1.4× 100

Semi-param. 0.49±0.21 0.27±0.23 3.5±3.4× 100

Non-param. 0.43±0.17 0.19±0.25 2.8±3.9× 100

PART 0.31±0.14 0.08±0.13 8.6±10× 10−1

GP 0.16±0.09 0.04±0.07 3.5±4.8× 10−1

GP-DIS 0.011±0.002 6.3±0.9× 10−4 1.1±1.5× 10−4

PAI 0.028±0.027 0.001±0.002 8.0±16× 10−3

PAI-DIS 0.009±0.002 5.4±0.8× 10−4 4.3±2.1× 10−5

4.4 Multisensory causal inference
Setting. Causal inference (CI) in multisensory per-
ception denotes the process whereby the brain decides
whether distinct sensory cues come from the same
source, a commonly studied problem in computational
and cognitive neuroscience (Körding et al., 2007). Here
we compute the posterior for a 6-parameter CI model
given the data of subject S1 from (Acerbi et al., 2018)
(see Appendix D.3 for model details). The fitted model
is a proxy for a large class of similar models that would
strongly benefit from parallelization due to likelihoods
that do not admit analytical solutions, thus requiring
costly numerical integration. For this experiment, we
run parallel inference over K = 5 partitions of the
N = 1069 observations in the dataset.
Results. Table 4 shows the outcome metrics of paral-
lel inference. Similarly to the rare-events example, we
find that PAI-DIS obtains an excellent approximation
of the true posterior, with GP-DIS performing about
equally well (slightly worse on the GsKL metric). De-
spite lacking the DIS refinement step, standard PAI

performs competitively, achieving a reasonably good
approximation of the true posterior (see Appendix D.3).
All the other methods perform considerably worse; in
particular the GP method without the DIS step is
among the worst-performing methods on this example.

Table 4: Multisensory causal inference.
Model MMTV W2 GsKL
Parametric 0.40±0.05 4.8±0.6 1.2±0.4× 101

Semi-param. 0.68±0.07 9.7±9.6 5.6±3.2× 101

Non-param. 0.26±0.02 0.52±0.14 5.3±0.3× 100

PART 0.24±0.04 1.5±0.5 8.0±5.4× 100

GP 0.49±0.25 17±23 6.3±8.9× 101

GP-DIS 0.07±0.03 0.16±0.07 8.7±14× 10−1

PAI 0.16±0.04 0.56±0.21 2.0±1.7× 100

PAI-DIS 0.05±0.04 0.14±0.13 2.9±3.6× 10−1

5 RELATED WORKS
While the main staple of embarrassingly parallel
MCMC is being a divide-and-conquer algorithm, there
are other methods that scale up MCMC using more
intensive communication protocols. For instance, Ahn
et al. (2014) propose a distributed version of stochatic
gradient Langevin dynamics (SGLD, Welling and Teh,
2011) that constantly passes around the chain state to
computing nodes, making updates only based on local
data. However, distributed SGLD tends to diverge
from the posterior when the communications are lim-
ited, an issue highlighted by recent work (El Mekkaoui
et al., 2021; Vono et al., 2022). Outside the realm of
MCMC, there are also works proposing expectation
propagation as a framework for inference on partitioned
data (Vehtari et al., 2020; Bui et al., 2018).

Our method, PAI, builds on top of related work on
GP-based surrogate modeling and active learning for
log-likelihoods and log-densities. Prior work used GP
models and active sampling to learn the intractable
marginal likelihood (Osborne et al., 2012; Gunter
et al., 2014) or the posterior (Kandasamy et al., 2015a;
Wang and Li, 2018; Järvenpää et al., 2021). Recently,
the framework of Variational Bayesian Monte Carlo
(VBMC) was introduced to simultaneously compute
both the posterior and the marginal likelihood (Acerbi,
2018, 2019, 2020). PAI extends the above works by
dealing with partitioned data in the embarrassingly par-
allel setting, similarly to Nemeth and Sherlock (2018),
but with the key addition of active learning and other
algorithmic improvements.

6 DISCUSSION
In this paper, we first exposed several potential ma-
jor failure modes of existing embarrassingly parallel
MCMC methods. We then proposed a solution with
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Figure 5: Rare categorical events. Each ternary plot shows samples from the combined approximate posterior
(red) on top of the true posterior (blue). Note that the panels are zoomed in on the relevant corner of the
probability simplex. Of all methods, PAI is the one that best captures the shape of the posterior.

our new method, parallel active inference (PAI), which
incorporates two key strategies: sample sharing and
active learning. On a series of challenging benchmarks,
we demonstrated that ‘vanilla’ PAI is competitive with
current state-of-the-art parallel MCMC methods and
deals successfully with scenarios (e.g., multi-modal pos-
teriors) in which all other methods catastrophically
fail. When paired with an optional refinement step
(PAI-DIS), the proposed method consistently performs
on par with or better than state-of-the-art. Our results
show the promise of the proposed strategies to deal
with the challenges arising in parallel MCMC. Still, the
solution is no silver bullet and several aspects remain
open for future research.

6.1 Limitations and future work
The major limitation of our method, a common problem
to surrogate-based approaches, is scalability to higher
dimensions. Most GP-based approaches for Bayesian
posterior inference are limited to up to ∼ 10 dimensions,
see e.g. Acerbi, 2018, 2020; Järvenpää et al., 2021.
Future work could investigate methods to scale GP
surrogate modeling to higher dimensions, for example
taking inspiration from high-dimensional approaches in
Bayesian optimization (e.g., Kandasamy et al., 2015b).

More generally, the validity of any surrogate modeling
approach hinges on the ability of the surrogate model to
faithfully represent the subposteriors. Active learning
helps, but model mismatch in our method is still a
potential issue that hints at future work combining
PAI with more flexible surrogates such as GPs with
more flexible kernels (Wilson and Adams, 2013) or
deep neural networks (Mesquita et al., 2019). For the
latter, obtaining the uncertainty estimates necessary

for active learning would involve Bayesian deep learning
techniques (e.g., Maddox et al., 2019).

As discussed before, our approach is not ‘embarrass-
ingly’ parallel in that it requires a mandatory global
communication step in the sample sharing part (see
Section 3.2). The presence of additional communica-
tion steps seem inevitable to avoid catastrophic failures
in parallel MCMC, and has been used before in the
literature (e.g., the DIS step of Nemeth and Sherlock,
2018). Our method affords an optional final refinement
step (PAI-DIS) which also requires a further global
communication step. At the moment, there is no au-
tomated diagnostic to determine whether the optional
DIS step is needed. Our results show that PAI already
performs well without DIS in many cases. Still, future
work could include an analysis of the GP surrogate
uncertainty to recommend the DIS step when useful.
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Supplementary Material:
Parallel MCMC Without Embarrassing Failures

In this Supplement, we include extended explanations, implementation details, and additional results omitted
from the main text.

Code for our algorithm and to generate the results in the paper is available at: https://github.com/
spectraldani/pai.

A Failure modes of embarrassingly parallel MCMC explained
In Section 2.1 of the main text we presented three major failure modes of embarrassingly parallel MCMC (Markov
Chain Monte Carlo) methods. These failure modes are illustrated in Fig 1 in the main text. In this section, we
further explain these failure types going through Fig 1 in detail.

A.1 Mode collapse (Fig 1A)
Fig 1A illustrates mode collapse. In this example, the true subposteriors p1 and p2 both have two modes (see
Fig 1A, top two panels). However, while in p1 the two modes are relatively close to each other, in p2 they are
farther apart. Thus, when we run an MCMC chain on p2, it gets stuck into a single high-density region and is
unable to jump to the other mode (‘unexplored mode’, shaded area). This poor exploration of p2 is fatal to any
standard combination strategy used in parallel MCMC, erasing entire regions of the posterior (Fig 1A, bottom
panel). While in this example we use PART (Wang et al., 2015), Section 4.1 shows this common pathology in
several other methods as well. Our proposed solution to this failure type is sample sharing (see Section C.2).

A.2 Model mismatch (Fig 1B)
Fig 1B draws attention to model mismatch in subposterior surrogates. In this example, MCMC runs smoothly
on both subposteriors. However, when we fit regression-based surrogates – here, Gaussian processes (GPs) –
to the MCMC samples, the behavior of these models away from subposterior samples can be unpredictable.
In our example, the surrogate q2 hallucinates a mode that does not exist in the true subposterior p2 (‘model
hallucination’, shaded area in Fig 1B). Our proposed solution to correct this potential issue is to explore uncertain
areas of the surrogate using active subposterior sampling (see Section C.3).

In this example, we used a simple GP surrogate approach for illustration purposes. The more sophisticated
GP-based Distributed Importance Sampler (GP-DIS; Nemeth and Sherlock (2018)) might seem to provide an
alternative solution to model hallucination, in that the hallucinated regions with low true density would be
down-weighted by importance sampling. However, the DIS step only works if there are ‘good’ samples that cover
regions with high true density that can be up-weighted. If no such samples are present, importance sampling
will not work. As an example of this failure, Fig 3 in the main text shows that GP-DIS (Nemeth and Sherlock,
2018) does not recover from the model hallucination (if anything, the importance sampling step concentrates the
hallucinated posterior even more).

A.3 Underrepresented tails (Fig 1C)
Fig 1C shows how neglecting low-density regions (underrepresented tails) can affect the performance of parallel
MCMC. In the example, the true subposterior p2 has long tails that are not thoroughly represented by MCMC
samples. This under-representation is due both to actual difficulty of the MCMC sampler in exploring the tails,
and to mere Monte Carlo noise as there is little (although non-zero) mass in the tails, so the number of samples
is low. Consequently, the surrogate q2 is likely to underestimate the density in this unexplored region, in which
the other subposterior p1 has considerable mass. In this case, even though q1 is a perfect fit to p1, the product
q1(θ)q2(θ) mistakenly attributes near-zero density to the combined posterior in said region (Fig 1C, bottom panel).
In our method, we address this issue via multiple solutions, in that both sample sharing and active sampling
would help uncover underrepresentation of the tails in relevant regions.

https://github.com/spectraldani/pai
https://github.com/spectraldani/pai
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For further illustration of the effectiveness of our proposed solutions to these failure modes, see Section D.1.

B Gaussian processes
Gaussian processes (GPs) are a flexible class of statistical models for specifying prior distributions over unknown
functions f : X ⊆ RD → R (Rasmussen and Williams, 2006). In this section, we describe the GP model used in
the paper and details of the training procedure.

B.1 Gaussian process model
In the paper, we use GPs as surrogate models for log-posteriors (and log-subposteriors), for which we use the
following model. We recall that GPs are defined by a positive definite covariance, or kernel function κ : X ×X → R;
a mean function m : X → R; and a likelihood or observation model.

Kernel function. For simplicity, we use the common and equivalently-named squared exponential, Gaussian,
or exponentiated quadratic kernel,

κ(x, x′;σ2
f , `1, . . . , `D) = σ2

f exp
[
−1

2 (x− x′) Σ−1
` (x− x′)>

]
with Σ` = diag

[
`2

1, . . . , `
2
D

]
, (S1)

where σf is the output length scale and (`1, . . . , `D) is the vector of input length scales. Our algorithm does not
hinge on choosing this specific kernel and more appropriate kernels might be used depending on the application
(e.g., the spectral mixture kernel might provide more flexibility; see Wilson and Adams, 2013).

Mean function. When using GPs as surrogate models for log-posterior distributions, it is common to assume a
negative quadratic mean function such that the surrogate posterior (i.e., the exponentiated surrogate log-posterior)
is integrable (Nemeth and Sherlock, 2018; Acerbi, 2018, 2019, 2020). A negative quadratic can be interpreted as
a prior assumption that the target posterior is a multivariate normal; but note that the GP can model deviations
from this assumption and represent multimodal distributions as well (see for example Fig 3 in the main text). In
this paper, we use

m(x;m0, µ1, . . . , µD, ω1, . . . , ωD) ≡ m0 −
1
2

D∑
i=1

(xi − µi)2

ω2
i

, (S2)

where m0 denotes the maximum, (µ1, . . . , µD) is the location vector, and (ω1, . . . , ωD) is a vector of length scales.

Observation model. Finally, GPs are also characterized by a likelihood or observation noise model. Throughout
the paper we assume exact observations of the target log-posterior (or log-subposterior) so we use a Gaussian
likelihood with a small variance σ2 = 10−3 for numerical stability.

B.2 Gaussian process inference and training
Inference. Conditioned on training inputs X = {x1, . . . , xN}, observed function values y = f(X) and GP
hyperparameters ψ, the posterior GP mean and covariance are available in closed form (Rasmussen and Williams,
2006),

fX,y(x) ≡ E [f(x)|X,y, ψ] =κ(x,X)
[
κ(X,X) + σ2ID

]−1 (y−m(X)) +m(x)

CX,y(x, x′) ≡ Cov [f(x), f(x′)|X,y, ψ] = κ(x, x′)− κ(x,X)
[
κ(X,X) + +σ2ID

]−1
κ(X, x′),

(S3)

where ψ is a hyperparameter vector for the GP mean, covariance, and likelihood (see Section B.1 above); and ID
is the identity matrix in D dimensions.

Training. Training a GP means finding the hyperparameter vector(s) that best represent a given dataset of input
points and function observations (X,y). In this paper, we train all GP models by maximizing the log marginal
likelihood of the GP plus a log-prior term that acts as regularizer, a procedure known as maximum-a-posteriori
estimation. Thus, the training objective to maximize is

log p(ψ|X,y) =− 1
2 (y−m(X;ψ))>

[
κ(X,X;ψ) + σ2ID

]−1 (y−m(X;ψ))

+ 1
2 log det

(
κ(X,X;ψ) + σ2ID

)
+ log p(ψ) + const,

(S4)

where p(ψ) is the prior over GP hyperparameters, described below.
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Hyperparameter Description Prior distribution

log σ2
f Output scale —

log `(i) Input length scale LogN
(

log
√

D
6 L

(i), log
√

103
)

m0 Mean function maximum SmoothBox (ymin, ymax, 1.0)

x
(i)
m Mean function location SmoothBox

(
B

(i)
min, B

(i)
max, 0.01

)
logω(i) Mean function scale LogN

(
log
√

D
6 L

(i), log
√

103
)

Table S1: Priors over GP hyperparameters. See text for more details

Priors. We report the prior p(ψ) over GP hyperparameters in Table S1, assuming independent priors over each
hyperparameter and dimension 1 ≤ i ≤ D. We set the priors based on broad characteristics of the training set,
an approach known as empirical Bayes which can be seen as an approximation to a hierarchical Bayesian model.
In the table, B is the ‘bounding box’ defined as the D-dimensional box including all the samples observed by the
GP so far plus a 10% margin; L = Bmax −Bmin is the vector of lengths of the bounding box; and ymax and ymin
are, respectively, the largest and smallest observed function values of the GP training set. LogN (µ, σ) denotes
the log-normal distribution and SmoothBox (a, b, σ) is defined as a uniform distribution on the interval [a, b] with
a Gaussian tail with standard deviation σ outside the interval. If a distribution is not specified, we assumed a flat
prior.

B.3 Implementation details
All GP models in the paper are implemented using GPyTorch1 (Gardner et al., 2018), a modern package for
GP modeling based on the PyTorch machine learning framework (Paszke et al., 2019). For maximal accuracy,
we performed GP computations enforcing exact inference via Cholesky decomposition, as opposed to the
asymptotically faster conjugate gradient implementation which however might not reliably converge to the exact
solution (Maddox et al., 2021). For parts related to active sampling, we used the BoTorch2 package for active
learning with GPs (Balandat et al., 2020), implementing the acquisition functions used in the paper as needed.

We used the same GP model and training procedure described in this section for all GP-based methods in the
paper, which include our proposed approach and others (e.g., Nemeth and Sherlock, 2018).

C Algorithm details

Algorithm S1 Parallel Active Inference (PAI)
Input: Data partitions D1, . . . ,DK ; prior p(θ); likelihood function p(D|θ).
1: parfor 1 . . .K do . Parallel steps
2: Sk ← MCMC samples from pk(θ) ∝ p(θ)1/Kp(Dk|θ)
3: S ′

k ← ActiveSubsample(Sk) . See Sections 3.1 and C.1
4: send S ′

k to all other nodes, receive S ′
\k =

⋃
j 6=k
S ′

j . Communication step
5: S ′′

k ← S ′
k ∪ SelectSharedSamples(S ′

k,S ′
\k) . See Sections 3.2 and C.2

6: S ′′′
k ← S ′′

k ∪ ActiveRefinement(S ′′
k ) . See Sections 3.3 and C.3

7: train GP model Lk of the log subposterior on (S ′′′
k , log pk(S ′′′

k ))
8: end parfor
9: combine subposteriors: log q(θ) =

∑K

k=1 Lk(θ) . Centralized step, see Section 3.4
10: Optional: refine log q(θ) with Distributed Importance Sampling (DIS) . See Section 2.2

In this section, we describe additional implementation details for the steps of the Parallel Active Inference (PAI)
algorithm introduced in the main text. Algorithm S1 illustrates the various steps. Each function called by the
algorithm may involve several sub-steps (e.g., fitting interim surrogate GP models) which are detailed in the
following sections.

1https://gpytorch.ai/
2https://botorch.org/

https://gpytorch.ai/
https://botorch.org/
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C.1 Subposterior modeling via GP regression
Here we expand on Section 3.1 in the main text. We recall that at this step each node k ∈ {1, . . . ,K} has run
MCMC on the local subposterior pk, obtaining a set of samples Sk and their log-subposterior values log pk (S).

The goal now is to ‘thin’ the samples to a subset which is still very informative of the shape of the subposterior,
so that it can be used as a training set for the GP surrogate. The rationale is that using all the samples for GP
training is expensive in terms of both computational and communication costs, and it can lead to numerical
instabilities. In previous work, Nemeth and Sherlock (2018) have used random thinning which is not guaranteed
to keep relevant parts of the posterior.3

The main details that we cover here are: (1) how we pick the initial subset of samples S(0)
k ⊆ Sk used to train the

initial GP surrogate; (2) how we subsequently perform active subsampling to expand the initial subset to include
relevant points from Sk.

Initial subset: To bootstrap the GP surrogate model, we use a distance clustering method to select the
initial subset of samples that we use to fit a first GP model. As this initial subset will be further refined, the
main characteristic for selecting the samples is for them to be spread out. For our experiments, we choose
a simple k-medoids method (Park and Jun, 2009) with nmed = 20 · (D + 2) medoids implemented in the
scikit-learn-extras library4. The output nmed medoids represent S(0)

k .

Active subsampling: After having selected the initial subset S(0)
k , we perform T iterations of active subsampling.

In each iteration t+ 1, we greedily select a batch of nbatch points from the set Sk \ S(t)
k obtained by maximizing a

batch version of the maximum interquantile range (MAXIQR) acquisition function, as described by Järvenpää
et al. (2021); see also main text. The MAXIQR acquisition function has a parameter u which controls the tradeoff
between exploitation of regions of high posterior density and exploration of regions with high posterior uncertainty
in the GP surrogate. To strongly promote exploration, after a preliminary analysis on a few toy problems, we set
u = 20 throughout the experiments presented in the paper. In the paper, we set nbatch = D and the number
of iterations T = 25, based on a rule of thumb for the total budget of samples required by similar algorithms
to achieve good performance at a given dimension (e.g., Acerbi 2018; Järvenpää et al. 2021). The GP model is
retrained after the acquisition of each batch. The procedure locally returns a subset of samples S ′k = S(T )

k .

C.2 Sample sharing
In this section, we expand on Section 3.2 of the main text. We recall that at this step node k receives samples
S ′\k =

⋃
j 6=k S ′j from the other subposteriors. To avoid incorporating too many data points into the local surrogate

model (for the reasons explained previously), we consider adding a data point to the current surrogate only if: (a)
the local model cannot properly predict this additional point; and (b) predicting the exact value would make a
difference. If the number of points that are eligible under these criteria is greater than nshare, the set is further
thinned using k-medoids.

Concretely, let θ? ∈ S ′\k be the data point under consideration. We evaluate the true subposterior log density
at the point, y? = log pk(θ?), and the surrogate GP posterior latent mean and variance at the point, which are,
respectively, µ? = f(θ?) and σ2

? = C(θ?, θ?). We then consider two criteria:

a. First, we compute the density of the true value under the surrogate prediction and check if it is above a
certain threshold: N

(
log y?;µ?, σ2

?

)
> R, where R = 0.01 in this paper. This criterion is roughly equivalent

to including a point only if |µ? − y?| & R′σ?, for an appropriate choice of R′ (ignoring a sublinear term in
σ?), implying that a point is considered for addition if the GP prediction differs from the actual value more
than a certain number of standard deviations.

b. Second, if a point meets the first criterion, we check if the value of the point is actually relevant for the
surrogate model. Let ymax be the maximum subposterior log-density observed at the current node (i.e.,
approximately, the log-density at the mode). We exclude a point at this stage if both the GP prediction and
the true value y? are below the threshold ymax − 20D, meaning that the point has very low density and the
GP correctly predicts that it is very low density (although might not predict the exact value).

3Note that instead of thinning we could use sparse GP approximations (e.g., Titsias, 2009). However, the interaction
between sparse GP approximations and active learning is not well-understood. Moreover, we prefer not to introduce an
additional layer of approximation that could reduce the accuracy of our subposterior surrogate models.

4https://github.com/scikit-learn-contrib/scikit-learn-extra

https://github.com/scikit-learn-contrib/scikit-learn-extra
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Each of the above criteria is checked for all points in S ′\k in parallel (the second criterion only for all the points
that pass the first one). Note that the second criterion is optional, but in our experiments we found that it
increases numerical stability of the GP model, removing points with very low (log) density that are difficult for
the GP to handle (for example, Acerbi (2018); Järvenpää et al. (2021) adopt a similar strategy of discarding very
low-density points). More robust GP kernels (see Section B.1) might not need this additional step.

If the number of points that pass both criteria for inclusion is larger than nshare, then k-medoids is run on the set
of points under consideration with nshare medoids, where nshare = 25D. The procedure run at node k locally
returns a subset of samples S ′′k .

C.3 Active subposterior refinement
Here we expand on Section 3.3 of the main text. We recall that up to this point, the local GP model of the
log-subposterior at node k was trained only using selected subset of samples from the original MCMC runs (local
and from other nodes), denoted by S ′′k .

In this step, each node k locally acquires new points by iteratively optimizing the MAXIQR acquisition function
(Eq. 2 in the main text) over a domain X ⊆ RD. For the first iteration, the space X is defined as the bounding
box of

⋃
k S ′k plus a 10% margin. In other words, X is initially the hypercube that contains all samples from all

subposteriors obtained in the sample sharing step (Section C.2) extended by a 10% margin. The limits of X
at the first iteration are computed during the previous stage, without any additional communication cost. In
each subsequent iteration, X is iteratively extended to include the newly sampled points plus a 10% margin, thus
expanding the bounding box if a recently acquired point falls near the boundary.

New points are selected greedily in batches of size nbatch = D, using the same batch formulation of the MAXIQR
acquisition function used in Section C.1. The local GP surrogate is retrained at the end of each iteration, to
ensure that the next batch of points targets the regions of the log-subposterior which are most important to
further refine the surrogate. For the purpose of this work, we repeat the process for Tactive = 25 iterations,
selected based on similar active learning algorithms (Acerbi et al., 2018; Järvenpää et al., 2021). Future work
should investigate an appropriate termination rule to dynamically vary the number of iterations.

The outcome of this step is a final local set of samples S ′′′k and the log-subposterior GP surrogate model Lk
trained on these samples. Both of these are sent back to the central node for the final combination step.

D Experiment details and additional results
In this section, we report additional results and experimental details omitted from the main text for reasons of
space.

D.1 Ablation study
As an ablation study, Fig S1 breaks down the effect of each step of PAI in the multi-modal posterior experiment
from Section 4.1 of the main text. The first panel shows the full approximate posterior if we were combining
it right after active subsampling (Section C.1), using neither sample sharing nor active refinement. Note that
this result suffers from Failure mode I (mode collapse; see Section A.1), as active subsampling only on the local
MCMC samples is not sufficient to recover the missing modes. The second panel incorporates sample sharing,
which covers the missing regions but now suffers from Failure mode II (model mismatch; see Section A.2) with an
hallucinated mode in a region where the true posterior has low density. Finally, the third panel shows full-fledged
PAI, which further applies active sampling to explore the hallucinated mode and corrects the density around it.
The final result of PAI perfectly matches the ground truth (as displayed in the fourth panel).

D.2 Performance evaluation
In this section, we describe in detail the metrics used to assess the performance of the methods in the main text,
how we compute these metrics, and the related statistical analyses for reporting our results.

Metrics. In the main text, we measured the quality of the posterior approximations via the mean marginal
total variation distance (MMTV), 2-Wasserstein (W2) distance, and Gaussianized symmetrized Kullback-Leibler
divergence (GsKL) between true and appoximate posteriors. For all metrics, lower is better. We describe the
three metrics and their features below:
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Figure S1: Ablation study for PAI on the multi-modal posterior. From left to right: The first panel
shows the approximate combined posterior density for our method without sample sharing and active learning;
the second panel uses an additional step to share samples (but no active refinement); the third shows results for
full-fledged PAI. The rightmost plot is the ground truth posterior. Note that both sample sharing and active
refinement are important steps for PAI: sample sharing helps account for missing posterior regions while active
sampling corrects model hallucinations (see text for details).

• The MMTV quantifies the (lack of) overlap between true and approximate posterior marginals, defined as

MMTV(p, q) = 1
2D

D∑
d=1

∫ ∞
−∞

∣∣pM
d (xd)− qM

d (xd)
∣∣ dxd (S5)

where pM
d and qM

d denote the marginal densities of p and q along the d-th dimension. Eq. S5 has a direct
interpretation in that, for example, a MMTV metric of 0.5 implies that the posterior marginals overlap by
50% (on average across dimensions). As a rule of thumb, we consider a threshold for a reasonable posterior
approximation to be MMTV < 0.2, that is more than 80% overlap.

• Wasserstein distances measure the cost of moving amounts of probability mass from one distribution to
the other so that they perfectly match – a commonly-used distance metric across distributions. The W2
metric, also known as earth mover’s distance, is a special case of Wasserstein distance that uses the Euclidean
distance as its cost function. The W2 distance between two density functions p and q, with respective
supports X and Y is given by

W2(p, q) =
[

inf
T∈T

∫
x∈X

∫
y∈Y
‖x− y‖2T (x, y) dx dy

] 1
2

, (S6)

where T denotes the set of all joint density functions over X ×Y with marginals exactly p and q. In practice,
we use empirical approximations of p and q to compute the W2, which simplifies Eq. S6 to a linear program.

• The GsKL metric is sensitive to differences in means and covariances, being defined as

GsKL(p, q) = 1
2 [DKL (N [p]||N [q]) +DKL(N [q]||N [p])] , (S7)

where DKL (p||q) is the Kullback-Leibler divergence between distributions p and q and N [p] is a multivariate
normal distribution with mean equal to the mean of p and covariance matrix equal to the covariance of p
(and same for q). Eq. S7 can be expressed in closed form in terms of the means and covariance matrices of
p and q. For reference, two Gaussians with unit variance and whose means differ by

√
2 (resp., 1

2 ) have a
GsKL of 1 (resp., 1

8 ). As a rule of thumb, we consider a desirable target to be (much) less than 1.

Computing the metrics. For each method, we computed the metrics based on samples from the combined
approximate posteriors. For methods whose approximate posterior is a surrogate GP model (i.e., GP, GP-DIS,
PAI, PAI-DIS in the paper), we drew samples from the surrogate model using importance sampling/resampling
(Robert and Casella, 2013). As proposal distribution for importance sampling we used a mixture of a uniform
distribution over a large hyper-rectangle and a distribution centered on the region of high posterior density (the
latter to increase the precision of our estimates). We verified that our results did not depend on the specific
choice of proposal distribution.
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Statistical analyses. For each problem and each method, we reran the entire parallel inference procedure ten
times with ten different random seeds. The same ten seeds were used for all methods – implying among other
things that, for each problem, all methods were tested on the same ten random partitions of the data and using the
same MCMC samples on those partitions. The outcome of each run is a triplet of metrics (MMTV, W2, GsKL)
with respect to ground truth. We computed mean and standard deviation of the metrics across the ten runs,
which are reported in tables in the main text. For each problem and metric, we highlighted in bold all methods
whose mean performance does not differ in a statistically significant way from the best-performing method.
Since the metrics are not normally distributed, we tested statistical significance via bootstrap (nbootstrap = 106

bootstrapped datasets) with a threshold for statistical significance of α = 0.05.

D.3 Model details and further plots
We report here additional details for some of the models used in the experiments in the main paper, and plots for
the experiment from computational neuroscience.

Multi-modal posterior. In Section 4.1 of the main text we constructed a synthetic multi-modal posterior
with four modes. We recall that the generative model is

θ ∼ p(θ) = N (0, σ2
pI2)

y1, . . . , yN ∼ p(yn|θ) =
2∑
i=1

1
2N

(
yn;Pi(θi), σ2

l

)
where θ ∈ R2, σp = σl = 1/4 and Pi’s are second-degree polynomial functions. To induce a posterior with
four modes, we chose P1(θ1) and P2(θ2) to be polynomials with exactly two roots, such that, when the ob-
servations are drawn from the full generative model in Eq. D.3, each root will induce a local maximum of
the posterior in the vicinity of the root (after considering the shrinkage effect of the prior). The polynomi-
als are defined as P1(x) = P2(x) = (0.6 − x)(−0.6 − x), so the posterior modes will be in the vicinity of
θ? ∈ {(0.6, 0.6), (−0.6, 0.6), (0.6,−0.6), (−0.6,−0.6)}.

Multisensory causal inference. In Section 4.4 of the main text, we modeled a benchmark visuo-vestibular
causal inference experiment (Acerbi et al., 2018; Acerbi, 2020) which is representative of many similar models and
tasks in the fields of computational and cognitive neuroscience. In the modeled experiment, human subjects, sitting
in a moving chair, were asked in each trial whether the direction of movement svest matched the direction svis of a
looming visual field. We assume subjects only have access to noisy sensory measurements zvest ∼ N

(
svest, σ

2
vest
)
,

zvis ∼ N
(
svis, σ

2
vis(c)

)
, where σvest is the vestibular noise and σvis(c) is the visual noise, with c ∈ {clow, cmed, chigh}

distinct levels of visual coherence adopted in the experiment. We model subjects’ responses with a heuristic
‘Fixed’ rule that judges the source to be the same if |zvis − zvest| < κ, plus a probability λ of giving a random
response (Acerbi et al., 2018). Model parameters are θ = (σvest, σvis(clow), σvis(cmed), σvis(chigh), κ, λ), nonlinearly
mapped to R6. In the paper, we fit real data from subject S1 of (Acerbi et al., 2018). Example approximate
posteriors for the PAI-DIS and GP-DIS methods, the best-performing algorithms in this example, are shown in
Fig S2.

D.4 Scalability of PAI to large datasets
In the main paper, as per common practice in the field, we used moderate dataset sizes (∼10k data points) to
easily calculate ground truth. This choice bears no loss of generality because increasing dataset size only makes
subposteriors sharper, which does not increase the difficulty of parallel inference (although more data would not
necessarily resolve multimodality, e.g. due to symmetries of the model). On the other hand, small datasets make
the reporting of run-times not meaningful, as they are dominated by overheads.

To assess the performance of PAI on large datasets, we ran PAI on the model of Section 4.1, but now with 1
million data points (K = 10 partitions). Average metrics for PAI were excellent and similar to what we had
before: MTV = 0.009, W2 = 0.005, GKL = 2e-05, while all other methods still failed. Moreover, run-times for
this experiment illustrate the advantages of using PAI in practice.

We ran experiments using computers equipped with two 8-core Xeon E5 processors and 16GB or RAM each.
Here, the total time for parallel inference was 57 minutes — 50 for subposterior MCMC sampling + 7 for all PAI
steps. By contrast, directly running MCMC on the whole dataset took roughly 6 hours.
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Figure S2: PAI-DIS and GP-DIS on the multisensory causal inference task. Each panel shows two-
dimensional posterior marginals as samples from the combined approximate posterior (red) against the ground
truth (blue). While PAI-DIS (top figure) and GP-DIS (bottom figure) perform similarly in terms of metrics,
PAI-DIS captures some features of the posterior shape more accurately, such as the ‘boomerang’ shape of the θ3
marginals (middle row).


