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Abstract: To investigate the fatigue performance of vertical web stiffener to deck plate welded joints
in weathering steel box girders, six specimens of the weathering steel (WS) Q345qNH, four specimens
of WS Q420qNH, and four specimens of the plain carbon steel (CS) Q345q for comparison were
tested by a vibratory fatigue testing machine, considering different steel grades, yield strengths,
stiffener plate thicknesses, and weld types. The fatigue strength was evaluated based on S-N curves
and the crack propagation was analyzed by linear elastic fracture mechanics (LEFM). The results
show that the fatigue crack of the welded joints was initiated from the end weld toe of the deck
plate and subsequently propagated both along the thickness of the deck plate and in the direction
perpendicular to the stiffener plate. The fatigue crack initiation and propagation life of WS Q345qNH
specimens were longer than those of CS Q345q specimens. The fatigue crack propagation life of WS
Q345qNH specimens was longer than that of WS Q420gNH specimens, while the initiation life bore
little relationship to the yield strength. Increasing the stiffener plate thickness effectively delayed
crack initiation and slowed down its propagation. Compared with fillet welds, full penetration welds
extended the fatigue crack propagation life, while no significant improvement was implied for the
initiation life. The WS and CS specimens could be classified as having the same fatigue strengths
by nominal stress, hot spot stress, and effective notch stress approaches, which were FAT 50, FAT
100, and FAT 225, respectively. Meanwhile, their material constants for LEFM were relatively close
to each other.

Keywords: weathering steel; welded joints; fatigue performance; fatigue tests; numerical analysis

1. Introduction

Weathering steels (WS) are low-alloy steels with the addition of alloying elements, such
as Cu, Cr, Ni, P, Si, and Mn. The introduction of those alloying elements can facilitate the
formation of a dense and strongly adherent rust layer during wet/dry cycles. Compared to
plain carbon steels (CS), the corrosion resistance of WS is enhanced due to the protective rust
layer [1-4]. This contributes to the application for WS in bridge structures (e.g., orthotropic
steel decks) (Figure 1).

The fatigue performance of WS has been investigated by many researchers. In the as-
pect of material fatigue of WS, Chen et al. [5] obtained the fatigue limit and the crack growth
rates of ASTM A709 HPS 485W steel through testing on flat sheet specimens and single-
edged tension specimens. Su et al. [6] investigated the fatigue crack growth thresholds and
fatigue crack growth rate parameters of Q345qDNH steel by compact tension specimens.
For constructional details of WS, Albrecht et al. [7,8] carried out fatigue tests of a transverse
stiffener detail to determine the effect of weathering time and exposure conditions on the
fatigue life. Yamada and Kikuchi [9] examined the fatigue behavior of weathered transverse
stiffener specimens and longitudinal gusset specimens. Su et al. [10,11] conducted fatigue
tests of uncorroded butt joints and fillet welded joints to obtain the S-N curves, and dis-
cussed initial crack parameters for the numerical simulation of fatigue crack propagation.
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For structural components of WS, Albrecht et al. [12,13] explored the effect of exposure
conditions and testing environments on the fatigue behavior of rolled or welded I-beams.
Sause et al. [14] provided the design S-N curve and fatigue limit of uncorroded corrugated
web I-girders. Vertical web stiffener to deck plate welded joints, as a typical detail in steel
box girder bridges, are vulnerable to fatigue cracking [15,16]. When wheel loads act on
them, bending stress is generated in the deck plate and stress concentration is caused at
the end weld. This stress state is different from that of welded joints with longitudinal
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The methods of fatigue analysis mainly include S-N curve methods and fracture me-
chanics methods. In S-N curve methods, structural details are classified into several or
single fatigue strength categories represented by certain S-N curves. According to the ref-
erence stress, S-N curve methods can be divided into the nominal stress approach, the hot
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four specimens of WS Q420qNH, and four specimens of CS Q345q for comparison were
tested by a vibratory fatigue testing machine, considering different steel grades, yield
strengths, stiffener plate thicknesses, and weld types. Cyclic bending stress in the deck
plate was applied to simulate the action of wheel loads. After that, the fatigue strength was
evaluated with the nominal stress approach, the hot spot stress approach, and the notch
stress approach, respectively. The fatigue crack propagation was analyzed by linear elastic
fracture mechanics (LEFM) as well. Stress intensity factors were computed by the extended
finite element method (XFEM). The fatigue crack propagation rates were obtained. And
the material constants of fatigue crack propagation were estimated.

2. Materials, Methods and Experiments
2.1. Specimens

As shown in Table 1, 14 test specimens of vertical web stiffener to deck plate welded
joints were designed and fabricated. Among them, W stood for WS specimens and C for
CS specimens. To examine the relationship between structural parameters and fatigue
performance, the varied parameters included steel grades, yield strengths, stiffener plate
thicknesses, and weld types. The chemical compositions of the steel grades are listed
in Table 2.

Table 1. Parameters of test specimens.

Specimen Steel Grade Deck Plate Stiffener Plate Nominal Stress
4 No (23] Thickness Thickness Weld Type Range Stress Ratio
) t (mm) b (mm) (MPa)

Wi1-1
W12 Q345qNH 12 12 fillet weld 80 -1
Ww2-1 full penetration

345qNH P 3
W2-2 Q345q 12 12 weld 80 1
W3-1
W32 Q420gNH 12 12 fillet weld 80 -1
W4-1 full penetration

420gNH p -
W42 Q420q 12 12 weld 80 !
Wb5-1 full penetration

345qNH P 3
W5-2 Q345q 12 8 weld 80 1
C1-1
C1-2 Q345¢q 12 12 fillet weld 80 -1
C2-1 full penetration
22 Q345q 12 12 o 80 1

Table 2. Chemical compositions of steel grades. (Mass fraction wt. %).

Steel Grade C Si Mn P S Als Ni Cu Mo Ti Nb Cr Fe
Q345qNH 0.055 0.26 1.39 0.012  0.0035  0.034 Total 1.001 Bal.
Q420qNH 0.055 0.35 1.55 0.020 0.003 0.025 Total 1.187 Bal.

Q345q 0.150 0.30 1.46 0.013  0.0036  0.041 Total 0.182 Bal.

Figure 2 shows the configuration of the test specimens, where the holes with a radius
of 12 mm were used to fix the specimens to a pedestal and those with a radius of 7 mm
were for installing a vibration motor. The specimens were processed by CO, welding. After
welding, magnetic particle flaw detection and ultrasonic flaw detection were carried out to
ensure the welding quality.



Uk JUIY

VoY 4 STV VU oY UW/WYYUY Urus x4 A4 YUVAYUYED &~ LA

Materials 2022, 15, 6974

Fhigue@2hbowshbe cofifiguativorod tihedsst ppeinmeasswhberdlthdbideswvittthna addiys
06fl 22mamvweezangsdd ottt il es ppeiimeans danappddstibhaddttbesewitithaaraddie 06 7 7nmam
weeed boinptitlihing a/ibbativonmmeaser Thee ppenimen sweeepooesssdblyy(CDvwebdding AAL-
téervwhliding nmagotid ppatidkle i awddatetivarnanduldtassaid dilanddetetivanweesacat gl

oot téeensredhbevetddinggualitiyy .

309

RAYAY

A

Shifif¢anepidate :

ol 09 00 pRa2 RR7 =

2 o ey, T T

Sl 1 e TR L

WERd  Dcklphlae B o =

‘ 001000 3335 || 1460 s
w00 || sae0 | 7000
(4p) (16b)

FRe il arplions s hpReliman vy @ R s (b prvidery-

5@@%@@%@%@&%@5%@%@%@@&%@&@%%@%@

o bﬁmmm&mmm@@mammﬁmmm

Control system

Specimen F, S
Specimen =
" "\ Vibration
motor

2.3. Instrumentation

Strain gauges were used to monitor the strain history throughout fatigue crack initia-
tion and propagation. Their arrangement is illustrated in Figure 4. Strain gauges NS1 and
NS2 were set for measuring the nominal strain. The stress where they were attached was
found to be equal to that at the end weld of the joints without a vertical stiffener, which
excluded geometric stress concentration due to the vertical stiffener [24]. Strain gauges HS1
and HS2 were for obtaining the hot spot stress. They were located 5 mm and 12 mm from
the end weld toe, in accordance with the recommendations of the type a hot spot linear
extrapolation by the International Institute of Welding (IIW) [20]. The nominal stress range
A0nom and the hot spot stress range Aoy are calculated by:

Aonom = E - (Aenst + Aens2) /2, (1)
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HS1 and HS2 were for obtaining the hot spot stress. They were located 5 mm and 12 mm
from the end weld toe, in accordance with the recommendations of the type a hot spot
linear extrapolation by the International Institute of Welding (IIW) [20]. The nominal
stress range AO,

om

and the hot spot stress range A0, are calculated by:
50f23
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were taken as NV, , N,,, and N,,, respectively. After the E to F (E’ to F') wire got dis-
connected, fatigue testing was terminated.

2.4.2. Beach Mark Testing

— v . . A



the end weld.

When the crack was initiated at the end weld and broke the enameled wire connect-
ing A to A’, the number of cycles was recorded as N, . Similarly, when the crack propa-
Materials 2022, 15, 6974 gated to the edges of the weld and subsequently 10 mm, 30 mm away to break the wites
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3.2. Stress Range

Figures 8 and 9 show the variation of the stress range throughout the fatigue tests.
For all the specimens except W1-2, W4-2, and C2-1, the stress range at H51 and HS2 was

firet ckable and went down thereaffer The decreace in the <trece ranoe at HST1 and HSD
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3.2. Stress Range

Figures 8 and 9 show the variation of the stress range throughout the fatigue tests.
For all the specimens except W1-2, W4-2, and C2-1, the stress range at HS1 and HS2 was
first stable and went down thereafter. The decrease in the stress range at HS1 and HS2
resulted from the stress release in the vicinity of HS1 and HS2 after the fatigue crack was
initiated from the end weld. The stress range at NS1 and NS2 showed a process of being
stable first and rising afterwards. It was because the stiffness of the deck plate cross section
was reduced due to the cracking and that the load on both sides increased consequently.
For W1-2, W4-2, and C2-1, the stress range at HS1 rose slightly before its decrease. It was
found that the fatigue crack was initiated from the side of the end weld toe but not the
center, see the beach marks in Figure 10. The local stiffness was reduced, and the load
distributed in the adjacent region increased. Therefore, the stress range at HS1 went up to
some degree. It was reasonable to infer that the crack initiation of C2-1 was similar to that
of W1-2 and W4-2.

It can be seen that the stress range at HS1 changed most with the number of cycles
among the data at different gauges, which indicated that it was highly sensitive to cracking.
The first inflection point of the stress range versus number of cycles curve of HS1 was
designated as N, representing the fatigue crack initiation life. The wire connecting A to A’
at the end weld was spaced about 1.5 mm apart. It wouldn’t be broken until the fatigue
crack grew long enough. Nioe was generally later than N¢,. For that reason, N, was taken
for the determination of the fatigue crack initiation life.

According to the stress range versus number of cycles curve of HS1, the fatigue testing
could be divided into three stages. They were as follows. Stage I was the period from the
start to N¢r, where the crack was gradually initiated but the stress range remained stable.
Stage Il was from N to Ny, where the crack grew rapidly and caused the stress range to
fall sharply. Stage IIl was from N}, to N3g. In this stage, the crack growth became slow and
the stress range decreasing also slowed down. The total number of cycles of stage I and II
was designated as Ncp, representing the fatigue crack propagation life. N3y denotes the
total test life. It should be noticed that the stress range at HS1 mainly implied the fatigue
cracking along the depth.
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of stage I and II was designated as N, representing the fatigue crack propagation life.
N,, denotes the total test life. It should be noticed that the stress range at HS1 mauibp
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specimens was longer than that of WS Q420qNH specimens, while the initiation life bore
little relationship to the yield strength. Increasing the thickness of the stiffener plate
from 8 mm to 12 mm effectively delayed fatigue crack initiation and slowed down its
propagation. Compared with fillet welds, full penetration welds extended the fatigue crack
propagation life, but no significant improvement was implied for the initiation life.

Table 4. Comparison of fatigue life.

Structural Parameter Ner Ncp N3p
Steel grade W1>C1 W1>Cl1 W1>Cl1
& W2 >C2 W2 > C2 W2 >C2
. W1>W3 W1 > W3 W1 > W3
Yield strength W2 < W4 W2 > Wi W2 > Wi
Stiffener plate thickness W2 > W5 W2 > W5 W2 > W5
W1>W2 W1<W2 W1>W2
Weld type W3 < W4 W3 < W4 W3 < W4
C1~C2 Cl<(C2 Cl<C2

3.4. Fatigue Crack Propagation Characteristics

Figure 10 shows beach marks on the fracture surfaces. N denotes the number of cycles
of fatigue loading which excludes }_ Ngy; i, and N is for the first dark band of the beach
marks. Except for W3-2, radial steps were clearly visible on the fracture surface, which were
overlaps of the cracks growing in slightly different planes. Therefore, it could be inferred
that there were multiple crack nuclei. As for W3-2, the first dark band of the beach marks
presented two adjacent semi-ellipses, suggesting two main crack nuclei. At the early stage
of cracking, the shapes of beach marks were asymmetric, and their centers were located
near the edge of the weld. This was probably due to the differences in propagation rates of
cracking towards both sides of the stiffener plate. With the crack propagating, the shapes of
the beach marks grew to be a single semi-ellipse. Their centers also gradually approached
the centerline of the stiffener plate.

Figure 11 shows the fatigue crack propagation characteristics of the specimens. The
depth and width of cracks are denoted as @ and 2c. The thickness and width of the deck plate
are denoted as f and w. The cracking of W1-2 and W4-2 was much later than that of the other
specimens. Nevertheless, the trends of crack propagating along the depth and width were
coincident for all the specimens. The crack depth first increased nearly linearly, and after it
reached about 0.65¢, its growth rate slowed down. While the crack width kept increasing
approximately linearly throughout. The aspect ratio a/c of W4-2 decreased monotonically.
As for the other specimens, a/c fluctuated at the early stage of crack propagation, which
was possibly related to multiple crack nuclei. Afterwards it went down, which indicated
that the crack grew faster in the direction of the width than along the depth and that the
shape of the crack tended to be slender. When the fatigue tests were finished, a, 2c, and a/c
of the WS specimens reached (0.79~0.87)t, (0.32~0.35)w, and 0.19~0.21, respectively, and
those of the CS specimens were (0.77~0.79)t, 0.32w, and 0.19~0.20. It should be noted that a
of the first band of the beach marks was 1.5~2.5 mm and not accurate enough to track the
very early crack initiation, for which further investigations were still needed. Moreover,
the question of how steel grades and yield strengths influence the fatigue strength remains
to be answered through microstructural and fractographic analysis [25].
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the mean. Then, fatigue strength Wegqlg@tedmlslgg&he S-N curve determined by x,(3)

where N, Ao, and m denote the number of cycles, the stress range, and the slope of the curve,
respectively; C is the constant reflecting fatigue resistance. Since the sample was small
and the number of cycles in the fatigue tests was less than 10 million, m was taken as the
value 3. A log-normal distribution was assumed. (1gC); was calculated from (Np, A0nom);
or (Np, Aoys);, where i is a rank number. With x denoting 1gC, the characteristic value xy
was obtained by Equation (4) [26], which is at 95% survival probability and calculated from
the mean based on a two-sided confidence level of 75%. In Equation (4), x and Stdv are
the mean and the standard deviation of fatigue data respectively; k is a factor related to the
sample size, survival probability, and confidence level of the mean. Then, fatigue strength
was estimated using the 5-N curve determined by xy.

X = Xm — k- Stdv 4)

Table 5 shows the results of the statistical evaluation. With the nominal stress approach
and the hot spot stress approach, the fatigue strength of the WS specimens was 39 MPa and
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element size was 5 mm. Besides, a mesh transition was used in the vicinity of the notch.
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h (mm) [ (mm) Specimen No. h (mm) [ (mm)

W1-2 9.8 14.5 C1-1 7.8 11.3
W2-1 10.0 12.8 C1-2 10.2 12.2
) W3-1 11.0 12.0 C2-1 11.2 12.6
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of FAT 225 was found to be still applicable to the WS and CS specimens.
4.2.2. Results and Analysis

The results of effective notch stress analysis were compared with the S-N curve for
a 1 mm reference radius by IIW, as shown in Figure 15. When N, was used to define
fatigue failure, the fatigue strength of the WS specimens reached FAT 225, but that of the
CS specimens was below FAT 225. When Ny, was used, the fatigue strength of both groups
of the specimens reached FAT 225. To keep it consistent with the nominal stress approach
and the hot spot stress approach, Ny, was taken as fatigue failure. The fatigue strength of
FAT 225 was found to be still applicable to the WS and CS specimens.

Similar statistical evaluation was conducted as that in the nominal stress and hot spot
stress analysis. The results are summarized in Table 7. The fatigue strength of the WS
specimens and the CS specimens was 278 MPa and 304 MPa, respectively. Moreover, the
differences in xm, and xy between the two groups indicated a similar effect of the scatter on
fatigue strength estimation as above mentioned.



Materials 2022, 15, x FOR PEER REVIEW 17 of 23

Materiagls 2022 15 6974 17 of 23
1000 ey
800 £
- D ve ]
600 | o\8 e Ty @ TR, ;
i . me vO ]
o i
s [ wc
¢ 400F = © N, .
< ¢ o N
Nb
vy vV Ny FAT 225
* O N,
200 e SRS
1 10 100 1000
Number of cycles (x10%)

Figure 15, Comparison of fatigue data with S-N eurve for effective notch stress range.

Tabledt, Stptisticaliseimation Qhfrbigve s47e8Rtlcted as that in the nominal stress and hot spot

stress analysis. The results are summarizedg, LabIQi/: J0g rte%?%%% srepgth of the W5
sp&AMNAnd the CSspecimens wag,278 MPa andggp4 MPa, respgctively. Moregyer, the

differepces in X, andgX, betweep Hae two groupsindicated a girpilar effect of ghe scat-
ter on fatigue strengthldstimation ababbove mentioféd. 13.75 304

$apla s dledsicil PHEpaiario X RIS L EFM
5.1. Extended Finite Element Method Modelingffective Notch Stress Approach
Gr%uP NCP. - ff . . . .
xtended finite element methodvwXFEM) is an$#fivient techniqme for modelliFig4 Fracks.
In thisynethod, enrichsgent functiong dgcorporating ppth discontigussis fields anglzgsymp-
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process. Their material properties, boundary conditions, and loads were the same as those
of the finite element models for effective notch stress analysis, but the notch at the weld
toe was not rounded. The fatigue cracks were embedded into XFEM models, which were
approximated as a series of semi-ellipses with a size of 2 and c. The linear element C3D8R
was used to mesh all the parts. The crack domain was enriched, where the element size
ranged from 0.1 to 0.3 mm in accordance with the crack size to ensure there were more
than 10 contours. The global element size was 2.5 mm.
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Table 8. Summary of fitted curves (da/dN: m/cycle; AK: MPa - m!/2).

Specimen No. Fitted Curve a (mm) alt m c R?
W3-2 fit1 3.95~8.66 0.33~0.72 2.26 3.75 x 10711 0.9675
W5-2 fit 2 4.36~8.54 0.36~0.71 221 338 x 10711 0.9978
Cl1-1 fit 3 3.89~8.29 0.32~0.69 2.41 1.83 x 10711 0.9584
C2-2 fit 4 3.64~8.59 0.30~0.72 2.12 374 x 10711 0.9806
The material constants obtained from the fatigue data were compared with those of
the standards and specifications; see Table 9. The difference of C was calculated by 1gC. The
values of m for the specimens were slightly smaller, which should be attributed to conser-
vative requirements of the standards and specifications. Meanwhile, the values of C were
relatively close and their difference was less than 3.3%. The standards and specifications
were still applicable to the fatigue crack propagation evaluation of WS specimens.
Table 9. Comparison of material constants (da/dN: m/cycle; AK: MPa - m!/2).
Specimen ITW [26] Difference (%) BS 7910 [32] Difference (%) JSSC [19] Difference (%)
No. m c m c m Cc m C m c m C
W3-2 —-247 =33 —21.5 -1.3 -17.8 -1.3
W5-2 —26.3 -2.9 —-23.3 -0.9 -19.6 -0.9
~11 ~11 ~11
C1-1 3.0 1.65x10 _197  —04 288 27 x10 163 16 275 27x10 124 1.6
C2-2 —-29.3 -3.3 —26.4 -1.3 —-229 -1.3

6. Conclusions

To investigate the fatigue performance of vertical web stiffener to deck plate welded

joints in weathering steel box girders, ten specimens of weathering steel (WS) and four
specimens of plain carbon steel (CS) for comparison were tested by a vibratory fatigue
testing machine and relevant numerical analysis was carried out. Conclusions can be
drawn as follows:

1.

The fatigue tests of vertical web stiffener to deck plate welded joints showed that the
fatigue crack was initiated from the end weld toe of the deck plate accompanied by
multiple crack nuclei, and subsequently propagated both along the thickness of the
deck plate and in the direction perpendicular to the stiffener plate. Finally, it almost
penetrated through the deck plate.

The fatigue crack initiation and propagation life of WS Q345qINH specimens was
longer than that of CS Q345q specimens. The fatigue crack propagation life of WS
Q345gNH specimens was longer than that of WS Q420qNH specimens, but the
initiation life bore little relationship to the yield strength.

Increasing the thickness of the stiffener plate effectively delayed fatigue crack initiation
and slowed down its propagation. Compared with fillet welds, full penetration welds
extended the fatigue crack propagation life, but no significant improvement was
implied for the initiation life.

The state where the crack reached the edges of the weld was taken as fatigue failure.
The WS and CS specimens could be classified as having the same fatigue strengths
by the nominal stress, hot spot stress, and effective notch stress approaches, which
were FAT 50, FAT 100, and FAT 225, respectively. Meanwhile, their material constants
for LEFM were relatively close to each other. The values of the material constant m
for the specimens were slightly smaller than those of the recommendations by IIW,
BS 7910, and JSSC, but the values of the material constant C were nearly the same.
However, the beach marks are not accurate enough to track the early crack initiation
in welded joints of WS and CS. New methods still need to be investigated to measure
fatigue cracks during the early crack initiation.
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