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Simultaneous and Independent Micromanipulation of
Two Identical Particles with Robotic Electromagnetic Needles

Ogulcan Isitman1, Hakan Kandemir1, Gokhan Alcan1, Zoran Cenev2, Quan Zhou1

Abstract— Magnetic manipulation of particles at close vicin-
ity is a challenging task. In this paper, we propose simultaneous
and independent manipulation of two identical particles at
close vicinity using two mobile robotic electromagnetic needles.
We developed a neural network that can predict the magnetic
flux density gradient for any given needle positions. Using the
neural network, we developed a control algorithm to solve the
optimal needle positions that generate the forces in the required
directions while keeping a safe distance between the two needles
and particles. We applied our method in five typical cases of
simultaneous and independent microparticle manipulation, with
the closest particle separation of 30 µm.

I. INTRODUCTION

Manipulation at the microscale can be achieved using
chemical [1], magnetic [2], optical [3], acoustic [4], and elec-
trical [5] fields or a combination thereof [6]. Among those
strategies, magnetic field-driven manipulation has drawn
great attention due to its capability to remotely generate
relatively strong torques and forces on magnetic materials
in three dimensions [7]. Magnetic fields can also transmit
safely into the biological tissues [8] and can exert motions
in multiple degrees-of-freedom (DOF) on the micro agents
[7]. Due to the size constraints, the capabilities of a single
micro robotic agent are limited in terms of the payload, task
speed, and complexities [9].

Numerous methods have been suggested to empower si-
multaneous and independent manipulation of multiple mag-
netic robotic agents. For most applications, these magnetic
agents are located relatively far from multiple fixed magnetic
sources and all the micro agents in the workspace receive
the same magnetic fields [2]. Therefore, it is difficult to
control the motion of multiple agents independently at the
same time. To address this issue, researchers propose time-
varying magnetic fields to exploit inhomogeneities in rotor
axis orientation [10] or using micro agents with different
resonant frequencies [11]. Methods using sequential pulses
of different uniform magnetic fields [12] have also been
proposed and shown very promising results. Alternatively,
researchers used non-uniform field and gradient inhomogene-
ity for independent control in 2D [13] and 3D [14]. This
technique allows manipulating of both identical and non-
identical microrobots. A non-uniform field generator with a
large field gradient is required in this method, which results
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in high currents and overheating. Among all those methods,
the lack of localization of the field hinders the capability
of the independent manipulation of the closely placed micro
agents.

To increase the field gradient and localize the magnetic
field electromagnetic needles with tapered magnetic poles
have been proposed. This technique is especially useful in
applications that require a high force [15], [16]. A robotic
electromagnetic needle (REMN) is a promising magnetic
field gradient-pulling technique with a mobile magnetic
source that can selectively manipulate microparticles [17],
[18]. Seon et al., showed that a single REMN can achieve au-
tomatic non-contact manipulation by separating two adjacent
particles, selective extraction of particles from a population,
and sequential manipulation of four particles [19]. Those
capabilities are extended to full plane control in our previous
work by employing two cooperative REMNs [20].

In this work, we propose a simultaneous and indepen-
dent manipulation method for two identical particles. Our
method is based on the inhomogeneity of the magnetic
field generated by the two mobile robotic electromagnetic
needles. Compared to existing methods, the proposed tech-
nique generates a localized field to manipulate the particles
in close vicinity and extend the capabilities of the robotic
magnetic needles without hindering selectivity and high force
capability. We carried out computer simulations to calculate
the magnetic field in the workspace depending on the needle
positions. Using the simulation data we train a neural net-
work that makes fast and accurate predictions of magnetic
field gradients which can be used to estimate the force on
the particles based on given needle positions. Consequently,
our control algorithm solves the optimal needle positions that
generate the forces in the required directions while keeping
a safe distance between the two needles and particles. We
applied our method in five typical cases of simultaneous
and independent microparticle manipulation, with the closest
particle separation of 30 µm.

II. MATERIALS AND METHODS

A. Concept of Magnetic Manipulation

The magnetic force acting on a single particle is a function
of the particle magnetization and the magnetic field gradient
[15]:

F = ∇(mp ·B) (1)

where mp is the magnetic moment of a single particle, B the
magnetic flux density. Note, in this paper, the bold symbols
represent vectors.



Fig. 1. Optimization-based controller approach

An external magnetic field generates magnetic torque on
the magnetic particles proportional to the field. Since the
particles are free to rotate, the magnetization axis of the
particles align with the field vector. Assuming the size of
the particle is negligible compared to particle-needle distance
and, the magnetic field is sufficiently high that the particle’s
magnetic moment is saturated, the magnetic force acting on
a particle can be simplified as [21];

Fm = m∇B = m

[
∂B

∂x

∂B

∂y

∂B

∂z

]
(2)

The magnetic moment of the superparamagnetic particle
mp reduces to m, which denotes the magnetic saturation of
the particle. Equation (2) implies that provided the magnetic
field and its gradient are known, the magnetic force on a
particle can be calculated. The gradient of the magnetic flux
density ∇B can be expressed for a parabolic-shaped pole tip
as [16] ;

∇B =
4βµ0Mn

(4βδ + 1)
2 (3)

where Mn is the needle core magnetization, which is a
function of magnetic susceptibility of the material, number
of turns per unit length, and applied current to the needle. β
is the pole shape coefficient, δ is the distance between the
particle and the tip needle.

Two REMNs generate an inhomogeneous magnetic field
and the direct calculation of the spatial distribution of the
field is not trivial due to the interaction of the needles.
As a result, we employed finite element analysis (FEA)
calculations to calculate the magnetic field and its gradient.
Subsequently, we trained an artificial neural network to
generalize the results and calculate the magnetic field for any
point on the workspace and any given set of needle positions
with a constant current.

B. Optimization and Controller

Our electromagnetic manipulator has two mobile needles.
It is an over-actuated system for single-particle manipulation
where there is no unique solution for the given task without
introducing additional constraints, and simultaneous and in-
dependent manipulation of multiple particles poses additional

Fig. 2. Simultaneous and independent particle manipulation concept. The
red cross represents the target position for the particle. (p1x, p1y) is the
current position of the particle 1 (in green). The green cross represents the
target position for the particle 2. (p2x, p2y) is the current position of the
particle 2 (in red). Fdi is the desired force vector and Fmi is the modelled
magnetic force which is a function of the gradient of magnetic flux density
∇B. The current needle positions (in black) are (Nix, Niy), the predicted
optimal needle positions (in grey) are (N∗

ix, N
∗
iy). lb and ub are the upper

and lower boundary constraints, respectively.

challenges for designing a controller. We formulate the task
as an optimization problem that results in needle positions
that can generate desired magnetic field gradients on multiple
particles. This is formulated as a constrained optimization
problem given in (5).

The optimization-based manipulation scheme is given in
Fig. 1., with a controller including an optimizer and a
neural network model. The optimizer uses the cost func-
tion described in (5) to find the optimal needle positions.
Calculations for the field are done by the neural network
model, explained in Section II-D. The controller gets the
desired force vector, Fdi for i ∈ {1, 2}, considering the
target position from a reference generator, and measurement
of the particle positions pi ∈ R2 from camera and needle
positions Ni ∈ R2 from internal sensors of 3 DOF nano-
positioner.

N = [N1x N1y N2x N2y ]
T (4)

The input for the algorithm is the desired direction of the
magnetic force, the current positions of the needles, and the
particle positions. The output of the controller is the optimal
needle positions, N∗ which can be calculated by solving the
following optimization problem:

min
N

2∑
i=1

∥Fdi
− Fmi

(∇B)∥

subject to ∇B = f(N, pi),

Nlb ≤ N ≤ Nub,

Nlb = [lb, lb, lb, max(p1y, p2y) + ϵ]T ,

Nub = [ub, min(p1y, p2y)− ϵ, ub, ub]T ,

(5)



where ∥.∥ is the Euclidean norm of a vector. The controller
aims to find the optimal needle positions that minimize the
difference between the magnetic force, Fmi

(∇B) , and the
desired force vector, Fdi

, for each selected particle while
avoiding potential collision of the needles. The magnetic flux
density gradient, ∇B, is predicted by the function f(.) which
is modeled using neural network as explained in Section II-
D. The term ϵ is added to y-direction boundaries to provide
a distance margin between the needles to avoid collisions.
Other variables are explained in Fig. 2.

C. Computer Simulations and Data Generation

We modeled the system in COMSOL Multiphysics 6.0.
Our model solved the Maxwell equations in a 2D geometry.
The geometry includes the surrounding air domain, water
in the petri dish, needles, and coils. All required material
properties are assigned to the corresponding domains, by
using the built-in material library of the software. At the
edges of the air domain, we inserted infinite element domains
to represent continuity. Finally, to represent the needle ge-
ometry accurately, we interpolated the needle geometry by
using microscopic images. The tip of the needle is expressed
with a parametric curve, y = 27x2 . We used a constant input
current of 0.25A for each needle, and each needle has the
same polarization. We also performed a mesh convergence
study to determine the optimal mesh size. The inputs for
the simulations are the tip positions of the upper and lower
needle: N1x, N1y, N2x, N2y . We solved the magnetic field
for the input parameter ranges of −0.3 to 0.3 mm, each in
0.1 mm steps.

D. Neural Network Based Modeling

The proposed optimization-based controller approach (Fig.
1) requires information on the gradient of the magnetic flux
density at the given points in the workspace, and for the
given needle positions. It is possible to calculate the field
in the whole workspace by using COMSOL; and for each
case, solving the model takes less than 10 seconds. Albeit
a fast solution, this speed of calculations is not useful for
online optimization. Therefore, we used a neural network
model to predict the gradient in the given points, i.e. at the
locations of the particles, in the workspace. We utilized two
separate two-layer fully-connected neural networks, shown
in Fig. 3, to model the magnetic field gradient in the x and y
directions. Our choice of the network architecture is inspired
by the claim of Cybenko [22], that a neural network with
only one hidden layer is always capable of approximating a
multi-variant continuous function.

We performed a hyperparameter search study to determine
the optimal size of the layers. The study first showed that
a selection of a sufficiently high and equal number of
units can provide promising prediction performances. Sub-
sequently, we selected 128 unit numbers for both networks.
The computer simulations also indicated that the magnetic
field gradients are nonlinear fields. In order to represent the
nonlinearity efficiently, we chose rectified linear units [23]
as activation functions for hidden layers and linear functions

Fig. 3. Proposed two-layer neural network model for magnetic flux
gradients

for the output layer. Computer simulations generated nearly
10.4 million samples, and 80% of those are used in training,
with a mini-batch size of 64 samples. The remaining 20%
of the data is used as the validation set. Finally, we used a
stochastic optimizer, adaptive moment estimation [25] with
a fixed learning rate of 0.001.

E. Experimental Setup

A robotic electromagnetic needle system, as shown in
Fig. 4, was employed in simultaneous and independent
micromanipulation experiments. The system consists of two
identical 3-DOF electromagnetic needles. The diameter of
the needles is 0.5 mm, the length is 21 mm, and the tip
radius is around 15 µm. The needles are coiled with copper
wire (AWG 34) for about 900 turns in 4 layers. Each
of the 3-DOF nanopositioners is built from three identical
stages (SLC1720, SmarACT, Germany) with sub-nanometer
resolution and a maximum range of 12 mm.

The superparamagnetic microparticles are polystyrene
encapsulated fluorescent iron-III-oxide (Fe3O4@PS, Mi-
croparticles Germany) with a 4.54 µm mean diameter and
density of about 1.5 g/cc. Microparticles (10 µL of stock
dispersion, particle concentration: 1% w/v) were diluted with

Fig. 4. The experimental setup is mounted on an inverted microscope. Two
electromagnetic needles are positioned on separate 3-DOF nanopositioner.



Fig. 5. a) COMSOL results of magnetic flux density norm (T) and its
gradient. b) Normalized error between COMSOL simulations and trained
neural network prediction for a given needle configuration.

100 mL of water (deionized Milli-Q). A dose of ∼10 µL
solution has hundreds of microparticles within the sample
carrier.

A video camera (Prime BSI, Teledyne Photometrics, USA)
attached to an inverted microscope (Nikon Ti2-E, Japan)
provides visual feedback. The workspace is observed with a
dry objective (CFI Plan Apochromat 20X, N.A. 0.75 Nikon
Ti2-E, Japan). The camera resolution is 2048px × 2048px
pixels, and the resulting field of view is about 655 µm
x 655 µm. A data acquisition device (NI 6343, National
Instruments, USA) is used to control the electromagnetic
needles, where the computer-generated signal is amplified
by a current amplifier (TS200, Accel Instruments, USA). A
constant current of 0.25 A is supplied to the needles unless
they are turned off intentionally.

The optimization-based control is implemented using
Python 3.9.2. The vision feedback algorithms are imple-
mented using OpenCV-Python 4.5.1.48. The optimization
is realized using SciPy 1.7.0 Nelder – Mead direct search
method. Particle positions are obtained using the blob detec-
tion technique from the visual feedback [26].

III. RESULTS AND DISCUSSION

A. Computer Simulations and Neural Network

We used the data generated by computer simulations to
train the neural network. To measure the goodness of the fit
between the simulated model responses and the measurement
data, the fit metric is calculated as

fit = 100×
(
1− ∥y − ŷ∥

∥y − ȳ∥

)
(6)

TABLE I
TRAINING AND VALIDATION ACCURACIES OF THE MAGNETIC

GRADIENT MODELS

Training [%] Validation [%]

∇Bx 83.36 83.50

∇By 82.76 82.68

Fig. 6. a) Simultaneous and independent manipulation of two particles
performing orthogonal motion with initial distance 30 µm. b) Close-up view
of the particles. c) Euclidean distances between each particle and its target
throughout their motion

where y is the measurements, ŷ is the model predictions,
and ȳ is the mean of the measurements. Table 1 presents
the training and validation accuracies using the fit metrics
given above. Fig. 5 presents the magnetic flux density norm
and its gradient for a given configuration of the needles
and gives the error between the computer simulations and
the neural network prediction. Large errors are observed
especially in the vicinity of each needle. Our cases, however,
have particles in the middle of the field where the error is
negligible.

B. Experimental Demonstration of Typical Manipulation
Cases

We selected 5 typical cases to demonstrate the capability
of simultaneous and independent manipulation. These cases
are i) orthogonal linear motion, ii) opposite linear motion, iii)
opposite circular motion, iv) opposite parallel motion, and v)
parallel motion. We believe most of complicated trajectory
in 2D can be built by combining these typical cases.

Fig. 6a illustrates the first case, where two closely (30
µm) placed particles have been manipulated in orthogonal
directions. Red crosses represent the targets for both par-
ticles and the yellow line represents their paths during the
manipulation. Blue arrows show modeled field gradients on
each particle due to the optimized needle positions. Fig.
6b shows the Euclidean distances between each particle
and its target throughout their motion. Both particles move
towards their targets simultaneously, and the slope of the
graph represents the velocity of each particle. Mean velocity
and the standard deviation (mean ± SD) of particle 1 and 2
are 1.03 ± 0.27µm/s and 1.13 ± 0.35µm/s, respectively.
The velocity of the second particle is higher under the
optimal input conditions, it experiences a higher gradient.
Our algorithm does not enforce the needles to be at equal
distances to each particle, therefore the closer the particle to
a needle, the higher the force it experiences. Furthermore,
Fig. 5 implies that the gradient changes direction around the
midpoint of the line connecting each needle. As a result,
an orthogonal motion of particles in close proximity is only
possible around the midpoint. The change in direction also



Fig. 7. Four cases of simultaneous and independent manipulation. a)
Particles initially separated by 45µm are moved in opposite directions
vertically. b) Particles initially separated by 54 µm are moved in circular
trajectories. c) Particles initially separated by 210 µm are moved in opposite
directions diagonally d) Particles initially separated by 45 µm are moved
in parallel horizontally

results in lower amplitudes of gradient, especially in the
horizontal direction. Thus, the vertical motion in this set is
faster than the horizontal motion.

Fig. 7 demonstrates the remaining 4 typical cases. In Fig
7a, particles initially separated by 45 µm are moved in
opposite directions vertically with the particle velocities of
0.99±0.19µm/s and 0.86±0.21µm/s. Fig 7b represents the
case of the circular motion, where the particles were initially
separated by 54 µm and their velocities are 1.14±0.23µm/s
and 1.61±0.85µm/s. In Fig 7c relatively far (210 µm) parti-
cles move diagonally in opposite directions with the particle
velocities of 0.84± 0.39µm/s and 0.86± 0.30µm/s. In the
last case particles initially separated by 45µm are moved in
parallel horizontally having velocities of 1.28±0.5µm/s and
1.34± 0.61µm/s.

IV. CONCLUSIONS

In this study, we demonstrated a method for the simulta-
neous and independent manipulation of two particles at close
vicinity. Using the simulation data we train a neural network
that makes fast and accurate predictions of magnetic field
gradients which can be used to estimate the force on the
particles based on given needle positions. Consequently, our
control algorithm solves the optimal needle positions that
generate the forces in the required directions while keeping
a safe distance between the two needles and particles. We
applied our method in five typical cases of simultaneous and
independent microparticle manipulation, with the closest par-
ticle separation of 30 µm. In 2D, more complex trajectories
are possible as a combination of these typical cases. In the

future, we are aiming to apply this methodology to first more
complex trajectories and later to more particles.
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