
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or 
part of any of the repository collections is not permitted, except that material may be duplicated by you for 
your research use or educational purposes in electronic or print form. You must obtain permission for any 
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not 
an authorised user.

Pham, Truong An; Moesgen, Tim; Siltanen, Sanni; Bergstrom, Joanna; Xiao, Yu
ARiana: Augmented Reality based In-Situ Annotation of Assembly Videos

Published in:
IEEE Access

DOI:
10.1109/ACCESS.2022.3216015

Published: 01/01/2022

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY

Please cite the original version:
Pham, T. A., Moesgen, T., Siltanen, S., Bergstrom, J., & Xiao, Y. (2022). ARiana: Augmented Reality based In-
Situ Annotation of Assembly Videos. IEEE Access, 10, 111704-111724.
https://doi.org/10.1109/ACCESS.2022.3216015

https://doi.org/10.1109/ACCESS.2022.3216015
https://doi.org/10.1109/ACCESS.2022.3216015


Received 15 September 2022, accepted 10 October 2022, date of publication 19 October 2022, date of current version 27 October 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3216015

ARiana: Augmented Reality Based In-Situ
Annotation of Assembly Videos
TRUONG AN PHAM 1, TIM MOESGEN1, SANNI SILTANEN 2,3,
JOANNA BERGSTRÖM 4, AND YU XIAO 1
1Department of Communications and Networking, School of Electrical Engineering, Aalto University, 02150 Espoo, Finland
2Dimecc Ltd., 33100 Tampere, Finland
3Department of Computing Sciences, Faculty of Information Technology and Communication Sciences, Tampere University, 33100 Tampere, Finland
4Department of Computer Science, University of Copenhagen, 1017 Copenhagen, Denmark

Corresponding author: Truong An Pham (truong.pham@aalto.fi)

This work involved human subjects or animals in its research. The authors confirm that all human/animal subject research procedures and
protocols are exempt from review board approval.

ABSTRACT Annotated videos are commonly produced for documenting assembly and maintenance pro-
cesses in the manufacturing industry. However, according to a semi-structured interview we conducted with
industrial experts, the current process of creating annotated assembly videos, in which the annotator anno-
tates the video capturing the expert’s demonstration of assembly and maintenance process, is cumbersome
and time-consuming. The key challenges include three key problems in annotation: (1) unnecessary extra
communications between field workers and annotators, (2) lack of suitable camera gear, and (3) wasting
time in the manual removal of non-informative portions of captured videos. Because annotation always
follows video capture, the problem 1 remains out of scope for state-of-the-art video annotation tools.
And making the assumption of a perfect captured video, which covers no occlusion and contains only
relevant assembly or maintenance information, causes problem 2 and 3. As a result, we have developed
ARiana, a wearable augmented reality-based in-situ video annotation tool that guides field experts to create
annotations efficiently while conducting the assembly or maintenance tasks. ARiana has three key features
that include context-awareness enabled by hand-object interaction, multimodal interaction for annotation
on the fly, and real-time audiovisual guidance enabled by edge offloading. We have implemented ARiana
on Android-based smart glasses, equipped with first-person camera and microphone. In a usability test
based on attempting to assemble a toy model and to annotate the recorded video simultaneously, ARiana
demonstrated higher efficiency and effectiveness compared to one of the state-of-the-art video annotation
tools, in which the assembling process is followed by the annotation process. In particular, ARiana helps
users finish annotation tasks four times faster, and increase the annotation accuracy by 23%.

INDEX TERMS Augmented reality, first-person videos, multimodal interaction, process documentation,
video annotation, workflow extraction.

I. INTRODUCTION
Knowledge preservation and transfer are increasingly press-
ing problems in work across domains. According to [1],
expertise and experience are two of main losses of a company
when an employee retirement process is executed. An econ-
omy blog titled What if an expert retired? [2] puts this in

The associate editor coordinating the review of this manuscript and

approving it for publication was Giuseppe Desolda .

numbers: it mentions a report of a loss of over 27000 years
of experience due to the retirement of 700 experts. Besides
retirement, the high turnover rate and the trend towards
digitization and automation of industrial work have further
increased the need for efficient knowledge preservation and
transfer.

Video is considered one of the richest mediums for cap-
turing activities or processes. It has been increasingly used
for documenting and demonstrating industrial operations.
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Compared with traditional face-to-face training, video-based
training saves time of training supervisors and allows learners
to move at their own pace [3]. However, certain information
(e.g. the amount of force to apply, the operating temperature,
or the product model number) may be missing or difficult to
extract from videos even with the state-of-the-art computer
vision techniques. Therefore, videos captured by cameras
need to be annotated with instructions and hints before they
can be used for training employees [4], [5].

Since automatic image or video annotation [6], [7], [8]
is still in its infancy, manual labeling through crowdsourc-
ing [9], [10] has been the most common way of produc-
ing annotated visual data on a large scale. The drawback of
crowdsourcing-based annotation [11], [12], [13] arises from
the fact that the annotators are typically amateurs and have lit-
tle knowledge regarding the video contents, which leaves the
domain-specific, personalized, and expertise-based knowl-
edge inaccessible.

This paper describes ARiana, a wearable augmented
reality-based (AR-based) video annotation tool that allows
field workers with domain knowledge to efficiently create
high-quality annotated videos on site. To define design goals
of the tool, we first explore the key problems in the current
practice of creating annotated video in the manufacturing
industry through a literature survey and a formative inter-
viewwith ten industrial experts from an international elevator
company.

According to our study, current problems are mainly
related to setups of camera gear (e.g., occlusions caused by
third-person camera setups or frustration due to the wear-
ing of bulky cameras during maintenance work) and man-
ual efforts required for creating annotations (e.g., filtering
out irrelevant content from video or communicating with
field workers to create or refine descriptions of operations
in the videos in case annotations are made afterwards by
others). The communications costs for discussing the content
of the video are removed automatically when the videos are
recorded and annotated by the same person, who is the oper-
ator of the assembly and maintenance process in this case.
This confirms benefits of integrating the video annotation
process into the assembly or maintenance process, which also
includes the process of video recording, instead of separating
them as is practiced in the conventional approach.

To address these problems, we propose three key features
of ARiana, including context awareness enabled by hand-
object interaction, multimodal interaction for annotation on
the fly, and real-time audiovisual guidance. With these fea-
tures, ARiana has proven to accomplish the following three
design goals according to a usability test with 18 participants.

1) Minimising the time and effort wasted in identifying
and removing non-informative parts of the recorded
video.

2) Providing high-quality annotation with minimal cogni-
tive overhead.

3) Providing real-time (i.e. low latency) feedback in the
video annotation process.

The results of the usability test showed that ARiana is easy
to use for annotating three types of workflow information,
including the starting and ending points, associated objects
(e.g. tools, materials, machinery components) and instruction
for each work step. Compared with Ajalon [14], a state-of-
the-art video annotation tool that supports semi-automatic
work step segmentation and object association list extraction,
ARiana guided participants to annotate workflow information
at least 60% faster without inflating the level of experienced
cognitive load in the annotation process. Moreover, the qual-
ity of object annotation is significantly higher with ARiana
than with Ajalon.

To the best of our knowledge, ARiana is the first AR-based
in-situ annotation tool for industrial assembly and mainte-
nance work. Although it has been built based on existing
techniques such as object detection, speech recognition, and
gesture recognition, it has gone beyond the state-of-the-art
and has created the following scientific contributions.

1) Context awareness based on hand-object interaction to
automatically identify the associated objects used to
complete a work step, to remove redundant video seg-
ments, and to eliminate noninformative video segments
by idle stage detection.

2) A novel multimodal interface that uses speech and
pointing gestures to label objects, improving the accu-
racy of annotating associated objects.

3) An edge-offloading-based architecture design to sup-
port real-time guidance for on-the-fly video annotation
process.

The rest of this paper is structured as follows. We intro-
duce the background and the related work in Section 2.
Section 3 presents the current issues in the existing video
annotation tools. The design goals for a new video annota-
tion tool are defined in Section 4. Section 5 describes the
design and development of two main components of ARi-
ana, including context awareness and multi-modal interac-
tion. The system evaluation including a comparison with
Ajalon [14] is presented in Section 6. We discuss the implica-
tions of the design goals and the findings from the evaluation
in Section 7 before we conclude the work in Section 8.

II. BACKGROUND AND RELATED WORK
In this section, we first introduce different granularity and
types of annotations for assembly and maintenance videos.
Different features or functions are often needed to imple-
ment different types of annotations.1 Next, we describe the
landscape of different types of video annotation tools. The
analysis of the advantages and disadvantages of the existing
tools has provided the background for our studies of the cur-
rent challenges in the video annotation process as well as
for derivation of the design goals for new tools, including
ARiana.

1Note that a maintenance process in practice consists of assembly and/or
disassembly operations. In the rest of this paper, we choose maintenance as
an example to study the video annotation solution that would work for both
assembly and maintenance process.
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FIGURE 1. Three successive work steps in a how-do video of a tire-changing process [15]: (A) Loosening the screws in the middle of the wheel,
(B) jacking up the car, (C) taking out the wheel. The starting and ending points of the second step are indicated with red vertical lines.

A. GRANULARITY AND TYPES OF VIDEO ANNOTATIONS
Video can be annotated at different granularity level, depend-
ing on the intended use of video annotations. For example,
a how-to video or a segment of it can be annotated with a
sentence that describes the task demonstrated in the video or
the segment [17], [18]. Compared with such video-wise or
segment-wise annotations, annotations with a finer granular-
ity, such as bounding boxes outlining objects of interest [11],
[19], [20] or even pixel-wise object annotations [21], [22], are
needed for training machine learning models for computer
vision tasks such as object recognition. We summarize the
following types of annotations that are desired for assembly
videos below, based on a literature survey on instructional
videos (e.g., [18], [23]).
Starting and ending points of each work step. Assume that

a video captures the whole assembly or maintenance process
demonstrated by a field expert step by step. Given such a
video, annotators are expected to divide the video into seg-
ments, with each segment representing a work step. As shown
in Figure 1, given a piece of video that contains three steps
of a tire changing process, annotations can be added to the
corresponding frames that represent the starting and ending
point of each segment (i.e., work step). Instead of work step
segmentation, separation points are defined because the end-
ing of one step may not necessarily be the starting of the
next step due to irrelevant content in between. For example,
workers take a rest or leave to find tools.
Object association list. After segmenting a video into work

steps, the next step is to understand the operations in each
step. To describe the operations, it is necessary to knowwhich
tools, materials, or components are needed for completing
the operations. This is typically implemented using object
recognition techniques. Each video segment representing a
work step can be annotated with an object association list.
An example is provided in Figure 2. In the list, the locations
of relevant objects (e.g., tools, machinery parts, or materials)
in each video frame are annotated in the format of bounding
box. Note that three-dimensional (3D) locations of objects in
the working environment may be calculated and annotated
using 3D object localization techniques, such as simultaneous
localization and mapping (SLAM) [24], [25], and marker-
based tracking [26], [27]. However, due to the low robustness
of these techniques in industrial environment, we have left the
annotation of 3D locations for future work, and have focused
on locations of objects in two-dimensional (2D) images in

FIGURE 2. The tool, a screwdriver, is annotated with a yellow bounding
box, while the assembly component, which is a screw in this case,
is annotated with a blue bounding box. The bounding boxes indicate the
locations of the objects in question in the image [16].

this work. Besides locations, the objects may be annotated
with names in text, 2D images, or even 3D models of the
objects [27], [28].
Instruction. The objects association list alone is not suffi-

cient to explain the operations in each work step. In how-to
video sets [15], [17], each work step is commonly described
with a sentence in human-written or human-spoken language.
For example, in [15], ‘‘Start by loosening each bolt’’ is anno-
tated for the the bolt-loosening work step in the car tire
replacement video. Such description can be considered as
instruction for completing the work step. It contains both
objects (e.g. names of objects) and verbs (e.g. actions).
In some cases, the instruction also includes tips or tricks to
avoid common mistakes, for example a recommendation to
apply moderate force when screwing into the wood to avoid
breaking. We have focused on text-based instructions in this
work, although the instructions may also be provided in the
form of audio, video, or animation [26].

B. VIDEO ANNOTATION TOOLS
Many video annotation tools have been developed and used
since 1990s, for instance in creating instructional videos [4],
[29], analyzing video experiments [30], sharing comments on
videos through social networks [31], and generating labeled
data for training machine learning models [14]. These tools
are typically used for annotation after the video has been
captured. In contrast to these tools, our proposed solution,
ARiana, focuses on annotating videos on the fly.

From the interaction perspective, the mouse and keyboard
were the most commonly used input devices before tablets
and smartphones with touchscreen become popular. In case of
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FIGURE 3. Ajalon’s interface consists of three major components,
including split and merge buttons for segmenting work steps, an object
association box for inputting names of an associated object immediately
after labeling it on screen view, and instruction box for providing
text-based instructions.

annotating pre-recorded video, it is preferred to use a mouse
and a keyboard to achieve precise pointing and fast typ-
ing, although users have reported that they become fatigued
when using these devices to annotate lengthy video [14].
When users need to use their hands to conduct other tasks
simultaneously, hands-free interaction with the annotation
tool becomes an essential requirement. Early work has been
conducted on speech interaction [32] or gaze-based [33].
For example, speech interaction and mouse interaction were
combined in [32] to achieve a significantly faster annotating
speed. On the other hand, in [34], the authors observed that
the inconsistent eye-tracking of the sensor made gaze-based
interaction unreliable in mixed reality based annotation appli-
cation. In this work, we propose to combine speech inter-
action with gestural interaction to enable effortless in-situ
annotation of first-person videos during maintenance field
work.

Instead of designing a novel interaction model to improve
user experience, several video annotation tools [14], [35],
[36] have focused on developing intelligent features that can
reduce manual effort and speed up the annotation process.
For example, the video annotation tool presented in [35] used
automatic object segmentation to save 78% of manual effort,
although the results of the object segmentation algorithms
still needed to be manually corrected occasionally. Similarly,
the authors in [36] make the annotating process 11.3% faster
by using automatic gesture segmentation and recognition for
annotating video events. For assebmly video annotation, the
recently published tool Ajalon [14] advanced further to sup-
port automatic detection of objects of interest as well as work
step segmentation. As illustrated in Figure 3, Ajalon provides
a web-based interface for users to edit the results of work step
segmentation and object detection.

Similarly to Ajalon, ARiana applies computer vision
techniques to enable real-time work step and object detec-
tion. In addition, ARiana is a wearable cognitive assistance
application that provides context-aware guidance for video
annotation during field work, with the aim of improving
annotation performance with minimal cognitive overhead.

In other words, ARiana focuses on multi-tasking scenarios
(i.e., annotation as a secondary task in parallel to the primary
task of assembly or maintenance operation) and addresses
challenges related to the use of wearable interfaces like smart
glasses.

Previous interaction design for smart glasses [37], [38],
[39], [40] has not focused on multitasking scenarios and
therefore cannot be applied directly in our work, while other
works on interaction design for multitasking scenarios have
not addressed wearable devices. For example, Liu et al. [41]
proposed a novel way of taking notes while watching learning
videos online. Their design focused on the achieved learning
outcomes, and the length and appropriateness of the taken
notes; however, it did not consider the cognitive load of
users. Compared with previous wearable cognitive assistance
systems like Jarvis and Gabriel, ARiana involves the same
concept of edge offloading that Gabriel does but extends the
support from single-tasking to multi-tasking.

Regarding the quality and productivity of video annotation,
previous works [9], [30], [42], [43] have focused on impact-
ing factors from the perspective of the annotators, ignoring
the impact from the quality of the recorded video [18], [23],
[44], [45]. In the design of ARiana, we have considered the
video recording process and its impact on the quality and
efficiency of video annotation.

III. CURRENT ISSUES
To identify the key problems and challenges in the current
practice of video annotation in the manufacturing industry,
we conducted a literature survey and a formative interview at
an international elevator company. In this section, we present
the implementation of the interview and the problems that
were identified, with references from the literature.

A. PARTICIPANTS
At the elevator company, field experts often demonstrate
maintenance methods and record the demonstration with
video cameras for training purposes. The videos are anno-
tated afterwards by a technical documentation team. To gain
a better understanding about the annotation process and
the tools in use, we invited five field experts with a role
of maintenance-method developer and five annotators from
the technical documentation team to join the interview. The
results of our interview, presented below, also confirmed the
need for involving both parties in the study.

B. INTERVIEW PROCEDURE
The formative interview was conducted as a group interview
with all 10 participants. The participants were interviewed in
a neutral environment, a meeting room in this case, instead of
at the maintenance work site, to promote innovative thinking
about their work processes as well as to accommodate the
annotators. The interview lasted one hour.

The participants were first informed about the purpose
of the interview which was to investigate both sides of the
annotation process and to discover issues that are experienced
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FIGURE 4. The current process of creating annotated videos of
maintenance processes in an elevator company. Video is captured with
chest cameras during maintenance processes. Video annotation involves
adding description of the maintenance processes to the corresponding
parts of the video. If the video annotator is not able to produce exact
annotations for any part of the video, due to occlusions or lack of domain
knowledge, discussion with field experts who produced the videos is
arranged.

on either side during the process. They were instructed to
freely answer, discuss, and complement one another’s obser-
vations about the annotation process. The interviewer pre-
sented questions about the phases of the annotation process,
following a semi-structured interview protocol. The questions
are included in Appendix A. The interviewer engaged with
the participants in the discussion and took notes of key obser-
vations regarding the annotation process as well as direct
references to the problems experienced in that process.

C. PROBLEMS IN THE CURRENT ANNOTATION PROCESS
After the interview, the interviewer summarized the discus-
sions based on the observation and collected notes. Combined
with the results of a literature survey, the following three
problems were identified:

1) PROBLEM 1: EXTRA COMMUNICATIONS BETWEEN FIELD
WORKERS AND ANNOTATORS
As described in Figure 4, both the video annotator and the
field expert must sit together for re-checking, discussing,
and annotating ambiguous parts in the video. Therefore, the
video annotation process is often delayed due to repetitive
discussions. As a result, time of both the field expert and the
annotator is consumed. Two out of the five field experts in
our interviews expressed feelings of annoyance in discussing
events that occurred in the video afterwards. This problem
occurs not only in annotation of elevator maintenance works
but also in other domain-specific video annotation, such as
that of surgical videos in [46].

2) PROBLEM 2: LACK OF SUITABLE CAMERA GEARS
In the context of maintenance fieldwork, we found three
disadvantages of third-person camera setups (as illustrated
in Figure 5a, including occlusion, space requirement, and
safety risk. These are detailed in the following accounts:
1) All video annotators considered occluded camera view-
point a frequent and serious problem in the annotation pro-
cess. Information loss due to occlusions may prevent the
annotators from understanding events that occurred in a
video. However, due to the limited working space, it is hard to

FIGURE 5. Camera setups used in the elevator company for recordings
demonstrative videos. (a) A typical third-person camera setup.
(b) First-person camera setup.

position a third-person camera distant enough to capture the
entire work area with no occlusion. 2) As one field expert
pointed out, the working environment in an elevator shaft
requires a high safety level. For example, it is absolutely
forbidden to climb on a balustrade to mount a camera, and the
walls in the shaft are made mainly of concrete or other mate-
rials on which camera mounting is impossible. In summary,
field experts and video annotators would prefer first-person
cameras that are safe to use, easy to set up, and can be placed
in such a way that the issue of occlusion would be minimized.
Moreover, first-person camera setups can be more suitable
for capturing hand-object interactions and for detecting the
worker’s attention [47], [48], as people tend to focus on the
objects being operated.

There are two types of camera setups for capturing first-
person videos. One setup is to attach cameras to different
parts of the body, such as forehead and chest as shown in
Figure 5b. Adjusting the positions of cameras to make sure
they capture the operations with minimal occlusions often
takes considerable time. As reported in [50], users may also
feel uncomfortable to wear such cameras. The other type
of setup is to use the cameras embedded in augmented or
mixed reality headsets, such as Microsoft Hololens, Google
Glasses, or Vuzix smart glasses. However, these glasses either
are so bulky that they impact the health and movement of the
user [53] or do not provide a sufficiently wide field of view.
Therefore, it has been challenging to find proper camera gear
that is comfortable to wear and would not disturb the field
work.

3) PROBLEM 3: MANUAL EFFORTS FOR REMOVING
NON-INFORMATIVE PORTIONS OF CAPTURED VIDEOS
As a common procedure, field experts or annotators must
analyze the video afterward to filter out non-informative
portions. For example, one field expert stated, ‘‘The cam-
era records video continuously without pausing while the
field expert is doing irrelevant stuff, such as finding tools in
another room, taking a phone call, or drinking coffee during
the break time. As a result, the length of recorded video is
significantly longer than expected.’’ To highlight that point,
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another field expert shared the experience of recording a
one-hour video but retaining with only 15 minutes of content
that was informative and could be annotated. This aligns with
findings from a study of the open video dataset COIN [17],
which consists of 11,827 videos related to 180 different tasks.
For most videos in the COIN dataset, the proportion of infor-
mative parts within each video is not higher than 50%.

IV. DESIGN GOALS
To address the three problems identified in Section III,
it became necessary to invent new approaches and tools for
annotating the videos ofmaintenance fieldwork, whichwould
also require changes to the current process of video collection
and annotation in the manufacturing industry. In this work,
we have explored the feasibility of in-situ annotation, which
integrates video annotation into the process of field work.
In other words, the annotations are collected while recording
the videos, and the field experts who conduct themaintenance
work play the role of annotators as well. This removes the
communications costs mentioned in Section III.C by default.
However, field experts may not know how to annotate a video
or demonstrate a task. Therefore, we aimed to design a tool
to solve the other problems mentioned in Section III and to
fill the gap.

As discussed in Section III.C, first-person cameras are
more suitable for capturing hand-object interactions than
third-person cameras, given that they are comfortable to wear.
With the rapid development of wearable technology, we envi-
sion that lightweight augmented or mixed reality glasses with
embedded wide-angle lenses and microphones will become
more widely available soon.

Therefore, we designed ARiana with the assumption that
it will run on such glasses and use a head-mounted display
to provide visual feedback for users. This design choice was
made due to the following considerations. First, the cam-
eras embedded in smart glasses allow ARiana to capture
first-person video in a convenient and safe way. The video
can be viewed in real time on the display of the glasses,
which helps users to adjust the camera setup when neces-
sary to ensure that operations and working environments
are captured as desired. Second, annotations can be visual-
ized as virtual content on top of related physical objects in
the camera view. This allows annotators to review and edit
the annotations while conducting the assembly or mainte-
nance tasks. For the time being, we have used Vuzix M400
smart glasses for experimentation. Therefore, gaze-based
interaction is not an option in designing the interface of
ARiana.

To guide field workers in creating high-quality annotations
in an efficient manner, ARiana has been designed to fulfill the
following design goals (DGs).

DG 1 -Minimise the time and effort spent in identifying
and removing non-informative parts of recorded video.
To solve problem 3 mentioned in Section III.C, one solution
is to collect videos in a way that does not record breaks
between work steps or any other irrelevant activities. This

would require either hints given directly by users or algo-
rithms that consider the relevance of activities in real time.

DG 2 - Provide high-quality annotation with minimal
cognitive overhead. The increase in cognitive load of field
workers is a potential risk of multitasking required by in-situ
video annotation because the worker needs to keep in mind
when and how to annotate the video. Higher cognitive load
may slow down the primary task andmay cause errors. There-
fore, it is essential that the tool can remind users of required
annotations at the proper time in a natural way. This requires
context-awareness and multimodal interaction to reduce cog-
nitive load and to improve the productivity of annotation.
Here, the productivity can be measured by the number of
annotations, the time spent, and the number of annotation
errors.

DG 3 - Provide real-time audiovisual guidance. Low
latency is a common requirement for interactive AR appli-
cations, as high latency would significantly degrade the user
experience. Here, latency refers to the time taken from cap-
turing the video, processing the video, and giving feedback
to the user. It consists of both processing delay and data
transmission delay, if applicable.

V. SYSTEM DESIGN
In this section, we describe the detailed design of ARiana and
explain how it fulfills the design goals defined in Section IV.

A. CONTEXT AWARENESS
Video annotation tools typically work in a passive way in that
they simply provide an interface for users to create anno-
tations (e.g., drawing bounding boxes and adding textual
descriptions) but do not give hints or instructions regarding
what and when to annotate. In this case, the quality and quan-
tity of annotations depend on how active the users are and
how accurate the user input is. We define this condition as
a user-initiated annotation process. On the other hand, video
annotation tools with awareness of context can bemore active
in collecting annotations by reminding and guiding users
to create annotations. We call this concept context-aware
guided annotation. ARiana is designed to support both work-
ing modes, as illustrated in Figure 6.
ARiana enables context awareness by implementing

three features, including a hand-object interaction inference,
associated-object detection, and speech recognition. With
context-awareness enabled, ARiana can propose annotations
online (e.g., bounding boxes of objects of interest or the start-
ing and ending of each work step) and ask users to confirm
or correct them. In this way, it can automatically remove the
non-informative portions of videos, including breaks between
work steps, to save time and effort (DG1). Moreover, it can
remind users when and what to annotate (DG2). In general,
instruction for each work step can be recorded while execut-
ing the work step. The relevant objects can be annotated at
the beginning of the whole maintenance process (Option 1),
at the beginning of each work step (Option 2), or when
they appear (Option 3). We surveyed instructional video data
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FIGURE 6. System overview of ARiana. ARiana supports two working modes, including user initiated annotation and context-aware guided
annotation.

sets [17], [18] and found that it is common for experts to
introduce the relevant objects at the beginning of each step
(Option 2). This approach is more feasible for multi-step
processes, concerning memorability. Therefore, we choose to
follow Option 2 in the design of ARiana.

1) HAND-OBJECT INTERACTION
ARiana continuously monitors hand-object interaction. If a
work step has not been completed if there is no break in terms
of hand-object interaction. The objects refer to those declared
by the user as relevant tools or materials at the beginning of
each work step. The process enters an idle mode when no
hand-object interaction has been detected for a period of time
(typically 2 seconds, which was empirically chosen based
on preliminary studies for an action in hand-gesture recog-
nition [49]). Hand-object interaction detected after entering
an idle mode indicates the starting of a new work step.

For learning to recognise hand-object interaction and
detect regions of interactions, deep neural networks (DNN)
such as FasterRCNN [50] or a hand-object holding detec-
tion method [51] are dominant approaches. However, DNN
methods often suffer from the issue of overfitting. To avoid
overfitting, we have used semantic information, including
hand regions and object proposals, to detect hand-object inter-
action in the following three steps. Firstly, we have used the
mediapipe framework [52] for implementing the detection of
bare hand regions. Hand detection in the mediapipe frame-
work consists of a palm detection model and a hand landmark
model. The palm detection model trained with an in-the-
wild data set [52] can achieve up to 95.7% accuracy. The
hand landmark model has been trained on a real-world data
set [52]. Secondly, object regions is detected by the Salien-
cyMDC algorithm [53] mentioned below. Thirdly, we cal-
culate the overlaps between the regions of hands and those
of objects. If the overlap exceeds 30% of a proposal box,

a hand-interaction is detected. When an overlap between a
hand and an object is detected in a video frame, we assume
that the hand is interacting with the object in question.

2) ASSOCIATED OBJECTS
ARiana automatically detects the objects being operated by
hands based on hand detection and object-proposal detec-
tion. This is the outcome of the hand-object interaction above
where the interacted objects are recognized as associated
objects.All the objects operated in a work step form a list of
associated objects for the work step.

In ARiana, object-proposal detection is implemented with
the SaliencyMDC algorithm [53], which yields a short
response delay. In addition, the objects of interest are tracked
with the KCF tracking algorithm [54] from the time the hand
overlaps with the object’s box.

With associated-object detection, it becomes possible for
ARiana to cue users to annotate objects, as illustrated in
Figure 7b. Moreover, because the detection algorithm auto-
matically produces bounding boxes for the objects of interest,
the user does not need to draw bounding boxes manually
and can simply give names to the objects through speech
input.

B. MULTIMODAL INTERACTION
ARiana is designed to provide a multimodal interface that
allows users to easily and precisely annotate videos using
gestures and speech during fieldwork.

To design the multimodal interaction model for ARiana,
we first conducted an elicitation study. An implementation
plan was subsequently designed based on the results of the
elicitation study.

1) ELICITATION STUDY
One way to explore the interaction model is to allow partici-
pants to think about their preferences, such as preferred hand
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FIGURE 7. Context-aware guidance for annotation. (a) When an idle
mode is detected, ARiana asks if the user has ended the step with the
starting frame and the ending frame inside green boxes presented on the
display. (b) When an associated object is detected, ARiana asks for the
name of the object.

gestures, as done in [55]. This method is time-consuming and
not effective if the participants have no prior knowledge about
the tool to be developed. In this study, we conducted a litera-
ture review regarding mid-air gestures and voice commands.
A list of mid-air gestures used in previous works [56], [57],
[58], [59], [60], [61], [62], [63], [64] was selected based on
the context of indoor working. In terms of voice interface
design, there are no common standard commands; voice com-
mands can include words, sentences, or conversations [65].
To determine suitable voice commands, we beganwith simple
word commands instead of sentences.

a: SETUP
Eight postgraduate students with backgrounds in computer
science and electrical engineering joined the user study. None
of them had previous experience with smart glasses. The
study was carried out in a laboratory environment simulating
the experience of the assembly and maintenance processes.
As illustrated in Figure 8, the test was arranged for one
participant at a time. Before the test started, the participant
was instructed to sit on a chair and to put on Vuzix M400
smart glasses. After that, the participant was introduced to
the purpose of the study by a facilitator. The study contained
three parts. The first part was to select preferred gestures and
voice commands, the second one was to determine whether
gesture or voice commands were more suitable for the differ-
ent annotation tasks listed in Table 1, and the final part was
to assemble a toy and use those gesture or voice commands
for annotation.

FIGURE 8. Setup of the elicitation study. A participant is performing
assembly while executing the tool commands for annotation.

TABLE 1. List of annotating tasks.

b: SELECTED GESTURES AND VOICE COMMANDS
When the test began, the facilitator introduced the list of hand
gestures shown in Figure 9 and voice commands as shown in
Table 2 for use in creating annotations. Next, the participant
would attempt all those gestures and voice commands and
then select the ones they preferred or propose new ones they
thought would be suitable for implementing the annotation
tasks.

c: GESTURE VERSUS VOICE COMMANDS
After selecting gesture and voice commands, each partic-
ipant was asked to assemble a toy set model (see Fig-
ure 10a) and to create annotations at the same time. They
were instructed to complete the annotation tasks in two ses-
sions using gestures and voice commands, respectively. They
answered a survey after each session and were interviewed
with open-ended questions after two sessions. The answers
were used to analyze the ease-of-use and memorability of
different commands. We also measured the agreement rate
for each selected command following Eq. 1 proposed by
Vatavu et al [66].

AR(r) =
| P |
| P | −1

∑
Pi⊆P

(
| Pi |
| P |

)2

−
1

| P | −1
, (1)
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FIGURE 9. List of hand gestures for the elicitation study of ARiana’s
interaction design. (*) indicate gestures proposed by participants.

TABLE 2. List of voice commands.

where r represents the selected command,P represents the set
of command selections, and Pi represents the set of command
selections for command i.

FIGURE 10. HAPE toy set with (a), (b) components and (c) tools.

Figure 11a shows that the difference between gesture and
voice commands was small from the ease-of-use perspective.
The advantage of voice commandswasmore obvious in terms
of memorability, as shown in Figure 11b. Because hands were
used for implementing both the primary and secondary tasks
in case of in-situ video annotation, the memorability of ges-
ture commands appeared to decrease. This was confirmed by
six participants.

Regarding agreement rates, we defined three levels of
agreement, from low to medium to very high. As shown
in Figure 12, voice commands dominated all six annotating
tasks listed. According to the study results, we chose voice
commands for all the annotating tasks except selection of
objects for annotation. In case of object annotation, the ease-
of-use score for gesture-based object annotation was 4.75,
while that of memorability was 4.875. In addition, five par-
ticipants highly recommended using pointing gestures for
selecting objects. Therefore, we chose to use pointing ges-
tures for locating objects and speech for annotating object
names. For this reason, the objects association list is not listed
in Figure 11a or Figure 12.

2) IMPLEMENTATION OF THE INTERACTION MODEL
The proposed interaction model consists of a voice interface
and a mid-air-gesture interaction interface. We have imple-
mented four voice commands using the IBMWatson speech-
to-text cloud service [67]. These commands include start
annotation, stop annotation, start a new step, and start to give
instruction.

We have applied a vision-based approach for recog-
nizing the pointing gestures and localizing the pointing
position in two dimensions to locate designated objects,
as shown in Figure 13. Two components of the pointing ges-
ture recognition algorithm are hand-skeleton detection as in
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FIGURE 11. Voice versus gesture commands. (a) Ease-of-use.
(b) Memorability.

FIGURE 12. Agreement rate of gesture commands versus voice
commands. The three target lines represent three agreement levels in
previous interaction elicitation studies [55].

FIGURE 13. Pointing gesture localization algorithm.

Figure 15 and pointing-gesture classification. To implement
the hand-skeleton detection, we have used the mediapipe
framework [52] to take advantage of fast-speed orientated
implementation of the hand skeleton. To increase the speed

of pointing-gesture classification, we use a thresholding tech-
nique for classifying pointing gestures based on the accumu-
lated angles between joints, which are extracted from the heat
maps of the hand skeleton. The accumulated angles between
hand joints can be expressed following Eq. 2.

AcuAngles =
j1∑
ji⊂J

arccos(6
−−→
jiji+1
−−−−→
ji+1ji+2), (2)

where J is the set of 3D locations of hand joints and ji is the
3D location of hand joint i. To classify the pointing gesture,
ARiana only needs to check whether AcuAngles is within a
range of [α, β]
According to our best knowledge in prototyping voice-

based interaction, speech recognition accuracy and speed is
a key factor to impacting significantly on the user experi-
ence [65]. To achieve low latency and high accuracy, we have
used the IBM Watson speech recognition service, which is
implemented with DeepSpeech [68], to implement the speech
recognition module for ARiana. In contrast to video data,
audio streaming is rapid due to lightweight data. Moreover,
IBM Watson has trained their machine learning model for
speech recognition with a huge dataset; thus, it is one of the
most reliable state-of-the-art speech recognition platforms.
However, even if a highly accurate speech recognition algo-
rithm can be used in the future, noisy environments and
recognition of words spoken by surrounding people must
be considered as a drawback. Noise-filtering algorithms or
context-aware speech recognition may enhance the speech
recognition result. However, in this study, we assumed that
we have a qualified speech recognition that work accurately
in the noisy industrial environment.

C. EDGE OFFLOADING
Although high-end smart glasses such as the Vuzix M400
model already use powerful mobile chip sets (e.g., the Snap-
dragon XR1: 8 Kryo-385 cores, graphics processing unit
[GPU]: Adreno 630), they are still not sufficiently power-
ful to support real-time video analytics with a high frame
rate. For example, Vuzix M400 glasses can execute the
hand-skeleton detection and tracking [52], [69] tracking [52],
[69] at 9.26 frames per second (fps) and object propos-
als detection at 10 fps. Offloading heavy computation from
mobile devices such as smart glasses to more powerful
computers has been widely used for shortening processing
delays [70], [71]. In practice, the communication overhead
caused by data transmission from smart glasses to remote
computers must be considered when choosing the resources
for data processing. Concerning the low latency require-
ment of wearable AR applications (DG 3), we propose to
run computation-intensive computer vision algorithms at the
edge of the Internet (e.g., base stations), closer to where the
smart glasses are located than the remote cloud. In cases
in which there is no Internet connection, the edge can be a
portable computer (e.g., an HP Z VR Backpack v2 which
is equipped with Intelr Core i7, NVIDIA GeForce RTX
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FIGURE 14. An example of a deployment scenario. Annotation requests
are generated in the context-aware guided annotation mode. Annotated
information is generated in the user-initiated annotation mode.

2080 and Realtec ac) connected to the smart glasses via a
wireless local area network. An example of a deployment
strategy for ARiana is shown in Figure 14. In this study,
hand-object interaction detection and pointing-gesture recog-
nition are deployed on powerful GPU edge server to opti-
mise the performance. In contrast, the speech recognition
processor is deployed on the cloud because the IBM Wat-
son cloud service is used for speech recognition, and the
recognition response is fast enough to capture the speech of
users.

D. THE VISUAL INTERFACE OF ARiana
The visual interface of ARiana is shown in Figure 15. It high-
lights thework step index and shows two buttons (i.e., instruc-
tion, tools or materials) on the top. If the user is recording an
instruction, or annotating tools or materials, the correspond-
ing button is highlighted in green. If the user is providing an
instruction or annotating tools or materials, the corresponding
button is highlighted in green. As illustrated in Figure 7a,
ARiana asks the user to confirm the automatically detected
starting and ending points of a work step. With speech recog-
nition, ARiana can automatically collect spoken instructions
given by the field expert during the assembly or maintenance
process. In addition, with automatic detection of work steps,
ARiana can request users to record instructions in case no
speech has been detected during the work step. Such a design
can remind the user of the next annotation step and therefore
reduce cognitive load.

As shown in Figure 15a, a designated object is overlaid
with a yellow bounding box and its label. There are two
problems that may occurs in this labeling interaction. First,
the label may be provided inaccurately due to a mistake by
the user. Second, the bounding box may be placed in an
incorrect position due to the inattention of the user while
pointing. Therefore, instead of being visualized in only a few
frames, the bounding box and label overlay on the objects
remain for a maximum of 5 seconds or until the tracking
is lost. This feature should allow users to check and fix the
labeling. In practice, the pointing gesture is recognised at
first. Next, the pointed object is localized. Finally, the KCF
object tracking [54] is used for tracking the pointed object
on the fly. With tracking, the bounding box and the label can
follow the objects that the user annotates.

FIGURE 15. First-person view recording using ARiana. a) The graphical
user interface for the user. The interface consists of three core elements
including a see-through camera view as background, an annotation
information bar on the top, and the bounding box with labeled text.
b) The debugging interface of ARiana. In this interface, the extracted hand
skeleton is visualized with circles for finger joints and lines for finger
pose. The purple box represents the bounding box around the detected
hand.

VI. USABILITY TEST
We conducted a user study to test the usability of ARiana and
evaluate whether the design goals have been accomplished.
Moreover, we compared ARiana with Ajalon, a state-of-the-
art AI-powered tool for creating annotations of pre-recorded
assembly videos, in terms of quality of annotations, annota-
tion performance, and cognitive loads of users. Like ARiana,
Ajalon also supports automatic object tracking and work-step
detection. This section describes the study design, implemen-
tation, and the evaluation metrics of the study and analyzes its
results.

A. EVALUATION MEASURES
To evaluate how well the design of ARiana had met the three
DGs, we defined corresponding evaluation measures for each
one. These measures are listed below and summarized in
Table 3.

1) DG1
ARiana was expected to automatically remove non-
informative segments, such as the breaks between work steps,
from the recorded videos. We defined idle duration as the
period during which the field worker was not conducting any
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TABLE 3. Summary of evaluation measurements and results.

maintenance or annotation task and calculated the percentage
of idle duration in the total duration of the recorded video.

2) DG2
ARiana was expected to guide field workers to create
high-quality annotations with minimal cognitive overhead.
Regarding the quality of annotation, we measured the amount
of collected annotations and computed the ratio of incor-
rect annotations to the total number of manual annotations.
Ambiguity negatively affects the knowledge transfer process
because it prevents the human ormachine learning algorithms
from understanding the knowledge correctly [72]. In case of
object annotations, we considered an annotation as correct
if a bounding box contained only one object and the object
was not occluded by any other object. Examples of correct
and incorrect object annotations are presented in Figure 16.
In addition, ARiana was expected to save annotation time
from the field workers. Therefore, in this study we defined
two metrics, savings factor A and savings factor B (shown in
Eqs.3 and 4) to study how quickly the user could use ARiana
to complete annotation.

savings factor A =
AjalonTime− ARianaTime

ARianaTime
(3)

where AjalonTime and ARianaTime represent the time
spent annotating using Ajalon and ARiana, respectively.
ARianaTime only counts the time when participants were cre-
ating annotations, such as giving voice commands, pointing
to objects, and recording instructions. It includes the time
when the user was providing voice input while conducting
assembly tasks.

savings factor B

=
(task1+ AjalonTime)− (task2+ ARianaTime)

(task2+ ARianaTime)
(4)

where task1 represents the time spent for completing the
assembly process that had been demonstrated and recorded
by an expert. The recorded video was used for the Ajalon
tool. task2 represents the time spent only for the same assem-
bly process while using ARiana. The main reason that we
defined savings factor B was to determine whether multi-
tasking in ARiana slowed the entire process of collection and
annotation.

From a user experience perspective, we measured ease-of-
use and cognitive load. For the former, we used a custom
questionnaire (5-point Likert scale) to evaluate the ease-of-
use of ARiana in creating different types of annotations. For
the latter, we selected NASA-TLX as a questionnaire and
used it un-weighted with a 7-point Likert scale. More specifi-
cally, we explored the mental demand, physical demand, tem-
poral demand, performance, effort, and frustration level of the
participants during the test. We chose NASA-TLX because
it has commonly been used for measuring both physical and
cognitive workloads with tools [73], [74], [75].

3) DG3
ARiana provides low-latency responses through edge
offloading. In addition to latency measurements, the satis-
faction levels of users were collected to evaluate user’ expec-
tations for ARiana’s latency of response.

B. STUDY DESIGN
The study was conducted in a laboratory environment sim-
ulating an assembly task in an industrial context using a
wooden toy set (see Figure 10). The toy set was chosen for
the following reasons:

First, it provided a representative task that could be gen-
eralised across use cases. ARiana was designed for captur-
ing and annotation of manual maintenance and assembly
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FIGURE 16. An example of annotation error when labeling objects association list. For Ajalon, (A) correct labeling (B) incorrect labeling
due to occlusion. For ARiana, (C) correct labeling (D) incorrect labeling.

processes in general. Therefore, we chose a task that included
both the use of hands and manipulation of graspable objects.
The toy set was designed to simulate a real mechanical tool-
box commonly used in industrial contexts. With nuts, bolts,
screws, or the screwdriver shown in Figure 10, several indus-
trial maintenance processes could be simulated easily. The
toy set provided such and also allowed reflection of our
results across use cases.

Second, the toy set allowed us to use novice participants
to investigate how well ARiana could support new users in
learning to annotate. Real maintenance tasks would have
required field experts for those tasks. In addition, real main-
tenance tasks also contain physical risks. As a result, it did
not suit this evaluation.

Third, the toy set allowed experimental control. For exam-
ple, it allowed control of the length of the process, such as
in evaluation of a 5-step process, a 10-step process, or even
a 20-step process. Therefore, the task load measure was
exposed to less bias than in a real assembly or maintenance
case. In practical cases, the length of an assembly or main-
tenance process may vary due to continuous changes in the
working environment, such as interactions other workers or
with the system that is being maintained. The toy set was
static and controllable for these aspects.

1) TASKS AND PARTICIPANTS
The study involved annotating videos of the same assembly
process using either ARiana or Ajalon. The task with Ajalon
in our study was to annotate a video pre-recorded by a field
expert. The tasks with the two tools were conducted in sep-
arate sessions to avoid bias due to memory of the assembly
process. There was a gap of at least 7 days between the two
sessions. Each session lasted for approximately 45 minutes.

We recruited 18 participants, including six females, for the
user study. All except one were graduate and post-graduate
students from a local university. 94% of the participants had
never used AR glasses or had used them only a few times. All
of them had never used gestural interaction or had little expe-
rience with it. Before the study started, all the participants
reviewed an informed consent form and gave their consent
for participation. 13 participants conducted the tasks first with
Ajalon and the remaining five first with ARiana.

2) PROCEDURES
Here we explain the procedures of video annotations using
ARiana and Ajalon.

ARiana All participants were introduced to the role of a
field expert. In that role, the participants were first asked to
practice for 5 minutes to become familiar with the final prod-
uct of the assembly tasks (see Figure 17f) and the five steps,
as illustrated in Figure 17b-f, to build the product. Each par-
ticipant attempted to build the same product but could freely
change the assembly steps. They were told to use ARiana
for recording and annotating the video with workflow infor-
mation during the assembly process. After completing the
assembly and annotation tasks, each participant completed
the two questionnaires listed in Table 3. Finally, the partic-
ipants engaged in a semi-structured interview to explore their
experiences in creating the three types of annotations (defined
in Section II.A) with ARiana.

Ajalon The participants were first introduced to the Ajalon
user interface (see Figure 3) by explaining its main features
for video annotation. For the task, the participants were intro-
duced to a role of a video annotator, which they were to
assume. They were then given a video that had captured the
assembly process of a field expert and told that their task was
to annotate it using Ajalon. The video had been uploaded to
Ajalon’s server beforehand and the participants could access
Ajalon via a URL.

The participants received the following three sub-tasks to
perform the entire process of video annotating: 1) splitting
the prerecorded video of a toy model assembly into different
working steps, 2) labeling all tools used, and 3) providing an
instruction for each working step. Participants were recom-
mended to follow the tasks in the given order. At the begin-
ning of the task, they were encouraged to think aloud, which
involved verbalizing their thought processes throughout the
entire task. The purpose of the think-aloud method was to
help us to understand their behavior during the annotation
process.

Upon task completion, participants completed two ques-
tionnaires, as in the test of ARiana. After that step, the par-
ticipants were interviewed briefly with open-ended questions
to reflect on the difficulty of each of the three tasks and the
problems they had encountered.
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FIGURE 17. The assembly task for the participants. (A) The initial stage. (B-E) Intermediate stages.(F) The
final stage.

FIGURE 18. Ease-of-use: ARiana vs. Ajalon.

Due to restrictions on physical meetings during the
COVID-19 pandemic, some participants conducted the study
withAjalon remotely via a video call. Those participants were
asked to share their screen during the study, and with their
consent, audio and video were recorded.

C. RESULTS OF USABILITY TESTS
1) EASE-OF-USE
According to the results of the customized questionnaire,
ARiana is in general a user-friendly in-situ video annotation
tool, with the overall score of 3.62 over 5.00. When compar-
ing ARiana with Ajalon, as shown in Figure 18, ARiana felt
easier to use for labeling work steps and giving instructions.

However, participants felt it easier to use Ajalon to anno-
tate objects, including tools and materials used in each step.
According to the feedback received from the participants,
11 experienced a long delay in labelling objects using gesture

and speech. The delay was mainly caused by varying network
latency of video streaming in a public network (25 - 562 ms)
as well as errors in recognition of pointing gestures due to the
invisibility of hands. Figure 19 shows example scenarios in
which the users did not notice that their handwas not captured
by the camera, which resulted in failure of gesture recognition
and further failure of locating and labeling objects of interest
in time.

2) EFFICIENCY
According to the time logs of the annotation sessions, the ratio
of annotating time to the total length of the recorded video
was 0.7, with a standard deviation of 0.15, when ARiana
was in use. The time log also uncovered clear advantages
of using ARiana over Ajalon. On average, participants spent
17.86 minutes to annotate the assembly process with Ajalon,
compared with 5.2 minutes with ARiana. This time was mea-
sured as the total length of annotation activity of the par-
ticipant in a session without the assembly time. In terms
of savings factor A, as shown in Figure 20a, the value of
savings factor A varied between 0.6 and 8.4. The variation
between participants was large and correlated with the user’s
prior experience with AR and gesture and voice commands.
For example, the three participants with the highest savings
factor A, namely, P1, P5, and P16, were all experienced
with AR headsets, gesture commands, and voice commands.
In contrast, participants P4, P8, and P9 had experience with
voice commands or AR headsets only. For example, P9 had
used AR headsets a few times but had never used gesture
commands or voice commands before. P4 and P8 had only
experienced voice commands.

As shown in Figure 20b, when considering the total amount
of time spent on recording and annotation, ARiana still saved
time significantly. Savings factor B values ranged between
0.6 and 5.2. With assembly time, which is significantly
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FIGURE 19. Hand-occlusion issues experienced by participants in the test of ARiana. The hand regions are marked with red color.

FIGURE 20. Savings factors of using ARiana over Ajalon with
18 participants. (a) Savings factor A. (b)Savings factor B.

greater than annotation time, ARiana still has a better perfor-
mance. So, ARiana supported significantly the whole process
of demonstrating the assembly and annotating video.

The time savings was achieved in two ways. One way
was to detect idle states accurately in order to minimize the
idle time included in the collected video. For the video col-
lected using ARiana, only 2.8% of the duration contained
non-informative content (i.e., idle period in this case). The
other was to propose annotations with the support of context
awareness in order to reduce the time spent creating annota-
tions. The benefit of in-situ annotation was stated by partic-
ipant P6, who stated that they did not need to re-watch the
demonstration video and recall the process; rather, they only
needed to demonstrate the task and annotate the workflow
at the same time. Regarding the process of understanding,
participant P4 mentioned that the annotation was simple, and
they were able to annotate as naturally as they instructed other
persons to complete the assembly process.

FIGURE 21. Annotation accuracy in the case the object association list:
ARiana vs. Ajalon.

From these results, we claim that ARiana is more efficient
than Ajalon in terms of annotation time.

3) EFFECTIVENESS
Annotation accuracy was used to measure the effectiveness of
ARiana. Because work-step identification and the instruction
for each work step can be subjective, we decided to compare
only the quantitative measurement of errors in object annota-
tion (i.e., the creation of the object association list) between
ARiana and Ajalon.

As illustrated in Figure 21, users tended tomake fewermis-
takes when editing the object association list using gestures
and speech in the case of ARiana than mouse and keyboard
in the case of Ajalon. It is noteworthy that here we only com-
pare the annotations that were edited manually. Regarding the
number of manually created annotations, participants created
234 using ARiana and 235 using Ajalon.

The difference in terms of the annotation quality was par-
tially affected by the number of occlusions appearing in
the videos. Out of the 234 manual annotations collected
with ARiana, only 4.7% of the annotated objects had been
partially occluded by other objects. However, in separat-
ing video recording from annotation, the objects had often
been occluded by hands or other parts of the body in the
video, as the field expert could not always pay attention to
occlusions.

4) COGNITIVE LOAD
Figure 22 compares the cognitive load between ARiana and
Ajalon based on the results of theNASA-TLX test. In general,
there was no significant difference between these two cases.
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FIGURE 22. NASA-TLX scores for mental demand, physical demand,
temporal demand, performance, effort, and frustration when using
ARiana or Ajalon.

FIGURE 23. Comparison of latencies among different setups. They are
end-to-end latency including also networking latency in audio processing,
video processing and total.

Thus, ARiana appears to be able to maintain the cognitive
load in a two-task scenario as low as that of a one-task sce-
nario in the case of Ajalon.

The context-awareness module of ARiana contributed
partially to reducing the cognitive load of participants. The
qualitative findings revealed that approximately 13%of anno-
tations had been proposed by the context-awareness mod-
ule of ARiana. Seven out of 18 participants mentioned that
ARiana reminded them to provide annotations. This made
participants feel less anxious in remembering to produce
annotation while demonstrating. Participants P5 and P6 also
emphasized that it was easier for them to annotate information
by answering the prompts of ARiana. Moreover, it took less
time for them to provide annotation.

In addition, the elicited multimodal interface is another
essential piece of ARiana that kept the mental and physical
demand as that of Ajalon even though users had to carry
out both demonstration and annotation of the task simulta-
neously. Ten out of 18 participants said that it felt comfort-
able to provide annotations for each step segment, object
association list, and instruction at the time of demonstrat-
ing the task. In addition, they also mentioned that the visual
feedback of the interface, including panels on the top and
object bounding box, allowed them to continue tracking the

FIGURE 24. User satisfaction along the latency of ARiana for each
annotated information type.

annotation progress easily while demonstrating the assem-
bly task. Moreover, four out of 18 participants emphasized
they were confident in performing both demonstration and
annotation at the same time with the designed multimodal
interaction.

5) LATENCY
Figure 23 compares the response delay of in-situ anno-
tation among three setups, including local processing on
glasses, computation offloading to the edge (implemented
in ARiana), and computation offloading to the cloud. The
deployed hardware included an edge device (CPU: Intel
Core I7-7820HK, GPU: NVIDIA GeForce GTX1070, RAM:
16GB), and a powerful cloud computer (CPU: Intel Xeon
W-2133, GPU: Nvidia Quadro P5000, RAM: 64GB). ARiana
consists of vision-related and speech-related processing.
The vision-related component includes hand-object interac-
tion detection and pointing-gesture recognition, while the
speech-related component includes speech-to-text object-
name extraction for labeling and recognition of voice com-
mands. For local processing, both are run on smart glasses.
In the edge-based setup, vision-related processing is per-
formed at the edge device, while speech-related processing is
offloaded to the IBMWatson cloud service [76]. In the cloud
setup, both vision-related and speech-related components are
implemented in the cloud. As a result, the edge-based deploy-
ment performed significantly better than the others, with an
average end-to-end latency of 660 ms as shown in Figure 23.
That level of latency is sufficient to assist users in completing
state-flow tasks such as sandwich making and Lego assem-
bly [70] because the expected latency for those applications
is in the range of 600 − 2700 ms by user evaluation. How-
ever, Figure 24 shows that ARiana only achieved average
satisfaction of users, which is below the average with 2.94,
in annotating associated objects as compared with work steps
and instructions. Over 70% of participants answered that they
felt unsatisfied by the delay in annotating associated objects
using pointing gestures and voice.

Based on latency logs, the network transmission of the
vision-related component caused the latency of approxi-
mately 78 ms while the processing latency on the edge was

VOLUME 10, 2022 111719



T. A. Pham et al.: ARiana: Augmented Reality Based In-Situ Annotation of Assembly Videos

FIGURE 25. Comparison of workflow taken by two different users to
complete the same assembly task described in Figure 17. The green boxes
represent the additional steps the user under the line added to the
workflow.

FIGURE 26. Variation in workflow: ARiana versus Ajalon. Each color
represents a variant.

about 62 ms. Based on these observations, the cloud-based
speech recognition appears to be a key obstacle. One way to
reduce the latency would be to deploy the speech recognition
platform on the edge as well to shorten the network delay.
Moreover, with upcoming 5G and beyond networks, it should
be possible to reduce the wireless communication delays to
further reduce network latency.

According to the summary of the results in Table 3, ARiana
has proven to be an easy-to-use in-situ video annotation tool
that guides users to create high-quality annotations in an effi-
cient way. The design of ARiana has fulfilled the three DGs
and has shown advantages over Ajalon. During the exper-
iment, we have made the following observations about the
variation in workload and interactivity of ARiana as opposed
to Ajalon.

6) VARIATION IN WORKFLOW
Participants were supposed to complete the same task.
In practice, the way they executed the task varied. Thus,
they may have planned the workflow differently in terms of
the number of steps and the order of steps. For example,
Figure 25 compares the workflow taken by two different users
to complete the same assembly task, and shows that one user
defined two additional steps.

We compared the execution among participants, and ana-
lyzed the variation in workflow when using ARiana or

Ajalon. As shown in Figure 26, 11 variants were identified
from the test results of Ajalon. In the case of ARiana, the
number of variants converged to three with a dominant one
shared among 14 participants. After analyzing the dominant
variant, we realized that the convergence occurred because
participants had understood deeply the demonstration when
using ARiana. This convergence helps novices gain a deep
understanding of assembly and maintenance processes after
watching annotated videos.

VII. SUMMARY
In the evaluation of ARiana, we found that it improved per-
formance and user experience in video annotation over a
state-of-the-art tool in many aspects. Here, we summarize the
evaluation results and the implications of these results in the
design of novel video annotation tools.

Firstly, with Ariana, labeling is now integrated with
demonstration of a task. This means the user can adjust the
camera setup and move the objects to annotate information
easily in order to obtain a high-quality video. With an unoc-
cluded first-person view, the machine is more reliable and
efficient in object annotation than humans are with third-
person-perspective recording.

Secondly, ARiana saves annotation time by automatically
removing non-informative parts from recorded video and by
proposing annotations of objects and work-step segmentation
to reduce the manual efforts needed for adding annotations
while maintaining the cognitive load moderate as Ajalon.

Thirdly, comparedwithAjalon, ARiana improved the ease-
of-use in two out of 3 types of annotation tasks due to its
multimodal interaction design.

Fourthly, ARiana keeps latency low enough to achieve use-
ful guidance for annotation.

To further refine the design goals, as well as to gain other
important insights for improving ARiana, we recommend the
following next steps:
• Implementing speech recognition at the edge to reduce
the latency significantly;

• Detecting whether hands have come out of the viewpoint
of the first-person camera view in real time and guiding
the user to fix the problem by adjusting the camera pose
or the body position;

• Improving the efficiency of the computer vision algo-
rithms involved to reduce the response delay;

• Testing ARiana in real-world industrial environments to
validate the findings from this laboratory study.

VIII. CONCLUSION
To address problems in the conventional process of record-
ing and annotating assembly videos, we have developed
ARiana, a novel in-situ video annotation tool running on
smart glasses. ARiana allows field experts to efficiently anno-
tate first-person videos with workflow information (i.e., start-
ing and ending points of all work steps, tools and materials
used, and instructions for each step) while conducting assem-
bly or maintenance tasks. By conducting a user study with

111720 VOLUME 10, 2022



T. A. Pham et al.: ARiana: Augmented Reality Based In-Situ Annotation of Assembly Videos

18 participants using a toy set model, ARiana proved to be
more efficient and effective than a state-of-the-art video anno-
tation tool. In particular, with context awareness enabled,
ARiana is able to guide users to create annotations with less
effort and higher accuracy. Furthermore, through the combi-
nation of voice and gestural interactions, ARiana provides
a natural way for users to complete annotation tasks with-
out causing excessive cognitive load. However, ARiana still
needs to be evaluated more in several industrial environ-
ments to show its usability across several contexts. In addtion,
latency requires to be studied and improved for a better user
experience when using ARiana.

APPENDIX A QUESTIONS IN FORMATIVE INTERVIEW
• What are the difficult problems you commonly have
while annotating or documenting a maintenance video?

• How do you feel about those difficult problems?
• Have you ever thought about the solution for those prob-
lems? What are those solutions?

• How can you setup cameras for recording maintenance-
task demonstration?

• How do you feel when annotating a long video?
• How do you feel about the impact of those videos on
annotating or documenting process?

APPENDIX B QUESTIONNAIRE FOR ELICITATION STUDY
IN INTERACTION DESIGN OF ARiana
A. VOICE COMMANDS
1) It is easy to use selected voice command for ‘‘Start

annotating’’ command.
(a) strongly disagree (b) disagree (c) neutral (d) agree
(e) strongly agree

2) It is easy to memorize selected voice command for
‘‘Start annotating’’ command.
(a) strongly disagree (b) disagree (c) neutral (d) agree
(e) strongly agree

3) It is easy to use selected voice command for ‘‘Stop
annotating’’ command.
(a) strongly disagree (b) disagree (c) neutral (d) agree
(e) strongly agree

4) It is easy to memorize selected voice command for
‘‘Stop annotating’’ command.
(a) strongly disagree (b) disagree (c) neutral (d) agree
(e) strongly agree

5) It is easy to use selected voice command for ‘‘Start a
new step’’ command.
(a) strongly disagree (b) disagree (c) neutral (d) agree
(e) strongly agree

6) It is easy to memorize selected voice command for
‘‘Start a new step’’ command.
(a) strongly disagree (b) disagree (c) neutral (d) agree
(e) strongly agree

7) It is easy to use selected voice command for ‘‘Start to
give instruction’’ command.
(a) strongly disagree (b) disagree (c) neutral (d) agree
(e) strongly agree

8) It is easy to memorize selected voice command for
‘‘Start to give instruction’’ command.
(a) strongly disagree (b) disagree (c) neutral (d) agree
(e) strongly agree

9) It is easy to use selected voice command for ‘‘Undo the
latest annotating event’’ command.
(a) strongly disagree (b) disagree (c) neutral (d) agree
(e) strongly agree

10) It is easy to memorize selected voice command for
‘‘Undo the latest annotating event’’ command.
(a) strongly disagree (b) disagree (c) neutral (d) agree
(e) strongly agree

B. GESTURE
1) It is easy to use selected gesture for ‘‘Start annotating’’

command.
(a) strongly disagree (b) disagree (c) neutral (d) agree
(e) strongly agree

2) It is easy to memorize selected gesture for ‘‘Start anno-
tating’’ command.
(a) strongly disagree (b) disagree (c) neutral (d) agree
(e) strongly agree

3) It is easy to use selected gesture for ‘‘Stop annotating’’
command.
(a) strongly disagree (b) disagree (c) neutral (d) agree
(e) strongly agree

4) It is easy to memorize selected gesture for ‘‘Stop anno-
tating’’ command.
(a) strongly disagree (b) disagree (c) neutral (d) agree
(e) strongly agree

5) It is easy to use selected gesture for ‘‘Start a new step’’
command.
(a) strongly disagree (b) disagree (c) neutral (d) agree
(e) strongly agree

6) It is easy to memorize selected gesture for ‘‘Start a new
step’’ command.
(a) strongly disagree (b) disagree (c) neutral (d) agree
(e) strongly agree

7) It is easy to use selected gesture for ‘‘Present an object’’
command.
(a) strongly disagree (b) disagree (c) neutral (d) agree
(e) strongly agree

8) It is easy to memorize selected gesture for ‘‘Present an
object’’ command.
(a) strongly disagree (b) disagree (c) neutral (d) agree
(e) strongly agree

9) It is easy to use selected gesture for ‘‘Start to give
instruction’’ command.
(a) strongly disagree (b) disagree (c) neutral (d) agree
(e) strongly agree

10) It is easy tomemorize selected gesture for ‘‘Start to give
instruction’’ command.
(a) strongly disagree (b) disagree (c) neutral (d) agree
(e) strongly agree

11) It is easy to use selected gesture for ‘‘Undo the latest
annotating event’’ command.
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(a) strongly disagree (b) disagree (c) neutral (d) agree
(e) strongly agree

12) It is easy to memorize selected gesture for ‘‘Undo the
latest annotating event’’ command.
(a) strongly disagree (b) disagree (c) neutral (d) agree
(e) strongly agree

APPENDIX C QUESTIONNAIRE FOR THE EVALUATING
EASE-OF-USE OF AJALON AND ARiana
C. AJALON
1) It is easy to annotate work step with Ajalon.

(a) strongly disagree (b) disagree (c) neutral (d) agree
(e) strongly agree

2) It is easy to annotate objects association list with
Ajalon.
(a) strongly disagree (b) disagree (c) neutral (d) agree
(e) strongly agree

3) It is easy to annotate instruction with Ajalon.
(a) strongly disagree (b) disagree (c) neutral (d) agree
(e) strongly agree

D. ARiana
1) It is easy to annotate work step with ARiana.

(a) strongly disagree (b) disagree (c) neutral (d) agree
(e) strongly agree

2) It is easy to annotate objects association list with
ARiana.
(a) strongly disagree (b) disagree (c) neutral (d) agree
(e) strongly agree

3) It is easy to annotate instruction with ARiana.
(a) strongly disagree (b) disagree (c) neutral (d) agree
(e) strongly agree

APPENDIX D QUESTIONNAIRE FOR EVALUATING THE
SATISFACTION OF USERS FOR THE ARiana USAGE

1) ARiana easily catched your work step annotating com-
mand.
(a) strongly disagree (b) disagree (c) neutral (d) agree
(e) strongly agree

2) ARiana easily catched your object annotating com-
mands.
(a) strongly disagree (b) disagree (c) neutral (d) agree
(e) strongly agree

3) ARiana easily catched your instruction commands.
(a) strongly disagree (b) disagree (c) neutral (d) agree
(e) strongly agree

4) You felt satisfiedwith the latency of the visual feedback
while using ARiana.
(a) strongly disagree (b) disagree (c) neutral (d) agree
(e) strongly agree
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