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Background/Purpose: Sarcopenia is a prognostic factor in patients with head

and neck cancer (HNC). Sarcopenia can be determined using the skeletal

muscle index (SMI) calculated from cervical neck skeletal muscle (SM)

segmentations. However, SM segmentation requires manual input, which is

time-consuming and variable. Therefore, we developed a fully-automated

approach to segment cervical vertebra SM.

Materials/Methods: 390 HNC patients with contrast-enhanced CT scans were

utilized (300-training, 90-testing). Ground-truth single-slice SM segmentations at

the C3 vertebra were manually generated. A multi-stage deep learning pipeline

was developed, where a 3D ResUNet auto-segmented the C3 section (33 mm

window), the middle slice of the section was auto-selected, and a 2D ResUNet

auto-segmented the auto-selected slice. Both the 3D and 2D approaches trained

five sub-models (5-fold cross-validation) and combined sub-model predictions on

the test set using majority vote ensembling. Model performance was primarily

determined using the Dice similarity coefficient (DSC). Predicted SMI was

calculated using the auto-segmented SM cross-sectional area. Finally, using

established SMI cutoffs, we performed a Kaplan-Meier analysis to determine

associations with overall survival.

Results: Mean test set DSC of the 3D and 2D models were 0.96 and 0.95,

respectively. Predicted SMI had high correlation to the ground-truth SMI in

males and females (r>0.96). Predicted SMI stratified patients for overall survival

in males (log-rank p = 0.01) but not females (log-rank p = 0.07), consistent with

ground-truth SMI.
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Conclusion: We developed a high-performance, multi-stage, fully-automated

approach to segment cervical vertebra SM. Our study is an essential step towards

fully-automated sarcopenia-related decision-making in patients with HNC.

KEYWORDS

auto-segmentation, deep learning, skeletal muscle index, head and neck cancer, sarcopenia

Introduction

Sarcopenia – the excessive loss of skeletal muscle (SM) mass

and function – is a common and debilitating phenomenon in head

and neck cancer (HNC) patients (1). Weight loss is frequent in

HNC due to nutritional deficiencies induced by tumor geometry

affecting normal tissues (2) and/or side effects caused by therapeutic

interventions (3). Although the link between treatment-associated

weight loss and survival in HNC is unclear (4), sarcopenia has been

strongly associated with oncologic outcomes and late radiation-

induced toxicities (5–7). Notably, in a recent meta-analysis of HNC

patients by Surov et al. (5), sarcopenia was significantly associated

with lower overall survival (hazard ratio = 1.64, p < 0.00001) and

disease-free survival (hazard ratio = 2.00, p < 0.00001). Therefore,

sarcopenia prediction is of paramount importance in patients

with HNC.

Sarcopenia can be identified using different diagnostic criteria

(8). One quantitative method investigated in various studies is using

a threshold based on the skeletal muscle index (SMI), the cross-

sectional area of skeletal muscle measured on axial imaging

normalized to the square of the patient’s height (9). The SMI is

most commonly calculated and referenced using CT imaging of

abdominal musculature (10–14). However, abdominal imaging is

not available for all HNC patients. Importantly, Swartz et al. (15),

van Rijn-Dekker et al. (6), and Olson et al. (16) have recently

suggested the C3 cervical vertebra musculature cross-sectional area

may also be used to quantify sarcopenia accurately.

Current approaches to generate C3 musculature

segmentations needed for SMI calculation rely on either semi-

automated or completely manual segmentation (6), which can

be time-consuming, introduce unnecessary errors, and suffer

from interobserver variability. A fully-automated approach

would be an attractive alternative to the current manual/semi-

automated standard. Deep learning, which has found success in

medical image segmentation (17–20), may be an ideal choice for

fully-automated segmentation of SM. Several recent studies have

utilized deep learning methods for automated SM measurement

based on abdominal CT scans with reasonable performance (21–

26). However, to date, no studies have attempted to automate the

SMI calculation workflow based on head and neck imaging.

The primary objective of this study was to develop a fully-

automated approach to segment skeletal muscle at the C3

vertebral level for use in SMI calculations. These calculations

could be directly used to determine sarcopenia status for

predicting prognostic outcomes. To achieve this goal, we

developed and implemented a two-stage deep learning system

that utilizes 3D and 2D ResUNets to detect the C3 vertebra and

segment the corresponding C3 musculature, respectively. We

show that our approach can faithfully generate segmentations

comparable to ground-truth human-generated segmentations.

By fully automating the sarcopenia determination workflow, we

can ensure rapid, reproducible, and accurate measurements for

use in clinical decision-making.

Materials and methods

Patient and imaging data

495 patients from the head and neck squamous cell carcinoma

(HNSCC) publicly available dataset collection on The Cancer

Imaging Archive (TCIA) (27–29) were retrospectively collected in

2021. All patients had a histopathologically-proven diagnosis of

squamous cell carcinoma of the oropharynx and were treated with

curative-intent intensity-modulated radiotherapy. DICOM-

formatted contrast-enhanced CT scans were acquired from the

TCIA databases (27–29). Of the 495 patients available in the

HNSCC collection, 396 were selected due to their inclusion of the

C3 vertebrae on imaging. Subsequently, 6 patients were removed

due to image reconstruction errors (n=1), image processing errors

(n=1), or oblique image orientations (n=4), leading to a final set of

390 patients used in this analysis. The clinical and demographic

characteristics of these patients are shown in Table 1. The majority

of patients were male (86.6%) with base of tongue tumors (51.6%).

SM (paraspinal and sternocleidomastoid muscles) was manually

segmented for each CT image in one slice (2D image) at the level of

the C3 vertebra. The segmentations were performed using

sliceOmatic, version 5.0 (Tomovision) using previously published

Hounsfield unit thresholds to define muscle and fat (12, 30);

Abbreviations: DSC, Dice similarity coefficient; HNC, head and neck cancer;

ROI, region of interest; SM, skeletal muscle; SMI, skeletal muscle index.
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specifically, a range of -29 to +150 Hounsfield units was used to

initially define SM followed by manual corrections. No pathological

tissue was located in the segmented SM. The single-slice 2D CT

images selected for segmentation and the corresponding SM

segmentation masks were exported as DICOM files and tag files,

respectively. Segmentations are made publicly available on Figshare

(doi: 10.6084/m9.figshare.18480917); additional information on the

dataset used in this analysis can be found in the corresponding data

descriptor (31).

Image processing

The DICOM 3D volumetric and single-slice 2D CT images

were converted to Neuroimaging Informatics Technology

Initiative (NIfTI) format using the DICOM processing toolkit

DICOMRTTool v. 0.3.21 (32). The SM segmentation. tag files

were converted to NIfTI format using an in-house Python script.

The NIfTI files for the single-slice 2D CT images and SM

segmentation were used to train the 2D segmentation model

(described below). The 2D CT slice location in the C3 vertebra

was extracted from the DICOM file, which was then used to

generate the ground-truth segmentation mask for the C3 section,

defined as a volume 33 mm in thickness centered at the location

of the 2D CT slice. The tissue regions in the 3D CT images were

distinguished from the background by thresholding the images

using a value of greater than -500 Hounsfield units with any air

gaps within the tissue region filled to generate a binary mask for

the external boundaries. The generated external boundary masks

and the locations of the 2D CT slices were used to create the

ground-truth C3 section segmentations to train the 3D model

(described below). As we have described elsewhere (33), all the

images and masks were resampled to a fixed image resolution of

1 mm across all dimensions. The CT intensities were truncated

in the range of [−250, 250] Hounsfield units to increase soft

tissue contrast and then normalized to the range of [-1, 1] scale

(Figures 1A, B). We used the Medical Open Network for AI

(MONAI) (34) software transformation functions to rescale and

normalize images.

Segmentation model

We used a multi-stage deep learning convolutional neural

network approach for SM segmentation. Our approach was based

on the UNet architecture with residual connections (ResUNet)

included in the MONAI software package, as we have described in

previous publications (33, 35). In the first stage of our approach

(Figure 1C), a 3D ResUNet model auto-segmented the C3 vertebra

section (33 mm), which was then followed by auto-selection of the

middle slice of the section. In the second stage of our approach

(Figure 1D), a 2D ResUNet model auto-segmented the SM on the

auto-selected slice of the C3 section. Additional details of our

architecture are described in Appendix A.

Model implementation

We randomly split the data into 300 patients for training and

90 patients for testing. For training, we used a 5-fold cross-

validation approach where the 300 patients from the training

data were divided into five non-overlapping sets. Each set (60

patients) was used for model validation while the 240 patients in

the remaining sets were used for training, i.e., each set was used

once for testing and four times for training, leading to five sub-

models. The processed CT and corresponding masks for 3D

ResUNet model and 2D ResUNet models (C3 section and SM,

respectively) were randomly cropped to four random fixed-sized

regions (patches) of size (96, 96, 96) and (96, 96) per patch per

patient, respectively. Additional details on the model

TABLE 1 Clinical demographics of patients whose data were used in
this study.

Characteristic Count

Age (median, range) 57 (28–87)

Sex

Male 337

Female 52

Tumor subsite

Base of tongue 201

Glossopharyngeal sulcus 9

Soft palate 6

Tonsil 157

Not otherwise specified 16

HPV status

Negative 36

Positive 215

Unknown 138

T-category

T1 77

T2 166

T3 91

T4 55

N-category

N0 36

N1 44

N2 301

N3 8

AJCC stage (7th ed)

I 3

II 12

III 57

IV 317

AJCC, American Joint Committee on Cancer. One patient did not have clinical
information from The Cancer Imaging Archive so was not included in this table.
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implementation are described in Appendix A. We implemented

additional data augmentation to both image and mask patches to

minimize overfitting, including random horizontal flips of 50%

and random affine transformations with an axial rotation range

of 12 degrees and a scale range of 10%. We used the Adam

optimizer for computing the parameter updates and the soft

Dice loss function. The models were trained for 300 iterations

with a learning rate of 2×10-4 for the first 250 iterations and

1×10-4 for the remaining 50 iterations. The values for the Adam

optimizer coefficients b1 and b2 were 0.9 and 0.999, respectively.
Data augmentation and loss functions were provided by the

MONAI framework (34). The final segmentations on the test set

for both models were obtained by a majority vote on a pixel-by-

pixel basis for all predicted segmentation masks by the 5-fold

cross-validation sub-models (model ensemble), as described in a

previous study (33).

Model validation

For both the 3D ResUNet and 2D ResUNet models, we

evaluated the performance on the corresponding cross-

validation sets as well as the final ensemble segmentation on

the test set using the Dice similarity coefficient (DSC) (36).

Specific to the 3D model, we also evaluated the accuracy of the

C3 section segmentation by quantifying the absolute difference

between the slice locations of the mid-section of the C3 section

predicted by the 3D model and the 2D CT ground-truth image

(in mm). Specific to the 2D model, we compared the SM cross-

sectional areas obtained using the SM ground-truth

segmentation with 1. the 2D model predicted SM

segmentations on the same ground-truth CT image (Pred_GT)

and 2. the 2D model predicted SM segmentations on the slices

auto-selected by the 3D model (Pred_C3). We evaluated the

correlation between the SM cross-sectional areas using the

Pearson correlation coefficient; we also used a two-sided

Wilcoxon signed-rank test to determine if these SM values

were significantly different. Additionally, to derive the SMI, we

normalized the SM cross-sectional areas (in cm2) with the

patients’ heights (in m2). We then examined the correlation

between the SMI values produced by the ground-truth and deep

learning segmentations using the Pearson correlation coefficient;

we also used a two-sidedWilcoxon signed-rank test to determine

if these SMI values were significantly different. Based on

previous work by Swartz et al. (15) and van Rijn-Dekker et al.

(6), we used Equation 1 to calculate the cross-sectional area

FIGURE 1

An illustration of the workflow used for skeletal muscle (SM) auto-segmentation at the C3 vertebra. (A) Overlays of the ground-truth SM
segmentation and the original CT images. (B) Overlays of the ground-truth SM segmentation and the processed CT images. (C) An illustration of
the workflow used to auto-select a single CT slice at the C3 vertebra for SM auto-segmentation. The auto-selected slice is the middle slice of
the auto-segmented C3 section (33 mm in height) using a 3D ResUNet applied to the 3D volumetric CT image. (D) Auto-segmentation of SM
using a selected C3 vertebra CT image using a 2D ResUNet model.
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(CSA) at the L3 lumbar level based on the CSA at the C3 cervical

level and subsequently Equation 2 to calculate the lumbar SMI:

CSA   at   L3   cm2
� �

=   27:304 + 1:363 ∗CSA   at  C3   cm2
� �

− 0:671 ∗ age   yearsð Þ + 0:640

∗weight   kgð Þ + 26:422 ∗ sex sex = 1 for female,    2 for maleð Þ
(Eq:1)

Lumbar SMI  
cm2

m2

� �
=
CSA   at   L3   cm2

� �
height2 m2ð Þ (Eq:2)

Based on previous work by Prado et al. (30), SMI thresholds

of 52.4 cm2/m2 (males) and 38.5 cm2/m2 (females) were applied

to lumbar SMI derived from SM ground-truth and deep learning

segmentations to stratify patients by sarcopenia status (‘normal’

and ‘depleted’muscle); body composition related measurements

in the training and testing sets are shown in Appendix B. These

stratifications were then used for Kaplan-Meier analysis to

determine associations between sarcopenia status and overall

survival probabilities. To determine the sarcopenia status for the

whole data set (i.e., 390 patients), we implemented Kaplan-Meier

analysis on the 5-fold cross-validation data and the test data. We

aggregated the SMI estimated for each cross-validation fold (i.e.,

60 patients per fold) using the corresponding trained 3D and 2D

models in addition to the SMI for the test data using the average

predictions of the five cross-validation models.

Results

3D ResUNet model performance: C3
section auto-segmentation

The performance of the 3D ResUNet model for segmenting the

C3 section of the neck is summarized in Figure 2A. When assessing

the performance of each individual sub-model from our 5-fold

cross-validation, the DSCs calculated between the predicted region

segmentations and the ground-truth region segmentations were

high and consistent between all training folds, with a mean (±

standard deviation) DSC of 0.95 ± 0.01.When combining the cross-

validation fold predictions using our ensemble approach, the

performance on the test set increased to 0.96 ± 0.06. The middle

slices of the predicted 3D regional segmentations for the test set

were mostly within 4 mm of the ground-truth segmentation slice

locations, with the greatest number of patients being within 1 mm

(Figure 2B); the maximum outlier was at a distance of 10 mm.

FIGURE 2

3D ResUNet model performance for segmentation of C3 vertebra section. (A) Boxplots of the Dice similarity coefficient (DSC) distributions for
the 5-fold cross-validation data sets (Set 1 to Set 5 – 60 patients each) and the test data (90 patients). (B) Histogram of the absolute difference
(in mm) of the C3 slice location at the middle slice of the auto-segmented C3 section and the location of the ground-truth manually
segmented CT slice. Illustrative examples overlaying the C3 ground-truth segmentations (red) (33 mm centered at the ground-truth manually
segmented CT slice) and predicted segmentations (yellow) on the CT images with different DSC values (low – 0.75 (C), medium – 0.88 (D), and
high – 0.98 (E) performance compared to the mean DSC value of 0.95). The middle slice at the center of mass of the segmented C3 region was
auto-selected for further skeletal muscle auto-segmentation by the 2D ResUNet model.
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Examples of test set predictions for cases with low, medium, and

high performance compared to the mean DSC are shown in

Figures 2C–E. As can be visually confirmed, the low-

performance case still generated a segmentation such that the

middle slice was contained in the C3 region.

2D ResUNet model performance: SM
auto-segmentation

The performance of our 2D ResUNet model for segmenting the

C3 vertebra SM is summarized in Figure 3A. The DSCs calculated

between the model-predicted segmentations and the ground-truth

segmentations were high and consistent between all training folds,

with a mean DSC of 0.95 ± 0.002. When combining the cross-

validation fold predictions using our ensemble approach, the mean

DSC performance on the test set remained consistent at 0.95 ± 0.02.

The cross-sectional areas derived from the 2D model predictions

using both the ground-truth slice locations and auto-selected slice

locations from the 3D ResUNet model were highly correlated to the

cross-sectional areas derived from the ground-truth segmentations

(Figure 3B). The predicted areas using the ground-truth slice

locations had a Pearson r=0.98 (p < 0.0001) and nonsignificant

Wilcoxon test (p=0.43). Similarly, the predicted areas using the

auto-selected slice locations had a Pearson r=0.98 (p < 0.0001) and

nonsignificant Wilcoxon test (p=0.22). Examples of test set

predictions for cases with low, medium, and high performance

compared to the mean DSC for predictions using ground-truth slice

location are shown in Figures 3C–E. As can be visually confirmed,

the low-performance case successfully generated a segmentation for

musculature that was not included in the ground-truth

segmentation. Moreover, the predictions using the auto-selected

slice location from the 3D ResUNet model yielded virtually

indistinguishable results for the low-performance and medium-

FIGURE 3

2D ResUNet model performance for segmentation of C3 skeletal muscle (SM). (A) Boxplots of the Dice similarity coefficient (DSC) distributions for
the 5-fold cross-validation datasets (Set 1 to Set 5 – 60 patients each) and the test data (90 patients). (B) A scatter plot of the SM cross-sectional
area using the ground-truth manual segmentation (x-axis) and the SM cross-sectional areas (y-axis) using predicted segmentations of the 2D
ResUNet applied to the ground-truth CT image slice (Pred_GT) and the auto-selected CT image slice using the C3 section auto-segmentation
(Pred_C3). Illustrative examples overlaying the skeletal muscle (SM) ground-truth segmentations (red) and predicted segmentations (yellow) on the
same ground-truth CT images (C-E) and auto-selected CT images (F, G) with different DSC values (low – 0.88, medium - 0.95, and high – 0.98
compared to the mean estimated DSC value of 0.95). The auto-selected CT image for the high-performance example was identical to the ground-
truth image and therefore provided the same segmentation as shown in panel C (H) Histogram of percentage difference of SM cross-sectional
areas between ground-truth segmentations compared to the predicted SM cross-sectional areas (DA%) corresponding to the model using ground-
truth slice location (red) or auto-selected slice location (blue).
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performance cases (Figures 3F, G) and identical results for the

high-performance case (Figure 3E). Finally, when investigating the

percentage difference in cross-sectional areas between the model-

generated and ground-truth segmentations, there was no significant

difference when using the ground-truth slice location or the auto-

selected slice location (p=0.37) (Figure 3H).

SMI measurement comparisons

We compared SMI values for test set patients calculated using

ground-truth SM segmentations with predicted SMI values

calculated using SM segmentations generated from our 2D

ResUNet models using the ground-truth slice location

(Figure 4A) or auto-selected slice location (Figure 4B). Both

model SM segmentations led to predicted SMI values that were

highly correlated to the ground-truth SMI values. The predicted

SMI values using the ground-truth slice location for males and

females both had a Pearson r=0.98 (p < 0.0001) and nonsignificant

Wilcoxon signed-rank tests (p=0.17 and p=0.43, respectively)

compared to ground-truth SMI values. Similarly, the predicted

SMI values using the auto-selected slice location for males and

females had Pearson r values of 0.97 and 0.96, respectively (both p <

0.0001) and nonsignificant Wilcoxon signed-rank tests (p=0.19 and

p=0.98, respectively) compared to the ground-truth SMI values.

Survival analysis

The results of the overall survival analysis based on sarcopenia

thresholds are shown in Figure 5. Independent of the method of

SMI calculation (GT, Pred_GT, or Pred_C3), there were significant

differences in overall survival of males between those with normal

and depleted muscle tissue (Figures 5A–C), while females exhibited

no significant differences (Figures 5D–F). Hazard ratios (95%

confidence intervals) in males for GT, Pred_GT, and Pred_C3

were 1.82 (1.1-3.0), 1.95 (1.18-3.22), and 1.97 (1.19-3.25),

respectively. Hazard ratios (95% confidence intervals) in females

for GT, Pred_GT, and Pred_C3 were 2.76 (0.59-13.02), 3.4 (0.73-

15.83), and 3.72 (0.8-17.31), respectively.

Discussion

In this study, we utilized a multi-stage deep learning approach

to segment the C3 region of the head and neck, auto-select a single

representative slice, and auto-segment the corresponding SM. Our

approach determined slice location and segmented SM with high

accuracy when compared to ground-truth segmentations. By fully

automating this workflow, we have enabled more rapid testing and

application of sarcopenia-related clinical decision-making. To our

knowledge, this is the first study to fully automate sarcopenia

prediction based on non-abdominal HNC imaging.

Weutilizedboth2Dand3DResUNetmodels inourapproach.By

decomposing the C3 detection and SM segmentation problem into

two separate tasks, we ensure that accurate representations of patient

anatomy are identified by the models (C3 region) and subsequently

maximize performance for SM segmentation. While previous SM

auto-segmentation studies often required specific slices as model

inputs (21, 26) or utilized separate pre-processing software (23, 25),

multi-stagedeep learningmethodshave recently been adapted in this

domain as well (22, 24). Both the 2D and 3D ResUNet models that

make up our segmentation pipeline had high performance, with

mean DSC values in the test set above 0.95. Importantly, the

performance of our C3 SM segmentation model is comparable to

that of previous L3 SM deep learning segmentation models, which

also demonstrate test set DSCs of ~0.95 (21–26).Moreover, for cases

with relatively low performance, we visually confirmed that results

were reasonable, i.e., the auto-selected slice was still containedwithin

the C3 region for the 3D model, and the correct musculature was

BA

FIGURE 4

Scatter plots of the skeletal muscle index (SMI) values determined for test set patients (stratified by gender) using the ground-truth manual
segmentation (x-axis) and those determined using predicted segmentations of the 2D ResUNet (y-axis) using (A) the ground-truth CT image
slice (Pred_GT) and (B) the auto-selected CT image slice using the C3 section auto-segmentation (Pred_C3).
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segmented on the 2Dmodel. Importantly, we also showed minimal

differences in the 2D SM segmentation model regardless of how the

slice location was determined, indicating the model is robust to the

specific C3 slice location. Consistent with quantitative measures of

segmentationperformance,usingourdeep learningsegmentations to

calculate SMI demonstrated a high correlation with ground-truth

SMI independent of gender stratification.

A recent meta-analysis by Surov et al. calculated the cumulative

prevalence of sarcopenia in HNC patients at 42% (5), highlighting

the clinical need for accurate quantification of sarcopenia. Several

previous studies have demonstrated that SMI values can be used to

stratify patients into sarcopenia subgroups that are strongly

associated with prognostic outcomes (5–7). Using lumbar SMI

conversion equations previously derived by Swartz et al. (15) and

van Rijn-Dekker et al. (6) combined with validated SMI thresholds

(12), we demonstrated that calculations based on our deep learning

segmentations predict similar overall survival outcomes as

calculations based on ground-truth segmentations. Moreover, p-

values for all methods were significant for males but not females.

These results are consistent with recent literature byOlson et al. (16)

which emphasized that sarcopenia was associated with poor

survival outcomes in males but not in females. Our results

suggest that our automated methods are dependable for use in

prognostic outcome prediction.

While our study presents encouraging results towards full

automation of sarcopenia-related clinical decision-making for HNC

patients, there were some limitations. First, we only tested ourmethod

on pre-therapy images. Importantly, some studies have suggested

prognostic evidence for sarcopenia measurements based on

alternative or additional timepoints (e.g., body composition changes)

(7, 37). Therefore, further confirmatory work is needed to ensure our

methodscanbeusedaccuratelyandreproducibly for intra-therapyand

post-therapy imaging. Additionally, when defining sarcopenia using

SMI cutoffs, we have relied on historically accepted thresholds in

literature,but several recentdevelopments instandardizingSMIvalues,

e.g., through body mass index (38), have been proposed that warrant

further exploration. We must also note that while no universal

consensus on sarcopenia definitions currently exists, European

consensus guidelines (39) emphasize the importance of evaluating

muscle performance and strength in addition to muscle mass;

therefore, by European consensus guidelines we have only

investigated “presarcopenia” in this analysis. Moreover, we have

limited our analysis to CT images as CT is the most common

imaging modality for HNC radiotherapy treatment planning.

However, the use of additional modalities for SM segmentation, i.e.,

MRI, as has been utilized in other studies (40),maywarrant additional

auto-segmentation investigations. Finally, while we believe current

model performance is satisfactory for clinical applications as

demonstrated by comparisons with ground-truth segmentations and

SMImeasures, different architectural choices or ensemble approaches

could be further explored to improve performance.

Conclusions

In summary, using open-source toolkits and public data, we

applied 3D and 2D deep learning approaches to head and neck CT

images to develop an end-to-end automated workflow for SM

segmentation at the C3 vertebral level. When evaluated on

independent test data, our fully-automated approach yielded mean

DSCs of up to 0.96 for segmenting the C3 vertebra region and 0.95 for

segmenting the corresponding SM. Cross-sectional areas and

calculated SMI values derived from our approach were highly

correlated to ground-truth (r>0.95), indicating their potential clinical

FIGURE 5

Kaplan-Meier plots showing overall survival probabilities (test and validation set combined, 390 patients) as a function of time in days for estimated
skeletal muscle (SM) index (normal vs depleted) in male (A-C) and female (D-F) patients using the ground-truth SM segmentation (GT) (A, D), auto-
segmented SM using the ground-truth slice location (Pred_GT) (B, E), and auto-segmented SM using the auto-selected slice location (Pred_C3) (C, F).
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acceptability. Moreover, our methods can be reliably combined with

validated SMI thresholds for use in prognostic stratification.Our study

is an essential first step towards fully-automated workflows for

sarcopenia-related clinical-decision making. Future studies should

consider incorporating additional imaging timepoints and modalities

for automated sarcopenia prediction.
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