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A B S T R A C T   

Rumex obtusifolius (Rumex or broad leaved dock) is one of the most common weeds in grasslands. It spreads 
quickly, lowers the nutritional value of the grass, and is poisonous for livestock due to its oxalic acid content. 
Mapping it is important before any control treatment is applied. Current methods for mapping Rumex either 
involve manual work or the utilization of ground robots, which are not efficient in large fields. This study 
investigated the feasibility of using aerial images from unmanned aerial vehicles (UAV) and deep learning to map 
Rumex in grasslands. Seven pre-trained CNN models were tested using transfer learning on UAV images acquired 
at 10 m, 15 m, and 30 m height. Based on Cross Validation results, MobileNet performed the best in detecting 
Rumex, with an F1-Score of 78.36% and an AUROC of 93.74%, at 10 m height. At 15 m, the detection perfor-
mance was relatively lower (F1-score  = 72.00%, AUROC  = 88.67%), but the results showed that the perfor-
mance can increase with more data. Experiments also showed that Rumex detection was dependent on the flight 
height since the algorithm was unable to detect the plants at 30 m height. The code and the datasets used in this 
work were released in an open access repository to contribute to the advances in grassland management using 
UAV technology.   

1. Introduction 

Grasslands are an important agricultural ecosystem in Europe since 
they represent 35% of the utilized agricultural area (Smit et al., 2008). 
Most of the obtained production in grasslands is destined for fodder and 
hence, they are primordial for livestock’s nutrition and production. 
Grasslands have proved to reduce soil erosion (Liu et al., 2020) and to 
store CO2 (Yang et al., 2019), which cuts down the carbon losses from 
agricultural land to the atmosphere and contributes against climate 
change. Nevertheless, the hectares devoted to grassland in Europe are 
decreasing in the last years –mainly because of two reasons– (1) the 
production costs are high and (2) the opportunity cost of sowing another 
crop is bigger. From all the production costs, pest control represents a 
large part of the expenditures where chemical products are restricted 
(organic farming) (Flaten et al., 2020) since weeds are removed manu-
ally. Therefore, research should focus on developing methods to detect 
unwanted weeds at early stages and avoid their infestation through the 
fields. 

Rumex obtusifolius (Rumex or broad leaved dock) is one of the most 

common weeds in production grasslands in the Netherlands (Valente 
et al., 2019). It is a perennial, herbaceous plant of the botanical family of 
knot weed plants (Polygonaceae) and reaches heights of 50 up to 120 cm 
(Mosyakin, 2005). Rumex is a weed because it competes with grass for 
water, light, and nutrients (mainly Nitrogen) (Hiremath et al., 2013), 
reducing crop yield and lowering its edibility since it is poisonous for 
livestock (Krištálováv et al., 2011). Rumex has a high dissemination 
capacity. A single plant produces over 60,000 seeds per year in their 
flowering period (Holm et al., 1977). From those, 80% are vital seeds, 
which will germinate producing new plants. Vital seeds are long-lived 
and can germinate after burial for 21 years (Toole and Brown, 1946). 

Rumex control is mainly done by spraying pesticides. Nevertheless, 
chemicals are only effective in rosette stadium because they are systemic 
products, which affect only the leaves and the stem of the plant. As 
Rumex has a taproot, a lot of energy is stored in the root. Hence, the 
pesticide affects the leaves and the stem, but not the root, which allows a 
quick regrowth of the weed (Cavers and Harper, 1964). In extensive 
used grassland and in conservation areas, a large-scale herbicide usage is 
banned to preserve biodiversity in grassland. Frequent and early 
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mowing is also forbidden to protect soil-breeding bird species and di-
versity of plants. Both restrictions can result in massive spreading of 
broad leaved dock and thus complicate the cultivation of the grassland. 
There are other methods that do not utilize chemicals, for instance crop 
rotation and biological control (van Evert et al., 2009; Bond and Grundy, 
2001). Another alternative is removing the weeds manually or using 
ground robots (Kounalakis et al., 2019; Lottes et al., 2016; van Evert 
et al., 2011). However, all the mentioned approaches are inefficient in 
large grassland fields since they are either expensive, time-consuming 
and/or labour intensive. Consequently, there is a strong need to find 
an automatic detection method to control Rumex, among other weeds. 

2. Related work 

In the last years, there has been significant progress in the fields of 
object detection and image classification due to the increase in 
computation power and the availability of large datasets (Ciresan et al., 
2012; Russakovsky et al., 2015; Simonyan and Zisserman, 2015). These 
advances apply also to weed detection, recognition, and management. 
Already in 2018, (Kamilaris and Prenafeta-Boldú, 2018) published a 
survey of 40 papers that used deep learning techniques to address 
agricultural problems, including weed detection, which outperformed 
the traditional methods implemented until then. The most challenging 
step for weed detection is to distinguish between weed and crop species 
(Wang et al., 2019). To overcome the issue, (Brown and Noble, 2005) 
used both spectral and spatial features to identify weeds in crops. 
Similarly, (Hamylton et al., 2020) applied a CNN machine learning al-
gorithm that leveraged information from both the high spatial resolution 
and the spatial context of the raster grids of the UAV images to map 
island vegetation. A semi-automatic Object-Based Image Analysis pro-
cedure developed with Random Forest was implemented by (Gao et al., 
2018) to classify crop, weeds, and soil with an accuracy of 94.50%. 

Grasslands have a great diversity of vegetation, which is challenging 
for algorithms to identify targeted weed species from the rest of the 
grass. Hence, deep learning applications on weed detection in grassland 
are quite limited. (Gebhardt et al., 2006; Gebhardt and Kühbauch, 2007) 
carried out two consecutive studies where image segmentation, local 
homogeneity calculation, and morphological operations were used to 
segment homogeneous regions, with detection rates from 71% to 95%. 
Nevertheless, their algorithms were trained with images taken by hand 
at close range, which is not feasible in large fields. An open source 
method that can be applied in site-specific weed management was 
developed by (Lam et al., 2021), with an F1-score of 78.65%. Never-
theless, they only implemented one CNN architecture (VGG16), many 
elements required manual intervention, and needed the use of com-
mercial software. 

Ground robots have already been used to detect weeds in grasslands. 
However, they have several disadvantages over UAV, mainly the 
coverage time and the adaptation to the terrain. The robot used in (van 
Evert et al., 2011) covered one hectare in three hours, whereas a UAV 
flies one hectare in less than half an hour –depending on the flight height 
and resolution to be acquired. Secondly, ground robots need to adapt to 
the irregularities of the terrain (slope, rocks, pits…), which might cause 
their break or stop their task, but UAV are not affected by ground dif-
ficulties. A combination of both technologies is a good solution to speed 
up the detection time of weeds. A UAV for a faster weed detection was 
flown in (Binch et al., 2018), which afterwards informed the ground 
robot about the location of weeds and redirected the robot to the exact 
location and enabled it to spray weeds from the ground. Their algorithm 
achieved 83–95% accuracy, with very specific flight parameters and a 
flight height of 8 feet. Some size distortions were introduced due to a 
varying flight height, which need to be controlled in future studies. 

As a continuation of our previous research (Valente et al., 2019), 
UAV imagery is used in this research to map Rumex in grasslands. In this 
study, seven pre-trained convolutional neural network (CNN) models 
are applied to a high resolution aerial imagery acquired from an 

Unmanned Aerial Vehicle (UAV) over wide grasslands to evaluate their 
feasibility on detecting Rumex plants. To evaluate the performance of 
the deep learning algorithms, two k-fold cross validation models were 
implemented for the 10 m and 15 m datasets. To cover the flight height 
limitation mentioned in our previous paper, three different flight heights 
(10 m, 15 m, and 30 m) are tested to evaluate the best configuration for 
Rumex mapping in high-resolution UAV imagery. Moreover, the code 
and dataset used for this study is available in an open access repository 
for the scientific community. 

3. Materials and methods 

The overall methodology of this study is subdivided into two stages: 
development and mapping (Fig. 1). The development stage consists of 
two phases, namely preprocessing and training. During preprocessing, 
an orthomosaic and its ground truth is transformed into a format suit-
able for training a deep learning model. This transformed data is used to 
compare different deep learning models using k-fold cross validation. 
The best model is then trained using all the data. The mapping phase 
involves applying the trained model to a new orthomosaic to detect and 
map the Rumex location. The details of both modelling and mapping 
stages are explained in the remainder of this section. 

3.1. Study area 

The dataset used in this study was acquired in a grassland field 
located in Germany, near the city of Kleve. This field belongs to the 
Salmorth reserve and is used by researchers of the nature conservation 
center in the Kleve district (Naturschutzzentrum im Kreis Kleve e.V). 
The exact location of the field is presented in Fig. 2 (Centre of Field 1: 
5748143 N, 714617E. Centre of Field 2: 5748301 N, 714692E). All the 
grassland fields along the Rhine river to the West of the city of Emmerich 
(close to the Dutch - German border) were infested with Rumex 
obtusifolius. 

3.2. Data acquisition and annotation 

The aerial imagery was acquired using a Phantom 3 Professional 
UAV, on April 17th, 2018. Three flight heights were implemented (10 m, 
15 m, and 30 m) with spatial resolutions of 5.9 mm, 6.4 mm, and 8.3 
mm, respectively. The UAV images and the Ground Control Points (GCP) 
measured on the field were used to generate very high-resolution 
orthomosaics with the photogrammetry software Agisoft Metashape 
(St. Petersburg, Russia, version 1.7.3). The parameters chosen to 
generate the orthomosaic were the followings: medium accuracy, 400 k 
key points, and 100 k tie points. The orthomosaics used in this work 
have been published in a public repository to be used as benchmark for 
testing future works in this field (Valente and Kooistra, 2021). 

Fig. 3 shows the orthomosaic of Field 1 divided into four quadrants 
(four main cardinal points) and the location of the labelled Rumex plants 
marked with red bounding boxes. Dividing the orthomosaic into four 
quadrants was not an indispensable step, but was done to simplify the 
preprocessing steps (see Section 3.3) and to ease the division of training, 
validation and test sets. 

Experts of the nature conservation centre in the Kleve district located 
Rumex plants in the orthomosaic and labelled them using Matlab 
(Massachussets, USA, version 9.4). They realized that in the 10 m and 
the 15-m-orthomosaics, they were not able to identify all the broad 
leaved dock plants, and the amount of labelled ones was approximately 
80% of all the Rumex plants present in the field. Regarding the 30-m- 
orthomosaic, they did not manage to identify any Rumex plant due to 
the low spatial resolution, which means that no ground truth data was 
available for Field 2. Table 1 displays the number of labelled Rumex 
plants in each quadrant of the 10 m and 15-m-orthomosaics. At 10 
meters, 481 instances of Rumex were detected by the experts across the 
four quadrants. Similarly, in the 15-m-orthomosaic, 129 Rumex 
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instances were detected by them. 

3.3. Preprocessing 

The first step during the preprocessing phase was to divide the 
orthomosaics into non-overlapping image patches of size 256 × 256 
pixels implementing a sliding window operation, as described in (Val-
ente et al., 2019). Each image patch was labelled as Rumex (positive 
case) or Other (negative case) based on the ground truth bounding boxes 
provided by the experts. When the ground truth box overlapped with the 
image patch, the corresponding patch was labelled as Rumex. Otherwise, 
it was labelled as Other. 

Fig. 4 shows some examples of image patches with and without 

Rumex. The resulting patches were used in a cross validation setting to 
evaluate the model performance. The details of the CV procedure are 
explained in Section 3.6. 

3.4. Deep learning models 

Several off-the-shelf deep learning models were compared for their 
efficacy in classifying Rumex on grasslands with UAV imagery. They 
were also used to establish a benchmark. The deep learning models 
considered are listed in Table 2. Large conventional algorithms such as 
VGG, Resnet and DenseNet were tested, along with smaller models 
(ShuffleNet, MobileNet, EfficientNet, MNASNet) that were developed 
for computationally efficiency, meaning that they can be run on devices 

Fig. 1. Overall methodology of the study. In the development stage, the model is trained with the orthomosaic and the corresponding ground truth data. The trained 
model is used to map Rumex in the mapping stage. 

Fig. 2. Location of the fields over which the aerial imagery was acquired. The 10 m and 15-m-data was collected in Field 1 while 30-m-data was acquired in Field 2.  
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with limited hardware capacity. 
PyTorch (version 1.7) (Paszke et al., 2017) was chosen to implement 

and train these models. The library includes these models pretrained on 
the ImageNet database (Deng et al., 2009), which enables them to 
classify 1000 different object classes. Since there are only two classes in 
this study (Rumex and Other), the final layer of these models were 
modified to solve a binary classification problem instead of 1000 classes. 
The model was fine-tuned by means of transfer learning (Yosinski et al., 
2014) with the Rumex dataset. The training was carried out using Adam 

optimizer and early stopping was used to ensure good generalization 
(Goodfellow et al., 2016). 

All hyperparameters’ values were set to default except the learning 
rate, which was determined separately by testing a range of values as 
described in (Smith, 2017). The code in this study is available at the 
following GitHub repository https://github.com/satnih/rumex. 

3.5. Performance metrics 

Several metrics were used to characterize the performance of the 
classification models, including accuracy, precision, recall, F1-score, 
and area under the receiver operating characteristic curve (AUROC) 
(Fawcett, 2006). The first four metrics are derived from the confusion 
matrix of a binary classifier, which consists on a 2 × 2 matrix that groups 
the predictions into true positives (TP), true negatives (TN), false posi-
tives (FP) and false negatives (FN), as presented in Table 3. The AUROC 
is a performance metric for discrimination between positive and nega-
tive cases. It takes values in the range of [0.5,1], where a random clas-
sifier has a score of around 0.5 and a perfect classifier a 1. It is plotted as 
false positive rate (FPR) against true positive rate (TPR). While the 
confusion matrix and the associated metrics are meant to analyze the 
actual classification decision of a model, AUROC summarises the model 
performance across all potential classification decisions. All the metrics 
are defined in Eqs. (1)–(6). 

Fig. 3. Orthomosaic of Field 1 divided into four quadrants: NW (top left), NE (top right), SW (bottom left) and SE (bottom right), together with the annotated Rumex 
plants, marked as red bounding boxes. 

Table 1 
Number of Rumex and Other patches in each quadrant of the orthomosaics of 
10 m and 15 m.  

Quadrant Rumex Other 

(a) 10 m orthomosaic 
NW 50 291 
SW 178 366 
NE 219 454 
SE 34 177 
Total 481 1288  

(b) 15 m orthomosaic 
SW 95 245 
SE 34 148 
Total 129 393  

Fig. 4. Examples of Rumex patches (top row), marked with red bounding boxes 
and Other patches (bottom row). 

Table 2 
Off-the-shelf deep learning models implemented in this work.  

Algorithm Reference 

VGG (Simonyan and Zisserman, 2014) 
ResNet (He et al., 2016) 
DenseNet (Huang et al., 2017) 
ShuffleNet V2 (Ma et al., 2018) 
MobileNet V2 (Sandler et al., 2018) 
EfficientNet (Tan and Le, 2019) 
MNASNet (Tan et al., 2019)  

Table 3 
Confusion matrix of the Rumex study case.    

Actual class   

Rumex Other 

Predicted class Rumex TP FP 
Other FN TN  
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Accuracy =
TP + TN

TP + TN + FP + FN
(1)  

Precision =
TP

TP + FP
(2)  

Recall =
TP

TP + FN
(3)  

F1 =
2 × Precision × Recall

Precision + Recall
(4)  

FPR =
FP

FP + TN
(5)  

TPR =
TP

TP + FN
(6)  

3.6. Cross Validation 

Since there are a limited number of image patches, cross validation 
(CV) was used to evaluate all the models for both the 10 m and 15 m 
dataset to ensure there was no bias in the analysis. For the 10 m data set, 
the patches from the four quadrants were randomly shuffled and split 
into five folds using stratified sampling. This ensured that each of the 
five folds had equal number of Rumex and Other patches since there are 
in total 481 Rumex patches and 1288 Other patches (Table 1). After 
splitting the data, 5-fold CV was used to evaluate each model. In each 
iteration, one fold was used as the test set, another was used as the 
validation set and the remaining three were used as the training set. This 
procedure was repeated five times, so training was performed on each 
fold. Each model’s performance was determined by averaging the met-
rics of the five folds. For the 15 m dataset, 2-fold CV was used instead of 
5-fold CV due to limited data points (129 Rumex and 393 Other). 

4. Results 

Table 4 displays the performance of the algorithms trained with the 
10 m-orthomosaic. The model’s names are suffixed with ”-10” to indi-
cate that they are trained with 10 m-data. Due to the high class imbal-
ance, Table 4 also includes the accuracy of a default classifier, that 
always predicts an image patch to belong to the majority class (in this 
case it is Other). Thus, its accuracy of a default classifier is simply the 
percentage of Other patches in the test set. It can be seen that all models 
performed better than the default classifier. MobileNet-10 has the 
highest AUROC (92.68%) and F1-score (77.46%) compared to the other 
models. However, the other models (except MNASNET) are not too far 
behind. The minimum AUROC and F1-score obtained (excluding 
MNASNet) are 90.70% and 73.18%, respectively. However, the standard 
deviation of the F1-score of Densenet-10 and Efficient-10 are very high 
(14 and 10, respectively) indicating that their performance was not 
consistent across different folds. Based on these results, MobileNet-10 
was chosen for the rest of the study. Moreover, MobileNet is one of 
the smallest and most computationally efficient models, with about 

300,000 parameters compared to other models. 
To better understand the performance of Mobilenet-10, the pre-

dictions of each fold was analyzed in more detail. For instance, Table 5 
shows the confusion matrix of a fold that was the test set in an iteration. 
Overall, there were 34 misclassified patches that can be divided into 
three categories based on the type of errors: 1) wrong labels, 2) image 
artifacts, and 3) small plants. Fig. 5 shows some example patches from 
these three categories. The first row consists of patches that were mis-
labelled as Other. The model correctly identified them as Rumex, but 
they were accounted as false positives in the confusion matrix. The 
second row shows patches with image artifacts because of which the 
algorithm failed to detect Rumex. Finally, the last row shows patches 
with very small Rumex which the model could not detect. Overall, 
MobileNet-10 failed only on difficult cases, indicating its robustness. 

4.1. Different Heights 

4.1.1. Flight height of 15 meters 
MobileNet-10 was also tested on the 15 m-orthomosaic to examine 

its re-usability. As expected, its performance was poorer on 15 m-data 
compared to 10 m-data (F1-score  = 71.22% vs 77.46%, respectively). A 
reason for this reduction is that on the 15 m-orthomosaic the Rumex 
plants were smaller and the algorithm was trained with the size of the 
10 m-orthomosaic. To solve this problem, the model was fine-tuned with 
some images of the 15 m-data. This updated model is referred as 
MobileNet-15. Despite the limited training data, there was a significant 
improvement in performance, as shown in Table 6. Particularly, the F1- 
Score increased from 71.22% to 78.16%, indicating that the model could 
be adapted to new environments efficiently with a small amount of 
training data. For future studies, more data can be introduced to the 
model to check if the model’s performance can still increase. 

4.1.2. Flight height of 30 meters 
MobileNet-10 was also tested on the 30-m-orthomosaic, shown in 

Fig. 6. The 30-m-orthomosaic did not come with ground truth data 
because the experts could not identify any Rumex plant in it (mainly due 
to the spatial resolution). MobileNet-10 also failed to detect Rumex 
plants in it. These results indicated that the flight height of 30 m and the 
8.3 mm spatial resolution were limiting factors for Rumex detection. 

5. Discussion 

MobileNet-10 was able to correctly classify 93.84% of the image 
patches of an orthomosaic. Furthermore, it showed promising results 
when tested on the 15-m-data. Nevertheless, it should be noted that all 

Table 4 
Cross validation metrics (mean ± std) of different models on 10 m data. The Default classifier always predicts the image to belong to Other class. All values are in 
percentage (%).   

F1-score Precision Recall Accuracy AUROC 

MobileNet-10 77.46 ± 4 80.07 ± 11 76.30 ± 5 87.68 ± 4 92.68 ± 1 
ShuffleNet-10 75.21 ± 3 82.82 ± 9 70.20 ± 9 87.50 ± 2 91.32 ± 2 
ResNet-10 73.33 ± 5 86.76 ± 8 64.44 ± 9 87.39 ± 2 91.11 ± 0 
VGG-10 74.50 ± 7 74.54 ± 16 77.78 ± 9 84.90 ± 7 90.70 ± 2 
DenseNet-10 73.18 ± 14 75.10 ± 2 80.06 ± 14 80.09 ± 21 92.28 ± 2 
EfficientNet-10 75.73 ± 10 93.95 ± 7 72.38 ± 20 88.18 ± 3 90.68 ± 4 
MNASNet-10 35.32 ± 20 22.76 ± 13 79.37 ± 44 39.65 ± 20 65.00 ± 30 
Default-10 NA NA NA 62.40 50.00  

Table 5 
Confusion matrix from one iteration of 5-fold CV of Mobilenet-10.    

Actual   
Other Rumex 

Predicted Other 246 12 
Rumex 22 74  
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data was acquired on the same day, and under similar light conditions. 
Therefore, more research is required to assess the robustness of the 
method, for example, in different weather conditions, and in different 
latitudes. However, it should be remarked that experiments carried on 
15-m-data showed that the same development methodology used to 
train MobileNet-10 can be used to update the model to new conditions. 
The reasoning behind is that MobileNet-15 was trained also with images 
from the 15 m flight height, which were more similar to the test dataset 
for that case. Therefore, the algorithm learnt some specific patterns of 
that dataset and consequently Rumex plants were better detected. 

In the existing literature on Rumex detection, there are other ap-
proaches that achieved similar or higher performance like (van Evert 
et al., 2011), who managed to achieve 93.00% accuracy and (Ahmed 
et al., 2014), who achieved an accuracy of 98.50%. Nevertheless, these 
studies used close range images with spatial resolutions of around 2 mm, 
either by hand or with a robot, whereas this study uses UAV imagery 
with 5.9 mm of spatial resolution. While it is difficult to detect Rumex 
from a larger height, it also makes it possible to cover larger areas, which 
eases scalability. In another related study (Lam et al., 2021) proposed an 
automated open-source workflow for mapping Rumex in grasslands. 
However, the proposed workflow has many elements that require 
manual intervention, for instance, the resolution parameter of the 
orthophoto in the WebODM software (ODM, 2020), that needs to be set 
manually on a case-by-case basis. Further, they claim to provide an 
open-source methodology while some elements of the workflow require 
the use of the commercial software Agisoft Metashape. While this soft-
ware can be replaced by an open-source alternative, like QGIS (QGIS 
Development Team, 2009), it also requires manual setting of several 
parameters. Furthermore, the authors do not demonstrate the general-
isation ability of the model to new environments, and neither provide a 
repository to their code and datasets. 

It took only 4 s to obtain the results displayed on Table 4 for 
MobileNet-10 on Field 1. This is yet not enough for a real-time appli-
cation, but a promising future research direction includes exploring 
smaller and more efficient deep learning models and methods to map 
Rumex in a grassland during the UAVs flight. 

Finally, while this study focused on mapping Rumex obtusifolius in 
grasslands, the same methodology should be tested to map others weeds 
or plants in grasslands. Moreover, future studies could focus on the 
detection and analysis of Rumex plants at an earlier development stage 
to plan ahead the weed control strategies. 

6. Conclusion 

This study demonstrated that it is feasible to use deep learning 
models on UAV imagery to map Rumex obtusifolius in grasslands with 
very limited training data. Seven different deep learning models were 
explored. Among those, MobileNet was the most suitable for this 
application, with an F1-score of 78.36%, recall of 79.76%, and an 
AUROC of 93.74%. Experiments showed that the model trained at a 
specific flight height does not directly generalize to different heights. 
Cross-validation made it possible to confirm that using transfer learning 
on a small amount of additional data can be used to adapt the model to 
new flying conditions. Moreover, we discovered that 5.9 mm of spatial 
resolution is the minimum resolution required for Rumex detection 
using UAV. Finally, the code and the datasets used in this work are 
published on an open access repository to contribute to the advances in 
grassland management using UAV technology. 
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Fig. 5. Example patches misclassified by MobileNet-10. The first row shows 
patches with wrong label (MobileNet-10 correctly identified them as Other). 
The second and the third rows represent patches with image artifacts and small 
Rumex plants, respectively, in which MobileNet-10 failed to detect 
Rumex plants. 

Table 6 
Performance of MobileNet-10 and Mobilenet-15. MobileNet-10 is the Mobilenet 
model trained with 10 m-data, whereas MobileNet-15 is the updated version of 
MobileNet-10, which is fine-tuned with 15 m-data. Default-15 is the default 
classifier that predicts the image to belong always to Other.   

F1 Precision Recall Accuracy AUROC 

MobileNet-15 78.16 ± 1 85.33 ± 2 72.10 ± 1 90.04 ± 0 93.37 ± 0 
MobileNet-10 71.22 ± 0 86.66 ± 0 60.46 ± 1 87.93 ± 0 91.46 ± 0 
Default-15 NA NA NA 67.00 ± 0 50.00  

Fig. 6. No Rumex patches were identified by the experts and neither detected 
by MobileNet-10 on the 30-m-orthomosaic (no presence of blue squares neither 
red bounding boxes). 
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