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A B S T R A C T   

This work is devoted to the strategy towards the optimal development of multiparametric process of single- 
walled carbon nanotube (SWCNT) synthesis. Here, we examine the implementation of machine learning tech-
niques and discuss features of the optimal dataset size and density for aerosol chemical vapor deposition method 
with a complex carbon source. We employ the dataset of 369 points, comprising synthesis parameters (catalyst 
amount, temperature, feed of carbon sources) and corresponding carbon nanotube characteristics (yield, quality, 
structure, optoelectrical figure of merit). Assessing the performance of six machine learning methods on the 
dataset, we demonstrate Artificial Neural Network to be the most suitable approach to predict the outcome of 
synthesis processes. We show that even a dataset of 250 points with the inhomogeneous distribution of input 
parameters is enough to reach an acceptable performance of the Artificial Neural Network, wherein the error is 
most likely to arise from experimental inaccuracy and hidden uncontrolled variables. We believe our work will 
contribute to the selection of an appropriate regression algorithm for the controlled carbon nanotube synthesis 
and further development of an autonomous synthesis system for an “on-demand” SWCNT production.   

1. Introduction 

Catalytic chemical vapor deposition (CVD) is nowadays one of the 
most well-established methods for a large-scale production of various 
nanomaterials such as low-dimensional carbon allotropes [1], semi-
conducting nanowires [2], 2D crystals [3], etc. The bottom-up synthesis 
ideology of CVD usually involves complex processes on different length 
scales including atomic level catalysis, nanoscale transport phenomena, 
catalyst particle-bed/particle interaction, as well as heat and mass 
transfer at macroscopic level [4]. The complex impact of synthesis pa-
rameters and reactor architecture on the CVD growth could be barely 
described by classical theoretical methods, while optimization of reac-
tion outcome (a product) is typically a challenging and time-consuming 
task. Indeed, the typical CVD process employs a multidimensional and 
strongly interconnected parameter space making manual optimization 
with a trial-and-error approach “the worst form except all the others”. 

One of the best examples of conventional approaches falling short to 

facilitate the material development is the CVD growth of single-walled 
carbon nanotubes (SWCNTs). The SWCNT synthesis with tailored 
output has been the topic of numerous discussions driven by ground-
breaking perspectives for transistor technology [5], optoelectronic ap-
plications [6,7], bioimaging [8], etc. Intensive three-decade-long 
research has resulted in the development of various routes to govern 
SWCNT synthesis including catalyst design [9–11], selective treatment 
[12,13], growth kinetics manipulation [14–18], and reactor tuning [19, 
20]. However, a lack of established theory of catalytic SWCNT growth 
challenges the efficient association of current advances and further 
development towards the desired goal of controlled output. 

Machine learning (ML) was shown to be extremely helpful for 
tackling strongly nonlinear and multidimensional tasks [21] including 
the ones related to material science and physical chemistry [22–24]. ML 
methods have shown their applicability for experiment planning, opti-
mization, and prediction of material properties in terms of thin-film 
technology [25] and nanomaterial development [26–28], as they 
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efficiently restore the relationship between experimental conditions and 
the output of the reaction. Thus, for substrate-supported laboratory scale 
CVD of SWCNTs, a closed-loop automated system coupled with ML was 
developed [29] and successfully implemented for yield maximization 
[30] and diameter control [31], promoting autonomous reaction 
research. 

The aerosol (floating-catalyst) CVD method is a special case when a 
catalyst is not fixed on a support but introduced into a flow reactor as a 
pre-formed aerosol [32,33] or as a volatile catalyst precursor [34]. The 
main benefits of the aerosol CVD method are continuous operation, 
excellent scalability, and technological effectiveness. However, aerosol 
CVD fails to comply with the classical optimization approach for a cat-
alytic process as a single particle can be hardly immobilized and thor-
oughly examined. In combination with ML, aerosol CVD opens the way 
for a fully autonomous industrial-scale system for controlled nanotube 
production facilitating advanced nanotube applications. However, the 
development of an automated aerosol system requires 
more-sophisticated instrumentation for in situ characterization. Aerosol 
CVD brings to the field complex aerosol science and flow dynamics 
making ML implementation especially relevant. Previously, Artificial 
Neural Network (ANN) [35] and Support Vector Machine [36] served 
the simplest aerosol CVD based on the Boudouard reaction [37] to 
predict output SWCNT properties (diameter, yield, film sheet resistance, 
defectiveness, etc.) from experimental conditions. However, ML imple-
mentation to a hydrocarbon-based process looks more complicated and 
has not been yet performed. This type of more sophisticated aerosol CVD 
methods exhibits stronger nonlinearity of reaction parameter space and 
vast amount of possible reaction routes but may provide higher pro-
ductivity [38] or even higher quality of carbon nanotubes [39]. More-
over, there is a lack of discussion on the optimal algorithm for CVD 
nanotube synthesis. 

In this work, we employ the hydrocarbon-based aerosol CVD method 
(implementing toluene and ethylene as carbon sources [40]), providing 
multiparametric data for the comparative study of different ML algo-
rithms. We used sheet resistance at 90% transmittance–quality factor for 
transparent conductive films– as one of the output parameter for 
regression task. The acquired results allow us to describe the optimal 
dataset for the highest prediction accuracy. We believe our work to 
facilitate the successful ML algorithm selection for aerosol CVD, thus, 
guiding the path for the development of a fully autonomous system for 
controlled production of SWCNTs on an industrial scale. 

2. Experimental 

SWCNT films were produced using a vertical tubular reactor with 
inner diameter of 44 mm and length of 1.3 m. Briefly, ferrocene (catalyst 
precursor; Sigma-Aldrich, 98%) and thiophene (growth promoter; 
Sigma-Aldrich, 99%) were dissolved in toluene (Sigma-Aldrich, 
≥99.9%); the solution was injected into the reactor with a syringe pump 
(NE-1000, New Era Instruments). Apart from toluene, ethylene (Linde 
Gas, 4.5 purity grade) was used as a second carbon source; it was pre-
mixed with a carrier gas – hydrogen (Linde Gas, 5.0 purity grade). High 
precision mass flow controllers (Alicat Scientific, MC-Series) were used 
to maintain the required gas flow rates. SWCNTs were collected at the 
outlet of the reactor on a filter (MF-Millipore, 0.45 μm effective pore 
size), and then the film was transferred to a quartz slab for 
characterization. 

We utilized optical absorption spectroscopy (PerkinElmer, Lambda 
1050) estimating the yield as the optical density of the film (absorbance; 
A550) collected per unit time (t) and normalized by the collection area of 
the filter (S) and gas flow rate (Q): 

Yield
[
cm2•L−1]

=
A550

t
•

S
Q

.

The Raman spectroscopy of the samples was performed at 532 nm 
excitation wavelength using a confocal Raman microscope (Renishaw 

inVia). The spectra were fitted as a composition of Lorentzian peaks and 
the intensity ratio of graphitic (G) and disorder-induced (D) bands (IG/ 
ID), describing the quality of nanotube structure [41], were calculated. 
Measurements for each sample were repeated at least three times, the 
results were averaged. 

Four-probe unit (Jandel RM3000) was implemented for sheet resis-
tance (RS) measurements. For each film, the measurements were 
repeated five times at different probe arrangements (relative to the 
sample) and averaged. To evaluate the optoelectronic performance of 
the SWCNT films, we applied an equivalent sheet resistance at a trans-
mittance of 90% in the middle of visible wavelength calculated ac-
cording to the following equation [42]: 

R90 = RS •
A550

log10(0.9)

3. Results and discussion 

3.1. Dataset characterization 

Previously our research group published a systematic study of the 
joint ethylene and toluene effect on nanotube synthesis in terms of 
aerosol CVD exploring carbon feedstock effects on transparent conduc-
tive properties of SWCNT films with a focus on growth mechanism [43]. 
We expanded the previously obtained data with new experimental re-
sults combining them in a dataset of 369 points (Supplementary Infor-
mation). Temperature, ethylene concentration, ferrocene and toluene 
feed rates formed a four-dimensional vector of features describing syn-
thesis conditions. We kept other available variables (e.g., gas flow rate, 
ratio of ferrocene and thiophene) constant to limit the dataset 
complexity, despite their apparent importance for the nanotube growth 
[18,19,44]. It is worth mentioning that those parameters might also be 
used as additional features for regression task and provide not only the 
better understanding of synthesis process but also improve the perfor-
mance of certain regression models. 

Each sample was studied by a set of characterization techniques 
including Raman and optical absorption spectroscopy and 4-probe re-
sistivity measurements. The characteristics of produced SWCNT films, in 
particular, Yield (collection rate), IG/ID (as a measure of quality), R90 (a 
figure of merit for nanotube-based transparent electrodes), and SWCNT 
diameter (d; key feature for SWCNT-based optical applications) were 
considered as labels (output parameters) for the regression task (Fig. 1). 
The scatter plots depicting the mutual correlation between target vari-
ables and data features (Fig. S1) indicate the strongly non-linear nature 
of synthesis processes and resulting material properties that justifies the 
implementation of the ML approach. 

The distributions of studied nanotube characteristics are depicted in 
Fig. 2. In general, both Yield and R90 labels range over 5 orders of 
magnitude with a close-to-log-normal distribution, while IG/ID values 
show close-to-normal distribution within a range from 1 to 300. Mean 
diameter (d) varies in a rather narrow range from 1 to 2.5 nm. Never-
theless, we used the logarithms of R90 and Yield as labels to reduce the 
effect of dataset inhomogeneity and a wide-range variation of labels. In 
addition, we carried out the data preprocessing of both features and 
labels prior to feeding the data to regression algorithms. For this, each 
feature and label were independently standardized as follows: X =

X−μ
σ , 

where μ and σ are mean value and dispersion of certain feature/label, 
denoted here as X. 

Measuring the film characteristics with several repetitions allowed 
us to estimate the mean square error of labels and use it further in data 
analysis (Fig. 2e). We found IG/ID to be the most fluctuating parameter 
with the widest distribution of relative deviation, reaching up to 90% for 
certain points, however, its third quartile (upper part of solid box) was 
below 18%. The mean values of relative deviation (hereinafter experi-
mental error) of Yield, R90, and IG/ID were estimated to be 5.3%, 9.6%, 
and 15.2%, correspondingly. The deviation of mean diameter was 
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Fig. 1. Reactor set-up and description of input (reaction conditions) and output (nanotube characteristics) parameters. Visualization of collected dataset reflecting 
mutual dependence of nanotube film characteristics with reaction parameters. (A colour version of this figure can be viewed online.) 

Fig. 2. The histograms of Yield, R90, IG/ID and d distributions. Boxplot of relative deviation of Yield, R90, and IG/ID. White and black lines in the box correspond to 
mean and median values of deviation. Whiskers on the box plot corresponds to the range four-times higher than interquartile one. (A colour version of this figure can 
be viewed online.) 
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estimated to be ca. 1.3% and it was considered the same for all the 
samples. 

3.2. Machine learning methods 

For the comparative analysis of the ML approaches on the experi-
mental data we evaluated the performance of several classical regression 
models realized in Scikit-Learn Python package [45]. In particular, we 
employed simple Linear and Polynomial (linear model with polynomial 
features) models, as well as more advanced Support Vector Machine 
(SVM) and Random Forest algorithms successfully implemented in 
previous works [36,46]. Besides, in pursuit of achieving state-of-the-art 
performance, we tested XGBoost regressor – one of the most efficient 
gradient boosting decision tree method [47]. The experimental dataset 
was split into 5 folds and model performance was cross-validated on the 
data using mean absolute percentage error (MAPE) as a prediction score. 
Each fold was consequentially used as a testing subset for performance 
evaluation, while the other four were used for training, and the results 
were averaged. We performed the Grid Search hyperparameter optimi-
zation for each implemented model: the optimized hyperparameters 
(denoted according to Scikit-learn and XGBoost documentation) could 
be found in Supporting Information (Table S1). 

The averaged results of cross-validation are presented in Table 1. 
Firstly, all tested algorithms demonstrated good performance for pre-
dicting nanotube mean diameter with MAPE ranging from 3.6 to 7.5%. 
The main reason for the relatively good performance is narrow distri-
bution of the label (diameter), as well as the prevailing effect of a single 
input parameter (ethylene concentration) on nanotube diameter [39]. 
This was not the case for other parameters (Yield, IG/ID, and R90). As we 
expected, simple methods of classical machine learning (linear and 
polynomial regression) demonstrated poor performance on the rest of 
the dataset with MAPE above 50% for each investigated label. The 
reason for such a poor performance might lie in the highly nonlinear 
dependence of output targets (material characteristics) on input syn-
thesis parameters, which cannot be properly described by simple 
models. The situation significantly improves with the use of SVM, 
demonstrating moderate performance on the dataset and reaching the 
lowest regression error of 28% for R90. Decision tree-based methods 
such as Random Forest and XGBoost have slightly different scores 
handling well with IG/ID labels and being less effective for the R90 pre-
diction. It is worth mentioning that XGBoost method noticeably out-
performs its counterparts for IG/ID output parameter reaching MAPE 
score of 23%. Despite all three models (SVM, Random Forest and 
XGBoost) employ ensemble based approach, the best performance of 
XGBoost was anticipated because of its unique ability to adaptively 
insert new trees in the ensemble to reduce the residual loss from pre-
vious trees. 

Despite classical algorithms of ML adequately coping with the 
experimental dataset, the error score achieved is significantly higher 
than the estimated experimental inaccuracy. In pursuit of prediction 
quality improvement, we referred to the deep learning approach – 
Artificial Neural Network. 

3.3. Artificial neural network 

Artificial neural networks (ANNs) have good potential for complex 
regression tasks since they possess a greater number of training pa-
rameters than classical methods. However, being a data-greedy algo-
rithm, ANN has an increased risk of over-fitting. For comparison with 
classical ML algorithms, we selected a fully connected neural network, 
which was successfully implemented in our previous work for process-
ing the data from a carbon monoxide-based synthesis system [35]; the 
architecture of the ANN is depicted in Fig. S2. Briefly, the sequential 
model of ANN, consisting of 3 hidden layers with a ReLu activation 
function, was developed using the open-source Keras library [48]. To 
counteract overfitting and boost training speed dropout layers followed 
the 1st and the 3rd hidden layers, and a batch normalization layer was 
placed after the 2nd hidden layer. Besides, in terms of ANN training, the 
following data augmentation procedure was used: we oversampled the 
training subsets generating 20 distorted copies of each data sample with 
the same features, but labels distributed normally around the actual 
value with the standard deviation equal to the experimental error. At the 
same time, the testing subset contained only real samples which were 
not oversampled. This approach allowed us not only to artificially 
enlarge the dataset facilitating ANN training but also provided an 
additional regularization scheme taking into account the accuracy of 
experimental labels. 

In pursuit of optimizing ANN performance, we carried out the 
hyperparameter adjustment with a Bayesian Optimization Keras tuner, 
varying the number of nodes for each hidden layer, and drop-out pa-
rameters. Best hyperparameters could be found in Supplementary Ma-
terials (Table S2). The learning curves for ANN with optimized 
parameters are depicted in Fig. 3. In general, approximately 50–100 
training epochs are sufficient for algorithms to reach convergence on the 
validation dataset for every output parameter. Surprisingly, despite a 
scarcity of the data used, we did not observe noticeable model over-
fitting (increase in error on validation dataset with epoch number) after 
300 learning epochs. Based on the results of cross-validation, we can 
state the optimized ANN outperforms the methods of classical machine 
learning. Thus, the MAPE of 27%, 23%, 22%, and 3.6% were obtained 
after cross-validation for Yield, R90, IG/ID, and diameter predictions 
correspondingly, demonstrating slight improvement over the previous 
results. It should be stressed that the ratio for mean average percentage 
errors and experimental errors (5, 2, 1.5, and c.a. 3 times higher for 
Yield, R90, IG/ID, and d, respectively) corresponds to previous results of 
the ANN for the aerosol CVD based on the simple Boudouard reaction (3, 
2.8, and 4 times for IG/ID, Yield, and d, respectively) [35]. Thus, the 
enhanced error is rather provided by the experiment design and method 
complexity. 

ANN noticeably outperforms classical algorithms in the R90 param-
eter prediction demonstrating 6% percent improvement in score. This 
might be attributed to the unique ability of ANN to learn high-level 
features from data in an incremental manner and the complexity of 
the R90 parameter. Indeed, as it was demonstrated previously, the R90 is 
an intricate parameter strongly interconnected with the structural 
characteristics of SWCNTs [49] and it has a strongly nonlinear rela-
tionship with synthesis parameters [43]. 

It is worth mentioning that the best result on IG/ID prediction cor-
responds to the highest experimental error of 15.2% (Table 1), while the 
reverse result is obtained for the yield label. This fact might indicate the 
underestimated error values for yield, as follows, resulting in lower ef-
ficiency of implemented augmentation procedure in describing experi-
mental inaccuracy. 

3.4. Optimal dataset 

Despite the improvement in prediction quality, achieved MAPE 
values are significantly higher than the estimated experimental accu-
racy: 5, 2, and 1.5 times higher for Yield, IG/ID, and R90, respectively. 

Table 1 
Performance (MAPE [%]) of classical ML algorithms on the experimental data-
set; the accuracy of the experiment is also given as a reference value.  

Model R90 IG/ID Yield d 

Std. experimental error 9.6 15.2 5.3 1.3 
Linear 61 52 115 7.5 
Polynomial 61 52 63 5.9 
SVM 28 30 35 4.0 
Random Forest 33 27 33 4.1 
XGBoost 33 23 29 4.3 
ANN 22 23 27 3.6  
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Taking into account ANN being a data greedy method, firstly, we intu-
itively assumed that a dataset of a bigger size should improve the pre-
diction performance. Since dataset enlargement is an expensive and 
laborious process, we approached the issue of appropriate dataset size 
from another angle instead – we randomly sliced our dataset into subsets 
of different sizes (training size was four-time bigger than testing) and 
evaluated the algorithm performance (implementing previously dis-
cussed augmentation procedure). The number of generated training 
subsets of each size was reversely proportional to the size (See Table S3). 

The results of the analysis for MAPE of R90 (the most complex 
parameter) are depicted in Fig. 4. In general, a prediction score shows a 
downward trend below the training size of ca. 200 points and no 
noticeable change above. Small size of training subsets also results in a 
huge deviation of MAPE, though the situation improves further, reach-
ing a standard deviation value of 4% at the training subset sizes above 
250 points. Thus, we can assume the dataset of 250 points to be suffi-
cient to effectively describe the space of synthesis parameters used in 
our study and no further improvement in the prediction score is 

expected to be achieved by dataset enlargement. In contrast, the pre-
diction score is rather limited by the quality of the points or accuracy of 
the data collection. 

Another hypothesis regarding the high ratio between MAPE and 
experimental error is a non-homogeneous distribution of the input pa-
rameters over the chemical space. Indeed, a significant error might be 
brought by outlying points of extreme parameter variation (e.g. too high 
ethylene concentration). To assess this hypothesis, the procedure for 
data discarding from a four-dimensional space might be elaborated. To 
reduce the dimensionality of the variables to one, we employed the 
principal component analysis (PCA), that allowed us to “trim” (Fig. 5), 
and better visualize the dataset (see Fig. S4). The dataset trimming has 
almost no effect on R90 prediction accuracy; though for other parameters 
(Fig. S3) the downward trend of MAPE with trimmed fraction is 
observed justifying to some extent the need for an even space of input 
parameters. Nevertheless, the two-fold difference between MAPE and 
experimental error implies the role of hidden parameters of the 
employed hydrocarbon aerosol CVD method (e.g. memory effect of the 
reactor walls [50] or SWCNT doping with ambient [51]). 

Thus, the achieved results are comparable with experimental error 
and we believe them to be fruitful for the development of fully- 
autonomous research and advanced optimization. 

4. Conclusions 

In conclusion, we evaluated the performance of several ML algo-
rithms for the regression task on the data from a complex hydrocarbon- 
based aerosol CVD process for the SWCNT synthesis. Having acquired 
the dataset of 369 points comprising 4 input and 3 target parameters, we 
showed the implementation of a fully connected artificial neural 
network to outperform other tested algorithms, especially, coping better 
with complex R90 parameters presumably due to its ability to learn high- 
level features. We reached mean average percentage errors comparable 
to experimental errors (5, 1.5, and 2 times higher for Yield, IG/ID, and 
R90, respectively) and examined possible factors limiting further prog-
ress. We showed that even a dataset of 250 points (out of 369) is suffi-
cient to provide the same accuracy refuting thereby the amount of data 
being a key barrier. As for the quality of the data, using principal 
component analysis, we were able to reduce the number of variables and 
show that even distribution of input features might improve ANN 

Fig. 3. ANN learning curves for different target parameters: R90 (a), IG/ID (b), Yield (c) and diameter (d). The grey dashed lines correspond to achieved prediction 
errors. (A colour version of this figure can be viewed online.) 

Fig. 4. The effect of training dataset size on ANN performance for R90 label. 
Ratio of training to testing sizes was kept constant at 4:1. Green dots indicate 
each repetition. The Grey error bars describe mean and standard deviation for 
each training size. (A colour version of this figure can be viewed online.) 
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performance to MAPE (e.g. 25% for IG/ID). We believe ANN to be an 
effective approach for the controlled aerosol CVD synthesis task, in 
particular for autonomous aerosol CVD operation speeding up the “on- 
demand” synthesis of SWCNTs. 
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