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EDGE-PROMOTING ADAPTIVE BAYESIAN EXPERIMENTAL
DESIGN FOR X-RAY IMAGING\ast 

TAPIO HELIN\dagger , NUUTTI HYV\"ONEN\ddagger , AND JUHA-PEKKA PUSKA\ddagger 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . This work considers sequential edge-promoting Bayesian experimental design for
(discretized) linear inverse problems, exemplified by X-ray tomography. The process of computing
a total variation--type reconstruction of the absorption inside the imaged body via lagged diffusiv-
ity iteration is interpreted in the Bayesian framework. Assuming a Gaussian additive noise model,
this leads to an approximate Gaussian posterior with a covariance structure that contains informa-
tion on the location of edges in the posterior mean. The next projection geometry is then chosen
through A- or D-optimal Bayesian design, which corresponds to minimizing the trace or the deter-
minant of the updated posterior covariance matrix that accounts for the new projection. Two- and
three-dimensional numerical examples based on simulated data demonstrate the functionality of the
introduced approach.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . X-ray tomography, optimal projections, Bayesian experimental design, A-optimality,
D-optimality, adaptivity, edge-promoting prior, lagged diffusivity

\bfA \bfM \bfS \bfs \bfu \bfb \bfj \bfe \bfc \bft \bfc \bfl \bfa \bfs \bfs \bfi fi\bfc \bfa \bft \bfi \bfo \bfn \bfs . 15A29, 62K05, 62F15, 65F10, 65F22, 65K10

\bfD \bfO \bfI . 10.1137/21M1409330

1. Introduction. Large-scale Bayesian inverse problems have rapidly gained
popularity during the last two decades [31, 49]. While computational resources seem
ever-increasing, data acquisition in a number of real-life inverse problems remains
restricted or expensive. In consequence, there is a growing interest to develop com-
putational methodologies for designing efficient data acquisition techniques or experi-
mental setups to maximize the value of data in the solution process. Bayesian optimal
experimental design (OED) provides a principled approach to such a task, and it has
been widely adopted in the inverse problems community; see, e.g., [3] and references
therein.

A Bayesian optimal design p\ast maximizes the expected utility function U(p) over
the design space D with respect to the data y and model parameters u according to

p\ast = argmax
p\in D

\BbbE [U(p;u, y)]

= argmax
p\in D

\int 
\scrY 

\int 
\scrU 
U(p;u, y)\pi (u | p, y)\pi (y | p) dudy.(1.1)

Here \pi (u | p, y) and \pi (y | p) stand for the posterior distribution of the parameter u and
the marginal distribution of the data y, respectively, under the design p. Moreover, \scrY 
and \scrU are (subsets of) potentially high-dimensional real coordinate spaces to which

\ast Submitted to the journal's Computational Methods in Science and Engineering section April 1,
2021; accepted for publication (in revised form) January 14, 2022; published electronically May 19,
2022.

https://doi.org/10.1137/21M1409330
\bfF \bfu \bfn \bfd \bfi \bfn \bfg : The work of the first author was supported by the the Academy of Finland through

grants 320082 and 326961. The work of the second and third authors was supported by the Academy
of Finland through grant 312124.

\dagger School of Engineering Science, LUT University, Lappeenranta, 53851 Finland (Tapio.Helin@
lut.fi).

\ddagger Department of Mathematics and Systems Analysis, Aalto University, FI-00076 Aalto, Finland
(nuutti.hyvonen@aalto.fi, juha-pekka.puska@aalto.fi).

B506

D
ow

nl
oa

de
d 

11
/0

8/
22

 to
 1

30
.2

33
.2

16
.1

33
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

https://doi.org/10.1137/21M1409330
mailto:Tapio.Helin@lut.fi
mailto:Tapio.Helin@lut.fi
mailto:nuutti.hyvonen@aalto.fi
mailto:juha-pekka.puska@aalto.fi


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ADAPTIVE EXPERIMENTAL DESIGN IN X-RAY IMAGING B507

the data and the model parameters belong, respectively. The utility function can
be devised in a number of ways; the two most common choices for U are arguably
a negative quadratic loss function that measures the squared distance from u to a
specific point estimator such as the posterior mean and the expected information
gain, where U is defined by the Kullback--Leibler distance between the posterior and
prior distributions.

The computational crux of (1.1) lies with the double integral over the poten-
tially high-dimensional parameter and data spaces related to the considered imaging
application. Moreover, if the set of possible designs is vast (e.g., p is a continuous pa-
rameter on a high-dimensional manifold), an exhaustive search may seem unfeasible.
Still, significant progress has been made in the past working under conditions that
allow closed form presentations for the above double integral. For the aforementioned
two cost functions, the integrals in (1.1) are explicitly solvable when the posterior and
data marginal distributions are Gaussian. In inverse problems, this occurs when the
forward operator is linear and the prior and additive noise distributions are Gauss-
ian [31]. In such a case, the double integral is essentially proportional to the trace
and the determinant of the posterior covariance, respectively. In the literature, these
are called the Bayesian A- and D-optimality criteria [18].

There has also been substantial effort to go beyond the conditions that enable
explicit integration in (1.1). In this regard, important early work was carried out in
[45, 27, 28] toward developing fast double loop Monte Carlo algorithms for tackling
general inverse problems. More recent approaches have concentrated on improving
efficiency of integral approximations by Laplace's method in the context of nonlinear
inverse problems [37, 6, 20, 13]. Under well-designed approximation schemes, the com-
putational complexity of such methods can be low in terms of the number of required
forward solutions and scalable in the sense of being independent of the parameter and
data dimensions [55, 56].

This paper grows out of the observation that the efficient use of non-Gaussian
prior distributions in Bayesian OED for inverse problems has not been addressed in
the literature. Indeed, successful solvers in imaging problems rely on well-designed
prior information, which in variational regularization is often formulated in terms of
nonquadratic penalty functionals [46]. Following the popularity of convex regular-
ization in imaging, similar ideas have been successfully introduced to the Bayesian
setting by formulating non-Gaussian priors in Banach spaces such as Besov spaces or
functions of bounded variation; see, e.g., [54, 57, 52, 33, 1, 2, 38]. Motivated by these
observations, our work contributes toward including non-Gaussian prior distributions
in Bayesian OED practices for inverse problems and imaging.

1.1. Our contribution. This work introduces a computational method for per-
forming greedy sequential OED for linear inverse problems with a total variation (TV)
prior. The proposed algorithm is novel, as it does not utilize Laplace's approximation
around the posterior mode or sampling schemes to tackle a non-Gaussian posterior
distribution. Instead, its founding idea is based on the so-called lagged diffusivity
approximation for TV introduced in [53]. At each step of the sequential algorithm,
a lagged diffusivity iteration is employed to produce a sequence of Gaussian approxi-
mations for the TV prior, presumably with increasing accuracy close to the posterior
mode. Assuming an additive Gaussian noise model, one of the two cost functions
mentioned above, and replacing the TV prior by its final Gaussian approximation
allow a closed form solution for the double integral in (1.1). This leads to a standard
form A- or D-optimality criterion for choosing the subsequent measurement design.
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B508 TAPIO HELIN, NUUTTI HYV\"ONEN, AND JUHA-PEKKA PUSKA

It should be emphasized that the Bayesian interpretation of the lagged diffu-
sivity iteration is not new, but the main contribution of this work is its utilization
in OED. Indeed, the Bayesian connection of lagged diffusivity iteration is detailed
in [12, sect. 4.3.1] for the Laplace prior, with the associated line of reasoning readily
applicable for the TV prior as well, and it was implicitly introduced already in [17].
Moreover, the iteration can be interpreted as a sequence of Laplace's approximations
that depend on the current estimate for the posterior mode [51].

Like the lagged diffusivity approximation, our method could also be formulated
for a large class of Gibbs prior measures. Moreover, it may be possible to extend some
of our ideas to the framework of nonlinear inverse problems by combining them with
Laplace's method. Be that as it may, in this work the proposed algorithm is only
tested with a linear inverse problem and a TV prior.

We develop our method in the context of X-ray tomography, building upon our
previous work [15] that considered efficiency and adaptivity of sequential OED in such
a framework. X-ray tomography is particularly well-suited for a sequential approach
to OED, as the radiation exposure (i.e., the number of projections) often needs to
be minimized while maximizing the quality of the reconstruction in certain regions of
interest, the locations of which may be unknown a priori.

We consider X-ray tomography in both two- and three-dimensional imaging set-
ups with a narrow X-ray beam whose propagation angle and lateral position can be
optimized. Our main hypothesis is that an approximate TV prior in Bayesian OED
for X-ray tomography should promote designs that efficiently recover edges in the
imaged target, which is a desired goal in X-ray tomography, as well as in many other
imaging applications, because the imaged body often has piecewise constant absorp-
tion structure (consider, e.g., organs inside a human body); we refer to the textbooks
[12, 16, 31] and the references therein for more information on other edge-promoting
(Bayesian) reconstruction techniques. The presented numerical experiments, which
are based on simulated data, demonstrate that our algorithm does indeed perform well
for certain piecewise constant phantoms when compared with the use of equiangular
full-width projections corresponding to an equivalent radiation dose.

This text is organized as follows. Section 2 introduces a discretized linear mea-
surement model for X-ray tomography. In section 3 the basic ideas of lagged diffu-
sivity iteration are interpreted in the Bayesian framework. The concepts of A- and
D-optimality are recalled in section 4, and they are subsequently combined with the
lagged diffusivity iteration to form a sequential OED algorithm in section 5. The nu-
merical experiments are presented in section 6, and the concluding remarks are listed
in section 7.

1.2. Literature review. Bayesian OED has gained substantial attention in
large-scale inverse problems during the recent years. In addition to the works men-
tioned above, let us list [8, 11, 22, 23, 24, 25, 30, 32, 36, 37, 9] to name a few papers on
this topic. In particular, there is an interesting line of research developing Bayesian
OED for infinite-dimensional inverse problems [5, 4, 6, 7]. Here, we test our novel
ideas in a sequential optimization strategy, which has previously been formalized for
large-scale problems in [29] based on ideas from dynamical programming. For general
references on Bayesian OED, we mention the review papers [18, 44] and the mono-
graph [40].

Optimization of the imaging geometry in X-ray tomography has previously been
considered in [43, 15]. The article [43] explored empirical A-optimal design in con-
strained problems based on training data by adopting sparse sensor-placing strategies
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ADAPTIVE EXPERIMENTAL DESIGN IN X-RAY IMAGING B509

and a gradient-based optimization scheme. The latter paper [15] introduced more
degrees of freedom (lateral position of the source-receiver pair) to the problem, con-
sidered efficient evaluation of the A- and D-optimality target functions, and introduced
adaptivity to the algorithm.

The idea of TV denoising was originally presented in [42], and the lagged dif-
fusivity fixed point iteration for approximating TV regularization was introduced
in [53]. The convergence of the algorithm has been considered, e.g., in [21, 19] for
finite-dimensional image restoration problems, and its Bayesian interpretation was in-
troduced in [12, 17]. Finally, let us remark that TV regularization is widely employed
in computed tomography; see, e.g., [47, 35, 50].

2. Measurement model and its discretization. The X-ray measurements
are modeled either as parallel beam or cone beam tomography, where multiple rays
are directed into the object D \subset \BbbR d, d = 2 or 3, and the resulting intensities of the
rays are measured at detectors [39]. Without severe loss of generality we assume that
D is rectangular. The attenuation is described by the Lambert--Beer equation

(2.1) I = I0 exp

\biggl( 
 - 
\int 
L

uds

\biggr) 
,

where L is the line along which the considered ray travels, I0 is the intensity of the
X-ray before entering the object, and u : D \rightarrow \BbbR + is the absorption. Obviously, (2.1)
can equivalently be given as

log(I0) - log(I) =

\int 
L

uds.

In particular, the difference between the logarithms of the emitted and measured
intensities is typically considered as the available data when X-ray tomography is
tackled mathematically.

We discretize the imaged domain into n\prime \in \BbbN pixels (or voxels in the three-
dimensional case) but assume the absorption distribution vanishes at the boundary
pixels. The number of interior pixels is denoted by n < n\prime . The design parameter
dependent forward operator, mapping the discretized absorption to the log-intensity
measurements in a single projection image, can be approximated by a matrix R \in 
\BbbR m\times n, where m is the number of detectors in the considered measurement device
whose geometric orientation can be altered between projection images (see, e.g., [48]).
Typically the dimension of the unknown is higher than the number of pixels in a single
projection image, i.e., m \ll n. In what follows, we abuse the notation by denoting
with u \in \BbbR n, n \in \BbbN , both the vector of pixel values defining the discretized (interior)
absorption as well as a (smooth enough) function on D taking the given absorption
values at the center points of the respective pixels. The correct interpretation should
be clear from the context.

3. TV prior and lagged diffusivity. Let uk - 1 \in \BbbR n be the reconstruction
after taking k  - 1 \in \BbbN 0 X-ray projections, and assume that the kth projection image
has just become available; section 4 below explains how the experimental design for
this newest projection was chosen. In other words, k indicates the number of available
projection images with m pixels each. Let us denote by

Rk =

\left[   R(p1)
...

R(pk)

\right]   \in \BbbR km\times n and yk =

\left[   y1...
yk

\right]   \in \BbbR kmD
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B510 TAPIO HELIN, NUUTTI HYV\"ONEN, AND JUHA-PEKKA PUSKA

the stacked X-ray matrix corresponding to all previous projections and the corre-
sponding stacked noisy data vector, respectively. The vectors p1, . . . , pk are the de-
sign parameters employed thus far. The measurements y1, . . . , yk are modeled as
realizations of the random variables

(3.1) Yj = R(pj)U +Nj , j = 1, . . . , k,

where U is the randomized discrete absorption and the noise Nj is assumed to follow

a zero-mean Gaussian distribution \scrN (0,\Gamma 
(j)
noise), where \Gamma 

(j)
noise \in \BbbR m\times m is symmetric

and positive definite. The noise processes N1, . . . , Nk are assumed to be mutually
independent.

The prior for the absorption U has an edge-promoting probability density of the
form

(3.2) \pi (u) \propto exp
\bigl( 
 - \gamma \Phi (u)

\bigr) 
,

where \gamma > 0 is a free parameter and \Phi is defined through

(3.3) \Phi (u) =

\int 
D

\varphi 
\bigl( 
| \nabla u| 

\bigr) 
dx,

accompanied by the information that u vanishes at the pixels next to the boundary
of D. In this work, we exclusively consider the smoothened TV prior [42] for which
\varphi in (3.3) is a smooth approximation of the absolute value function,

(3.4) \varphi (t) =
\sqrt{} 
t2 + T 2 \approx | t| ,

with T > 0 being a small parameter ensuring differentiability. However, it would
also be possible to consider other edge-preferring priors of the exponential form (3.2);
see, e.g., [12, 16, 31] and the references therein for more information on such priors.

According to the Bayes formula and assuming the measurement model (3.1), the
posterior density for u thus reads

\pi (u | yk) \propto \pi (yk | u)\pi (u)

\propto exp
\Bigl( 
 - 1

2
(yk  - Rku)

T(\Gamma 
(k)
noise)

 - 1(yk  - Rku) - \gamma \Phi (u)
\Bigr) 
,(3.5)

where \Gamma 
(k)
noise := diag(\Gamma 

(1)
noise, . . . ,\Gamma 

(k)
noise) \in \BbbR km\times km is a block diagonal matrix defined

by the noise covariance matrices for the previous measurements. Our leading idea
is to iteratively approximate \Phi (u) by quadratic terms in the spirit of the lagged
diffusivity iteration [53]; see also [10, 26]. This results in an iterative algorithm for
computing the reconstruction uk, i.e., the mode of (3.5), after k measurements as
well as forming a sequence of Gaussian approximations for (3.5) [12]. Although there
definitely exist many other methods for computing the mode or the mean for (3.5),
from the standpoint of Bayesian OED the intriguing aspect of the lagged diffusivity
iteration is the possibility to use the corresponding final Gaussian approximation of
(3.5) for choosing the next experimental design, which enables explicitly evaluating
the double integral in (1.1).

3.1. First step: Gaussian approximation for the prior around \bfitu \bfitk  - \bfone . Let

\{ \phi j\} n
\prime 

j=1 be a Lagrangian finite element (FE) basis for the rectangular dual mesh of the
employed pixelification for D (or again, voxelification in three dimensions) numbered
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ADAPTIVE EXPERIMENTAL DESIGN IN X-RAY IMAGING B511

so that the first n basis functions correspond to the nodes at the midpoints of the
interior pixels in D. In particular, the jth basis function \phi j takes value one at the
midpoint of the jth pixel, i.e., at the jth node of the dual mesh, and vanishes in
the closures of all rectangular elements defined by the dual mesh not intersecting
the jth pixel of the original mesh; see, e.g., [14, pp. 68--69]. We denote the interior
of the convex hull of the nodes in the dual mesh by D\prime \subset D. With this notation
and due to the chosen numbering for the pixels in D, the first n FE basis functions
\phi j , . . . , \phi n belong to H1

0 (D
\prime ), i.e., the subspace of H1(D\prime ) consisting of the elements

with a vanishing Dirichlet trace on \partial D\prime .
After identifying u with its interpolant in the FE basis and recalling that u is

assumed to vanish at (the midpoints of) the boundary pixels numbered by n+1, . . . , n\prime ,
through straightforward differentiation of \Phi (u) one deduces that [10]

\nabla u\Phi (u) = \Theta (u)u, u \in \BbbR n,

where the matrix-valued function \Theta : \BbbR n \rightarrow \BbbR n\times n is defined componentwise by

\Theta i,j(w) :=

\int 
D\prime 

1\sqrt{} 
| \nabla xw(x)| 2 + T 2

\nabla \phi i(x) \cdot \nabla \phi j(x) dx, i, j = 1, . . . , n,(3.6)

with w \in \BbbR n being interpreted as an element of H1
0 (D

\prime ) via the introduced FE basis,
excluding the boundary nodes of the dual mesh. In particular, for any fixed w \in \BbbR n,
\Theta (w) \in \BbbR n\times n is the FE system matrix with respect to the basis \{ \phi j\} nj=1 \subset H1

0 (D
\prime )

for the partial differential operator

(3.7)  - \nabla \cdot 

\Biggl( 
1\sqrt{} 

| \nabla w| 2 + T 2
\nabla ( \cdot )

\Biggr) 
: H1

0 (D
\prime )\rightarrow H - 1(D\prime );

see, e.g., [14] for more information on such discretizations. As the construction of
\Theta (w) includes a vanishing Dirichlet condition via the choice of the corresponding
domain of definition H1

0 (D
\prime ) for (3.7), the matrix \Theta (w) is positive definite and, in

particular, invertible for any w \in \BbbR n.
The basic idea of the lagged diffusivity iteration can be interpreted as finding

a sequence of quadratic approximations for the penalty term \Phi (u) accurate to the
first order around the current estimate for the posterior mode, which reduces the
maximization of (3.5) to the minimization of a sequence of quadratic functions. To
this end, let us introduce the quadratic penalty function

\Phi k - 1(u) =
1

2
uT\Theta (uk - 1)u+

1

2
uT
k - 1\Theta (uk - 1)uk - 1 +

\int 
D\prime 

T 2\sqrt{} 
| \nabla xuk - 1(x)| 2 + T 2

dx.

One can easily see that

(3.8) \Phi k - 1(uk - 1) = \Phi (uk - 1) and \nabla u\Phi k - 1(uk - 1) = \nabla u\Phi (uk - 1) = \Theta (uk - 1)uk - 1,

meaning that the tangent planes for the graphs of \Phi k - 1 : \BbbR n \rightarrow \BbbR + and \Phi : \BbbR n \rightarrow \BbbR +

indeed coincide above the previous reconstruction uk - 1. Substituting \Phi for \Phi k - 1

in (3.5), we have thus arrived at the approximate Gaussian posterior density

(3.9) \pi (1)(u | yk) \propto exp
\Bigl( 
 - 1

2

\bigl( 
(yk - Rku)

T(\Gamma 
(k)
noise)

 - 1(yk - Rku)+\gamma uT(\Gamma 
(1)
k - 1)

 - 1u
\bigr) \Bigr) 

,

where \Gamma 
(1)
k - 1 := \Theta (uk - 1)

 - 1. Finding the mode of the density (3.9) can also be in-
terpreted as a single step of a certain quasi-Newton scheme for maximizing the log-
posterior defined by (3.5) starting from uk - 1 [51].
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3.2. Second step: Iterating the argument. Building the initial Gaussian
approximation (3.9) for the posterior (3.5) consists essentially of two steps: (i) as-
suming a reasonable estimate uk - 1 for the solution of the studied inverse problem

and (ii) forming the approximate prior covariance via \Gamma 
(1)
k - 1 = \Theta (uk - 1)

 - 1. Introduc-
ing the mean of the density (3.9) as a new, hopefully more accurate reconstruction and
iterating the argument lead to a Bayesian interpretation [12] of the lagged diffusivity
algorithm [53] for computing a reconstruction uk after having k projection images in
hand.

Define u
(0)
k - 1 = uk - 1. Assuming the availability of u

(j - 1)
k - 1 , form an approximate

prior covariance

(3.10) \Gamma 
(j)
k - 1 = \Theta (u

(j - 1)
k - 1 ) - 1.

Introduce the corresponding posterior density

(3.11) \pi (j)(u | yk) \propto 
\Bigl( 
 - 1

2

\bigl( 
(yk  - Rku)

T(\Gamma 
(k)
noise)

 - 1(yk  - Rku) + \gamma uT(\Gamma 
(j)
k - 1)

 - 1u
\bigr) \Bigr) 

,

and compute its mean

(3.12) u
(j)
k - 1 = \Gamma 

(j)
k - 1R

T
k

\bigl( 
Rk\Gamma 

(j)
k - 1R

T
k + \gamma \Gamma 

(k)
noise

\bigr)  - 1
yk;

see, e.g., [31, Thm. 3.7].

If the chosen stopping criterion is satisfied at j = J , one dubs uk := u
(J)
k - 1 the

reconstruction after k projection images; the stopping criterion employed in our nu-
merical tests is introduced and motivated in section 5, where the complete algorithm
is formalized. The corresponding covariance matrix for the Gaussian density (3.11)
with j = J is

(3.13) \Gamma k = \gamma  - 1
\bigl( 
\Gamma 
(J)
k - 1  - \Gamma 

(J)
k - 1R

T
k

\bigl( 
Rk\Gamma 

(J)
k - 1R

T
k + \gamma \Gamma 

(k)
noise

\bigr)  - 1
Rk\Gamma 

(J)
k - 1

\bigr) 
;

see, e.g., [31, Thm. 3.7]. This covariance structure is then used for choosing the
parameter vector pk+1 defining the next X-ray projection as explained in the following
section.

Remark 3.1. The two steps (3.10) and (3.12) correspond to a lagged diffusivity
iteration for maximizing the argument of the exponential in (3.5), that is, computing
an approximation of the maximum a posteriori estimate for the absorption in D after
the availability of k projection images. As the convergence of the lagged diffusivity
iteration has been proven for denoising problems in [21, 19], it is not too far-fetched to
hope that the above introduced iteration converges toward the mode of the posterior
(3.5). For large enough j, the Gaussian density \pi (j) defined by (3.11) can thus be
considered an approximation for the exact posterior (3.5) close to its mode.

Note also that the essential property of the regularization matrix \Theta (w) is that it
provides an approximation

(3.14) vT1 \Theta (w)v2 \approx 
\int 
D

1\sqrt{} 
| \nabla xw(x)| 2 + T 2

\nabla v1(x) \cdot \nabla v2(x) dx,

where, on the left, v1 and v2 are interpreted as vectors in \BbbR n and, on the right, as
functions over D with the indicated values at the midpoints of the n interior pixels
and zeros as values at the boundary pixels. The use of FE basis functions above is
motivated by the ease of notation as well as their direct applicability to nonrectangular
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meshes as well (cf. [10, 26]). However, on a rectangular mesh a first-order finite
difference approximation for computing the gradients in (3.14) (cf., e.g., [51]) is the
simplest approach to which we also resort to in our numerical studies, although on
a regular mesh first-order FE and finite difference approximations for the right-hand
side of (3.14) lead to similar discretizations.

4. A- and D-optimal designs. Let us assume that we have k \in \BbbN projection
images of the imaged object D at our disposal. According to the construction in
the previous section, this leads to the approximate, posterior probability distribution
\scrN (uk,\Gamma k) for the absorption U , with the mean and covariance defined via (3.12) and
(3.13), respectively. Assuming the new X-ray projection obeys the same measurement
model as the previous ones, i.e., (3.1), the Gaussian posterior covariance after the
(k + 1)th projection reads

(4.1) \Gamma 
(k+1)
post (p) = \Gamma k  - \Gamma kR(p)T

\bigl( 
R(p)\Gamma kR(p)T + \Gamma 

(k+1)
noise

\bigr)  - 1
R(p)\Gamma k,

where p is the to-be-selected design parameter determining the (k + 1)th projection.
The task at hand is now to choose the (k + 1)th projection or, more precisely,

the corresponding design parameter pk+1. In Bayesian OED, one often considers
minimizing the expected squared distance of the unknown in a given (semi)norm
around the posterior mean; see, e.g., [4, 18] for more details. In the considered simple
setting, this leads to the so-called A-optimality criterion for choosing the (k + 1)th
design parameter,

(4.2) pk+1 = argmin
p

tr
\bigl( 
A\Gamma 

(k+1)
post (p)AT

\bigr) 
,

with the employed seminorm induced by the positive semidefinite matrix ATA for a
given A \in \BbbR n\times n. Another option is to maximize the expected information gain when
replacing the prior with the posterior, which in the linear and Gaussian setting leads
to the so-called D-optimality criterion [4, 18],

(4.3) pk+1 = argmin
p

log
\Bigl( 
det
\bigl( 
\Gamma 
(k+1)
post (p)

\bigr) \Bigr) 
,

if information at all pixels is considered equally valuable.
To solve the minimization problem (4.2) or (4.3) and to find the optimal design

for the (k+1)th X-ray projection, we resort to the exhaustive optimization algorithm
introduced in [15]. In our numerical experiments, the weight A for A-optimality is
always the identity matrix I \in \BbbR n\times n; that is, we employ the (squared) L2(D)-norm as
the distance measure and, in particular, consider the reconstruction accuracy equally
important at all pixels. The details on how to tackle a setting where one is only
interested in the accuracy of the reconstruction inside a certain region of interest can
be found in [15] for both A- and D-optimality.

4.1. On computational cost and interpolation onto a sparser grid. In
our numerical experiments, finding the optimal design parameter via (4.2) or (4.3)
by resorting to the exhaustive search introduced in [15] is computationally more de-
manding than computing an edge-enhancing reconstruction using the lagged diffu-
sivity ideas presented in section 3. The details on the algorithmic implementation
for evaluating the A- and D-optimality target functions for a given p, i.e., the piv-
otal step in the corresponding exhaustive minimization algorithms, can be found for
A- and D-optimality in sections 3.3.2 and 3.3.1 of [15], respectively. To summarize,
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as the region of interest in our tests is all of D, for both forms of optimality one needs
to form a Cholesky decomposition

C(p)C(p)T = R(p)\Gamma kR(p)T + \Gamma 
(k+1)
noise \in \BbbR m\times m

for all p on the employed search grid. For D-optimality it is enough to evaluate
the logarithm of the determinant of C(p), whereas for A-optimality one must form
C(p) - 1R(p)\Gamma k \in \BbbR m\times n and compute its Frobenius norm. Depending on the sizes ofm
and n, the most time-consuming steps are the matrix multiplications involving the full
high-dimensional matrix \Gamma k \in \BbbR n\times n or the formation of the Cholesky decomposition.
In our numerical experiments, m is so small that the computational bottleneck is
usually the former.

A straightforward idea for speeding up the optimization step is implementing it
using a sparser discretization than the one employed for computing the actual recon-
structions: Once the reconstruction uk \in \BbbR n corresponding to the first k projection
images has become available, it is interpolated onto a sparser grid with \~n \leq n interior
pixels to obtain \~uk \in \BbbR \~n. The corresponding covariance matrix \~\Gamma k is then formed
as in (3.13) but with Rk replaced by the analogous stacked X-ray projection matrix

for the sparser discretization and with \Gamma 
(J)
k - 1 replaced by \Theta (\~uk)

 - 1 also formed on the

sparser mesh. The approximate posterior for the interpolated absorption \~\Gamma 
(k+1)
post (p) is

then as in (4.1) but with \Gamma k replaced by \~\Gamma k and R(p) with an X-ray projection matrix
corresponding to the sparser discretization. Finally, the optimal design parameter is

computed via (4.2) or (4.3) with \Gamma 
(k+1)
post (p) \in \BbbR n\times n replaced by \~\Gamma 

(k+1)
post (p) \in \BbbR \~n\times \~n,

recalling that A is an identity matrix of an appropriate size in our numerical tests.
It should be emphasized that the evidence on the feasibility of the above described

interpolation step is purely computational (cf. [15]) and there is no guarantee that it
does not significantly affect the specifications of the experimental designs produced
by the sequential optimization process, as demonstrated by our first numerical test
in section 6.1.1. Even if one deduced bounds for the effect of the interpolation step
on the values of the A- and D-optimality target functions, this would not yet pro-
vide means to analyze how the whole sequential optimization process is affected by
the interpolation due to the potential existence of multiple local minima of almost
equivalent quality (cf. [15]): If the interpolation error induces a major change in the
specifications of the chosen design at a single step of the sequential algorithm, the
following optimal designs are no longer comparable due to the greedy nature of the
optimization process. Moreover, as the TV prior is known to suffer from a certain lack
of discretization invariance [34], the comparison of results on different discretization
levels is problematic as such.

5. Sequential edge-promoting optimization of projections. In this sec-
tion, the above developments are summarized by combining the lagged diffusivity
iteration and the sequential optimization of X-ray projections into a single concise
algorithm. In the following it is assumed that the overall number of X-ray projections
K \in \BbbN is known in advance, but in practice the user of the algorithm can stop the
iteration as soon as the reconstruction is considered good enough, thus treating K as
the maximum number of projection images.

Algorithm 1. Select the prior parameters T > 0 and \gamma > 0, a tolerance for
the stopping criterion \tau > 0, and the number of iterations K \in \BbbN , and set A = I.

Initialization:
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\vartriangleright Set u0 = 1 \in \BbbR n.
\vartriangleright Define \Gamma 0 := \Theta (u0)

 - 1 according to (3.6).

Iteration:
for k = 1, . . . ,K do

\vartriangleright Solve for pk via (4.2) or (4.3) with \Gamma 
(k)
post(p) defined by (4.1) [15], resorting

to interpolation onto a sparser grid if necessary (see section 4.1).
\vartriangleright Form the projection matrix R(pk), and ``measure"" the data yk.

\vartriangleright Set j = 0, u
(0)
k - 1 = uk - 1, and \Delta \Phi = \tau + 1.

while \Delta \Phi > \tau do
\vartriangleright Set j \leftarrow j + 1.

\vartriangleright Form \Gamma 
(j)
k - 1 according to (3.10).

\vartriangleright Compute u
(j)
k - 1 according to (3.12).

\vartriangleright Compute \Delta \Phi = | \Phi (u(j - 1)
k - 1 ) - \Phi (u

(j)
k - 1)| /\Phi (u

(j)
k - 1).

end while
\vartriangleright Set J = j. Define uk = u

(J)
k - 1 and \Gamma k via (3.13).

end for

return uK and \Gamma K .

The stopping criterion for the interior loop is motivated by material in [10]: Apart
from the case j = 0, the value of the (smoothened) TV functional \Phi typically decreases
monotonically during the lagged diffusivity iteration because the reconstruction grad-
ually becomes better aligned with the prior information. The iteration is stopped
once the relative convergence rate falls below a preselected tolerance \tau > 0.

In many of the following numerical examples, the deduction of the sequentially
A- or D-optimal projections, i.e., the first step in the exterior loop of Algorithm 1,
is performed on a sparser discretization of D consisting of \~n < n interior pixels in
order to speed up the computations. The modifications required by this accelerated
algorithm are described in section 4.1. Consult [15] for more information on the
exhaustive algorithm for defining the optimal projections.

6. Numerical experiments. Both two- and three-dimensional numerical ex-
amples are presented. In all tests, the free parameters in Algorithm 1 are chosen as
T = 10 - 6, \gamma = 10 - 2, \tau = 10 - 4, and A = I. The algorithm is not very sensitive to the
chosen (reasonably small) value for T whose purpose is to assure the differentiability
of \varphi in (3.4). If T is too large, \varphi is not an accurate approximation for the abso-
lute value function, and one cannot consider (3.2) a smooth approximation of the TV
prior. On the other hand, if T is very small, the matrix \Theta (u) defined by (3.6) becomes
ill-conditioned if u is constant over some regions in D, which, in fact, corresponds to
the expected behavior of u. The values chosen for the other two parameters \gamma and \tau 
do affect the numerical results: \gamma controls the strength of the prior, i.e., the weighting
between the data fit and penalty terms in the exponent of the posterior (3.5), whereas
\tau defines the stopping criterion. The former should be chosen so that the reconstruc-
tions are in line with the a priori information on the unknown, whereas \tau should be
small enough to allow convergence to the vicinity of the mode of the posterior (3.5)
but large enough to avoid unnecessary lagged diffusivity iterations. However, as our
main aim is to compare reconstructions with and without sequential optimization of
the projection geometries, we do not dwell on the selection of \gamma and \tau . The choice of
A reflects that we are equally interested in the reconstruction quality everywhere in D
when A-optimality is considered. The components of the additive zero-mean Gauss-
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ian noise contaminating the measurements are assumed to be mutually independent
with a common standard deviation \sigma > 0 that may vary between the experiments. In
other words, all noise covariance matrices appearing in sections 3 and 4 are assumed
to be of the form \sigma 2I, with I being an identity matrix of the appropriate size.

When the performance of Algorithm 1 is compared to reconstructions correspond-
ing to, say, equiangular projections, the reference reconstructions are computed via a
single lagged diffusivity iteration with the same, aforelisted values for the parameters
T , \gamma , and \tau . To be more precise, if R is the projection matrix corresponding to all
employed reference geometries, y is the corresponding data vector, and \Gamma noise = \sigma 2I
is the assumed noise covariance, then one starts from the initial guess u(0) = 1 \in \BbbR n

and iterates the two steps

(6.1) \Gamma (j) = \Theta (u(j - 1)) - 1, u(j) = \Gamma (j)RT
\bigl( 
R\Gamma (j)RT + \gamma \Gamma noise

\bigr)  - 1
y

until

(6.2)

\bigm| \bigm| \Phi (u(j - 1)) - \Phi (u(j))
\bigm| \bigm| 

\Phi (u(j))
< \tau ,

after which u(j) is dubbed the reconstruction. In other words, one essentially runs
the interior loop of Algorithm 1 assuming that all (equiangular) projection geometries
and the associated data are available to start with.

Remark 6.1. We do not claim that the lagged diffusivity iteration is the best
method for computing TV-type reconstructions in X-ray tomography. However, since
the algorithm for deducing the optimal projection geometries is inherently connected
to the lagged diffusivity ideas, we consider using the simplified version of Algorithm 1,
detailed in (6.1)--(6.2), a well-motivated choice for computing the control reconstruc-
tions corresponding to nonoptimized projection geometries. In particular, this enables
focusing solely on the effect of the optimal design when comparing the reconstructions.

6.1. Two-dimensional parallel beam tomography. In our two-dimensional
numerical experiments, the measurement setup is the same as described in [15]. That
is, the domain D = [0, 1]2 is discretized into n = N2 square pixels, through which we
take projections consisting of a number of parallel X-rays; see Figure 6.1. The indi-
vidual X-rays are equally spaced and have a fixed width for a particular experiment.
The width of the whole source-receiver pair satisfies 0 < w \leq 1. The components of
the design variable p \in \BbbR 2 for a single projection geometry define the projection angle
and the signed distance from the center of D to the median line of the source-receiver
pair. The latter component of p is restricted within the interval [w  - 1, 1 - w]/2.

We present three two-dimensional experiments. The first one exemplifies the
general behavior of Algorithm 1 with a simple target. The effect of optimizing the
projection geometries on a sparser grid than the one used for forming the reconstruc-
tions is also tested; see section 4.1. In the second test, the superiority of Algorithm 1
over the usage of equiangular full-width projections with an equivalent radiation dose
is statistically demonstrated in the case of certain randomly selected phantoms. Fi-
nally, the third test applies Algorithm 1 to the Shepp--Logan phantom. The second
test considers both A- and D-optimality, whereas the first and third tests concentrate
solely on A-optimality.

6.1.1. 2D Test 1: Explicit example with a simple target. The aim of
our first numerical experiment, which only considers the A-optimality criterion, is to
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Source

Detectors

Object

Fig. 6.1. Two-dimensional measurement setup.
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Fig. 6.2. 2D Test 1. Left: Target with the rectangle, circle, and ellipse having absorption
levels 1, 0.5, and 0.8, respectively. Right: Relative L2(D) errors for the reconstructions. The blue
curve corresponds to projections A-optimized with the dense discretization for D, the red curve to
projections A-optimized with the sparse discretization for D, and the black curve to the equiangular
full-width reference projections. The horizontal axis indicates the number of projections with the
beam width 0.25.

demonstrate the basic functioning of Algorithm 1. The target, shown in the left-hand
image of Figure 6.2, consists of three simple shapes, each with a different uniform
absorption level, placed randomly inside D. The absorption of the background is
zero. The target has N = 100 pixels per edge, and the number of individual sensors
in a full-width source-receiver pair is 51. The noise level is set to \sigma = 10 - 3, which
corresponds to a noise-to-signal ratio of at least 0.2\% for all line integrals considered in
the inversion. The beam width is chosen to be 0.25, which is a quarter of the maximal
source-receiver pair width and corresponds to 13 individual X-rays. Algorithm 1 is
run for a total of K = 16 iterations. In addition to considering the basic form of
Algorithm 1, we also test speeding up the computations by performing the selection
of the projection geometries on a considerably sparser discretization of the domain
with only \~N = 31 pixels per edge; see section 4.1 for more details, and note, in
particular, that the actual reconstructions are still formed on the denser grid with N2

pixels. For comparison, we also compute reconstructions from equiangular full-width
projections corresponding to equivalent radiation doses.
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The right-hand image of Figure 6.2 shows the relative L2(D) reconstruction er-
rors after each step of Algorithm 1; the blue curve corresponds to optimizing the
projection geometries on the reconstruction grid with 104 pixels and the red curve
to performing the optimization steps of the algorithm using the considerably sparser
discretization with only \~N2 \approx 103 pixels. The black line depicts the relative L2(D)
errors resulting from the equiangular reference projections. Note that 1 projection
with the maximal beam width of 1 approximately corresponds to the same amount of
data, or equivalently the same radiation dose, as 4 projections with the beam width
0.25. As a consequence, the labels at 4, 8, 12, and 16 on the horizontal axis correspond
to 1, 2, 3, and 4 equiangular reference projections, respectively.

According to Figure 6.2, the L2(D) reconstruction errors at equivalent radiation
doses are lower for the sequentially optimized projection geometries with the quarter-
width source-receiver pair than for the equiangular full-width projections. This is not
very surprising as the full-width projections (are forced to) waste radiation to image
regions that contain nothing interesting, whereas the optimized projections concen-
trate on areas of interest; cf. Figure 6.3. On the other hand, deducing the optimal
designs employing the sparser discretization forD does not seem to hamper the overall
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Fig. 6.3. 2D Test 1. The sixteen A-optimized projection geometries and the corresponding
reconstructions. The latest projection geometry is illustrated by the black lines.
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Fig. 6.4. 2D Test 1. Reference reconstructions for 1, 2, 3, and 4 equiangular full-width projec-
tions.

performance of Algorithm 1, although the discretization level does affect the precise
specifications of the individual optimized projection geometries (cf. section 4.1). Af-
ter sufficiently many projections, the advantage of Algorithm 1 over the equiangular
full-width projections becomes almost negligible.

Figure 6.3 shows the projection geometries and the corresponding reconstructions
for all 16 iterations of Algorithm 1 without interpolation onto a sparser grid in the
optimization steps. At least in the considered setup, the algorithm does indeed seem
to have a tendency to concentrate the projections over areas where the reconstruction
already shows quick variations. Occasionally other areas are also explored; cf. the
14th projection. After 14 iterations all target shapes are already clearly visible. For
comparison, Figure 6.4 shows the four reconstructions corresponding to full-width
equiangular reference projections.

Figure 6.5 presents the pixelwise (posterior) standard deviations corresponding to
the reconstructions in Figure 6.3; that is, the square roots of the diagonal elements of
the covariance matrix \Gamma k are visualized as an image in Figure 6.5 at the same position
where the corresponding reconstruction uk is shown in Figure 6.3 for k = 1, . . . , 16.
Figure 6.5 clearly demonstrates that Algorithm 1 interprets the uncertainty in the
reconstruction to be highest close to the already detected boundaries as well as in re-
gions where previously undetected structures have recently emerged. Note, however,
that the images in Figure 6.5 do not provide all information that is used when choos-
ing the subsequent projection geometries, as the correlations between pixel values,
described by the off-diagonal elements of \Gamma k, also play a crucial in (4.2) and (4.3).

When computing the reconstructions in Figure 6.3, our nonoptimized MATLAB
implementation spent almost 99.9\% of its runtime performing the exhaustive opti-
mization step in Algorithm 1. When the exhaustive search was performed using the
sparser grid for D, this percentage decreased to about 90\%. The number of lagged
diffusivity steps required for forming the reconstructions in Figure 6.4 were 13, 13,
15, 10, 8, 11, 9, 6, 3, 5, 6, 5, 10, 14, 3, and 3, respectively; these numbers were not
significantly altered by performing the optimization step on a sparser grid.

6.1.2. 2D Test 2: Average errors over random targets. In the second
numerical experiment, the aim is to statistically demonstrate that Algorithm 1 has
the potential to produce on average better reconstructions for a limited radiation dose
than a straightforward approach with equiangular full-width projections as well as to
compare the two optimality criteria (4.2) and (4.3). To this end, the algorithm is run
with the beam widths of 0.25 and 0.5 for a set of random targets, and the average
relative L2(D) reconstruction errors for A- and D-optimal designs are compared to
those obtained by the equiangular full-width approach.
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Fig. 6.5. 2D Test 1. The pixelwise (posterior) standard deviations associated to the correspond-
ing reconstructions in Figure 6.3, i.e., the square roots of the diagonal elements of the covariance
matrix \Gamma k for the corresponding uk in Algorithm 1 for k = 1, . . . , 16. The latest projection geometry
is illustrated by the black lines.

The targets consist of ellipses with constant absorption levels in a homogeneous
nonabsorbing background. The number of ellipses is drawn from the uniform dis-
tribution over \{ 2, 3, 4, 5\} , their absorption levels from the uniform distribution over
[0.5, 1.5], and their centers from the uniform distribution over the disk of radius 0.5
centered at the midpoint of D. Furthermore, the ellipses have (uniformly) random
orientations, and their semimajor and semiminor axes are independently drawn from
the uniform distribution over [0.05, 0.2]. In the regions where many ellipses overlap,
the absorption level is defined to be the sum of those of the involved ellipses. An ex-
ample of such a target is shown in Figure 6.6. In particular, note that the ellipses may
extend over the domain boundary, which is not in line with the Dirichlet boundary
condition for (3.7) but assures that any considered X-ray may pass through something
interesting in a target.

The discretization of D is the same as in the previous example; that is, the
reconstructions are formed on a uniform grid of n = N2 = 104 pixels, and a full-
width source-receiver pair corresponds to m = 51 individual X-rays (and the 0.25
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Fig. 6.6. 2D Test 2. Top left: Mean relative L2(D) reconstruction errors over 100 samples
for A-optimal projection geometries and equiangular full-width projections with equivalent radiation
doses. The red and blue curves show the errors with optimized projection geometries with beam
widths 0.25 and 0.5, respectively, whereas the black curve shows the errors for equiangular projections
with beam width 1. The error-bars show the confidence intervals of one standard deviation, and
the horizontal axis indicates the number of projections with the narrowest beam width. Top right:
Corresponding mean reconstruction errors for D-optimality. Bottom: Example of a random target
composed of ellipses with randomly chosen shapes, sizes, positions, and absorption levels.

and 0.5 beam widths to 13 and 26 X-rays, respectively). However, encouraged by
the observations in the previous test, the sequential optimization of the projection
geometries is carried out on the sparser grid of \~n = \~N2 \approx 103 pixels. The total number
of considered random targets is 100, and the noise level is once again set to \sigma = 10 - 3.
To make the radiation doses comparable, the algorithm is run for 20 and 10 iterations
for the beam widths of 0.25 and 0.5, respectively, and the corresponding relative L2(D)
reconstruction errors are computed after each iteration. Analogously, the reference
reconstructions and the corresponding relative L2(D) errors are computed for 1, 2, 3,
4, and 5 equiangular full-width projections.

The results, shown on the top row in Figure 6.6, indicate that the reconstruc-
tion errors for both A- and D-optimized projections decrease faster as functions of
the radiation dose than that for the reference projections. As in the previous ex-
periment, once enough projection data has been collected, this advantage starts to
decrease. The A-optimal designs perform on average slightly better than their D-
optimal counterparts, which is not surprising since the A-optimality criterion aims
to minimize the expected squared reconstruction error, i.e., the performance met-
ric considered in Figure 6.6. Performing the sequential experimental design with a
narrower beam seems to be advantageous, presumably because the algorithm can
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concentrate on retrieving information on certain interesting local details in the target
without ``wasting radiation."" However, this advantage comes with a fairly significant
computational cost: In addition to having to run the algorithm for twice as many it-
erations, the search space is also much wider due to the increased number of possible
lateral positions for the source-receiver pair. This poses a problem for our exhaus-
tive optimization routine [15]. In addition, the overlapping confidence intervals in
Figure 6.6 hint that the best approach is target-dependent: The A- and D-optimal
designs produced by Algorithm 1 result on average in lower reconstruction errors than
the equiangular full-width approach, but this does not apply to all individual targets.

6.1.3. 2D Test 3: Shepp--Logan phantom. In our third experiment, the tar-
get is the Shepp--Logan phantom shown in the top left image of Figure 6.7. The main
aim is to compare the performance of Algorithm 1 with A-optimality and beam width
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Fig. 6.7. 2D Test 3. Top left: Shepp--Logan phantom. Top right: Mean relative L2(D) re-
construction errors over 100 samples of noise realizations for sequentially A-optimized projection
geometries (red: Algorithm 1, blue: Gaussian prior) and equiangular full-width projections with
equivalent radiation doses (black). The error-bars show the confidence intervals of one standard
deviation, and the horizontal axis indicates the number of projections with beam width 0.25. Mid-
dle row: Radiation dose corresponding to 5 full-width projections. Bottom row: Radiation dose
corresponding to 10 full-width projections. Left column: Reconstructions for projection geometries
A-optimized by Algorithm 1 with the latest projection depicted. Center column: Reconstructions for
equiangular full-width projections. Right column: Reconstructions for projection geometries opti-
mized based on a Gaussian prior with the latest projection depicted.
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0.25 to reconstructions obtained from equiangular full-width reference projections.
However, we also consider using in Algorithm 1 sequentially A-optimized quarter-
width projections corresponding to a Gaussian prior with a covariance matrix of the
form

(6.3) (\Gamma prior)i,j = \eta 2 exp

\biggl( 
 - | xi  - xj | 2

2\ell 2

\biggr) 
.

Here | \cdot | denotes the Euclidean norm, \ell > 0 is the so-called correlation length, \eta > 0
is the pixelwise standard deviation, and xi denotes the center of the ith pixel. Under
such a prior, the sequentially optimized projections do not depend on the measure-
ments or the prior mean, and they can thus be computed in advance based on merely
the covariance matrix (6.3) and the known structure of the additive Gaussian noise
process; see [15] for more details. When employing a Gaussian prior with the covari-
ance structure (6.3), we thus use in Algorithm 1 precomputed sequentially optimized
design variables instead of determining the projection geometries adaptively as a part
of the algorithm itself. However, the lagged diffusivity iteration is still employed in the
computation of the reconstructions, as indicated by the interior loop of Algorithm 1.

We choose \eta = 0.2 and \ell = 0.1 in (6.3); the former is close to the pixelwise
standard deviation of the Shepp--Logan phantom, whereas the latter simply seems to
be in a relatively good agreement with the sizes of the areas with constant absorption
in the top left image of Figure 6.7. All other parameters are the same as in the previous
experiment. In particular, the optimization steps of Algorithm 1 are once again carried
out on a sparser grid with \~N2 \approx 103 pixels, and this same sparse discretization is also
used for deducing the sequentially optimized projection geometries corresponding to
the Gaussian prior with the covariance matrix (6.3). The test is run 100 times to
examine how the measurement noise affects the reconstruction quality, mainly via
changes in the adaptive optimal designs produced by Algorithm 1.

The top right image in Figure 6.7 shows the (mean) relative L2(D) reconstruction
errors up to 40 and 10 projections for the two types of sequentially optimized geome-
tries and the equiangular reference geometries, respectively. After a radiation dose
that is equivalent to 1 full-width projection, both sets of reference projections, i.e., the
full-width equiangular one and the 4 quarter-width ones based on the Gaussian prior,
correspond to lower L2(D) errors than the reconstruction produced by Algorithm 1.
This is likely due to the Shepp--Logan phantom covering most of the domain, which
makes an initial full-width projection or 4 rather randomly distributed, nonadap-
tively chosen quarter-width projections sensible approaches. During the following 36
rounds of Algorithm 1, the edge-promoting sequentially optimal design first shows a
clear advantage over the full-width reference reconstructions, but the advantage di-
minishes after enough projection data has been collected. On the other hand, the
reference quarter-width projections based on the Gaussian prior perform almost as
well as Algorithm 1 until about 10 projections, but subsequently the adaptive ap-
proach of Algorithm 1 leads to clearly superior results. It is also interesting to notice
that the equiangular full-width heuristic starts to outperform the sequentially op-
timized projections corresponding to the Gaussian prior at about 25 quarter-width
projections.

The final reconstructions after 40 sequentially optimized and with 10 full-width
equiangular projections, as well as those after only 20 optimized and 5 equiangular
projections, are presented on the bottom and middle rows of Figure 6.7. The reference
reconstructions corresponding to the full-width projections in the middle column con-
tain characteristic streaking artifacts of sparse-angle X-ray tomography, evenly spread
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around the target; this effect is particularly emphasized in the case of 5 full-width
projections. For the 20 adaptively optimized projections in the left-hand column,
some sections of the ``head boundary"" are reconstructed more accurately than in the
corresponding reference reconstructions, and there is also less blurring in the interior
of the phantom. However, with only 20 projections Algorithm 1 leads to a bad re-
construction of the bottom half of the phantom, as the optimized projections have
not yet covered that region comprehensively. This exemplifies an obvious flaw in our
approach: Even if the sequentially chosen projection geometries were locally optimal,
their combination is no longer optimal after several rounds, and there is no guarantee
that this nonoptimality could not be severe if a high number of projection geometries
is considered. This unwanted behavior could presumably be controlled to a certain
extent by the user of the algorithm via introducing, while the algorithm is running, a
region of interest that guides the algorithm to retrieve data on the unexplored areas
in the target (cf. [15]). Another potential remedy could be to ask the algorithm to
occasionally choose a random design parameter or a design parameter furthest from
the set of previously employed parameters.

The final reconstruction produced by Algorithm 1 after 40 quarter-width projec-
tions and the one corresponding to 10 equiangular full-width projections shown on
the bottom row of Figure 6.7 are comparable in quality, whereas the one correspond-
ing to the 40 quarter-width projections sequentially optimized based on the Gaussian
prior does not reproduce the organ boundaries as accurately as the other two. These
observations are in line with the information in the convergence plot of the top right
image in Figure 6.7.

6.2. Three-dimensional cone beam tomography. In three dimensions, the
unknown absorption distribution is located in the unit cube D = [0, 1]3 that is dis-
cretized into a uniform grid of n = N3 voxels. We consider cone beam tomography,
where a point-like source at s \in \BbbR 3 sends X-rays to a two-dimensional receiver patch
that occupies a ``square"" solid angle of the form [\theta + \delta , \theta  - \delta ] \times [\phi + \delta , \phi  - \delta ] if the
origin is transferred to s without affecting the orientation of the coordinate axes; see
Figure 6.8. Here \theta and \phi denote the central polar and azimuthal angles of the detec-
tor, respectively. When considering full-aperture projections, the imaging system is
always aligned so that the line between the source and the midpoint of the receiver
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Fig. 6.8. Measurement setup of three-dimensional cone beam tomography.
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passes through the center of the cube D. The receiver is discretized into a rectan-
gular grid of m = M2 detectors with respect to its polar and azimuthal angles in
the coordinate system centered at s. To summarize, a single full-aperture projection
geometry is defined by the central spherical angles of the detector (\theta , \phi ) with respect
to the source s (or the center of D), the corresponding opening angle \delta , the distance
d from the source to the center of D, and the number of pixels per edge M in the
detector. Observe that the distance between the source and the detector does not
play a role as long as the two are on opposite sides of D.

After assigning (fixed) values for d, \delta , and M , a set of full-aperture projection
geometries to be used in the exhaustive optimization algorithm of [15] is defined
by choosing the corresponding central spherical angles (\theta j , \phi j). Unlike in the two-
dimensional examples with parallel beam tomography, the projections are not sym-
metric with respect to reflections about the center of the object, and thus one cannot
only focus on projections from one side of the object; i.e., one cannot exclude some
projection directions as redundant by a symmetry argument. To simulate movement
of a smaller detector in the lateral direction, it is possible to only consider some subset
of detectors in a full-aperture receiver.

6.2.1. 3D Test with simple geometric shapes. Analogously to the first two-
dimensional experiment, our three-dimensional example only aims at demonstrat-
ing the basic operation of the algorithm for A-optimality. The target shown on the
left in Figure 6.9 consists of two balls with radius 0.2 centered at (0.2, 0.2, 0.2) and
(0.3, 0.6, 0.6), respectively, and a rectangular cuboid [0.6, 0.8] \times [0.5, 0.9] \times [0.5, 0.9]
in a homogeneous background with vanishing absorption. The common constant ab-
sorption level of the balls is 1, and that of the cuboid is 2. The target D is discretized
into a grid with N = 50 voxels per edge, i.e., a total of 1.25 \cdot 105 unknowns. For
the optimization step of Algorithm 1, we interpolate once again onto a significantly
sparser grid with 203 = 8000 pixels to speed up the computations. The noise level
is chosen to be \sigma = 2 \cdot 10 - 3, the opening angle of the projection cones is \delta = 0.24
radians, and the distance from the source to the center of D is set to 2.5.
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Fig. 6.9. 3D Test. Left: Target. Right: Relative L2(D) reconstruction errors for A-optimized
quarter-aperture projection geometries and ``equally spaced"" full-aperture projections with equivalent
radiation doses. The red curve depicts the errors for optimized projection geometries, whereas the
black curve shows those for the equally spaced projections. The horizontal axis indicates the number
of quarter-aperture projections.
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To define the set of (central) projection angles used in determining the search
space for the exhaustive optimization algorithm from [15], we introduce 60 evenly
spaced azimuthal angles \phi i over the interval [0, 2\pi ] and 3 polar angles  - \pi /4, 0, \pi /4,
with the 0 polar angle associated to directions parallel to the xy-plane. The total
set of projection directions is then [\phi 1, . . . , \phi 30]\times [ - \pi /4, 0, \pi /4]. The detector is split
into 4 quadrants, each with 10\times 10 detectors, to allow 4 quarter-aperture projection
geometries for each projection direction. This construction results in a total number
of 4 \times 3 \times 60 = 720 available projection geometries for the exhaustive algorithm
from [15]. In particular, note that the set of possible projection directions is both
sparse and limited in the polar direction, which has a certain effect on the achievable
reconstruction quality [41].

Algorithm 1 is run for a total of 40 rounds. For reference, we once again also
consider reconstructions corresponding to ``equally spaced"" full-aperture projections
of equivalent radiation dose. Unlike in two dimensions, there is no obvious method-
ology for choosing the directions for these reference projections: (i) There exists no
fundamental way of uniformly sampling the available 180 directions, and (ii) it is
obvious that projections from opposite directions contain similar yet not exactly the
same information. Our heuristic for choosing the directions of the full-aperture pro-
jections is including in the computation of the reference reconstructions one by one
more projection directions from the sequence: (0, 0), (0, 2\pi /3), (0, 4\pi /3), (\pi /4, \pi ),
(\pi /4, 0), ( - \pi /4, \pi /2), ( - \pi /4, 3\pi /2), (0, \pi /6), (0, 3\pi /2), (0, 5\pi /6). In particular, note
that this construction does not even aim at globally optimal reference directions, as
are arguably the equiangular directions in two dimensions, but the selection of the
reference projection geometries is also sequential in the sense that all previously used
projections are also included in the subsequent projection sets of higher cardinality.

The relative L2(D) reconstruction errors for equivalent radiation doses are shown
on the right in Figure 6.9. For the optimized quarter-aperture projections, the re-
construction error initially starts to decrease before plateauing for iterations 3--6. At
that point, the reconstruction error for the reference projections decreases faster, with
the quality of the reference reconstructions being better for radiation doses equiva-
lent to 3--8 quarter-aperture projections. However, between 7 and 10 iterations of
Algorithm 1, the reconstruction error for the optimized quarter-aperture projections
drops rapidly below the reference curve and stays there all the way until the limit of
40 quarter-aperture projections is reached. As in the two-dimensional experiments,
once enough data has been collected the optimized quarter-aperture projections and
the reference full-width projections result in roughly the same reconstruction errors
for equivalent radiation doses.

The top row of Figure 6.10 shows three slices of the reconstruction parallel to the
xy-plane after 5 rounds of Algorithm 1, while the bottom row illustrates the same
cross-sections after 15 rounds. These images demonstrate that initially the optimiza-
tion procedure focuses solely on the vicinity of the ball centered at (0.2, 0.2, 0.2), while
the surroundings of the 2 other inclusions are left unexplored. This explains the rapid
drop in the relative L2(D) reconstruction error over the first couple of iterations as
one of the two balls is found and explored, but it also gives a reason for the slow
convergence between 3 and 6 iterations: The algorithm prefers to first thoroughly
investigate the detected ball, and it moves its focus on the other two objects only
after an optimized projection accidentally passes through them. This demonstrates
an inherent flaw in the algorithm: Areas with already detected distinguishable fea-
tures are examined in depth, whereas other areas are left untouched until something
interesting is found as a byproduct of the ongoing local exploration. This feature
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Fig. 6.10. 3D Test. Slices parallel to the xy-plane of reconstructions produced by Algorithm 1
for quarter-aperture projections and A-optimality. Top row: 5 optimized projections. Bottom row:
15 optimized projections.

could possibly be mitigated, e.g., by initializing the algorithm with a low number of
full-width projections that cover the entire target. We also refer to the possible reme-
dies for the global nonoptimality of the designs produced by Algorithm 1 discussed in
section 6.1.3.

7. Concluding remarks. In this work we studied sequential edge-promoting
Bayesian experimental design for linear inverse problems and, in particular, for X-ray
tomography. We introduced a novel greedy iterative method that aims at optimizing
the measurement design when a TV-type prior is applied. The method is based on
interpreting the so-called lagged diffusivity iteration [53] in the Bayesian framework;
see [12, 17, 51]. Our two- and three-dimensional numerical examples based on sim-
ulated data suggest that the introduced approach promotes sequential designs that
enhance recovery of edges in the target image.

Although we used X-ray tomography mainly as an example of a high-dimensional
linear inverse problem with well-motivated reasons for resorting to TV-type priors,
the presented computational results anyway demonstrate a potential to considerably
reduce the radiation dose when the aim is to retrieve a certain amount of information
on the imaged object via X-ray imaging. However, there are a couple of practi-
cal caveats: the assumption that the measurement noise is additive and Gaussian
is essential for our analysis and the computational complexity of the optimization
step in our algorithm may present an insurmountable obstacle in inherently three-
dimensional imaging setups. Moreover, the applicability of the presented approach
definitely depends on the precise practical application of X-ray imaging.

There are a number of interesting avenues for future work. Due to the feed-
back from the data, our sequential algorithm often allocates subsequent projections
to enhance already observed edges while a portion of the target image may remain
uninvestigated. Such choices are not necessarily globally optimal, and we recorded
reconstruction error plots that exhibit occasional jumps when previously unexplored
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objects are (accidentally) detected. Understanding the algorithmic balance between
exploring new areas and improving already observed edges via the choice of the next
design seems an interesting task.

The more straightforward questions are related to the performance of the algo-
rithm for nonlinear inverse problems and its integration with more efficient optimiza-
tion procedures than the exhaustive search employed here. Moreover, investigating
whether the sequential designs obtained via the proposed approach approximate (at
least asymptotically) the ones corresponding to the exact TV prior is also left for
future studies.

Acknowledgments. We would like to thank an anonymous referee for invaluable
contributions that significantly improved the quality of this article.
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