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ABSTRACT

Concatenative synthesis is a technique of Sound Texture
Synthesis where a short clip of source audio is used to
generate a continuous stream of similar sound. Several
approaches for concatenative synthesis exist, but their out-
put quality is highly dependent on the type and length of
the source material, as well as the parameters used. The
purpose of this paper is to test different synthesis tech-
niques, parameters, and types of source material, to deter-
mine which algorithms best suit a variety of input sources.
The study reveals that in most cases the complexity of the
algorithm has a relatively small effect on the output qual-
ity. Noisy and repetitive sources produce the most natu-
ral sounding outputs even with short input clips and atom
sizes; whereas, sources with a lot of variation over time
typically require larger atom sizes and more source mate-
rial to prevent audible artefacts in the synthesis output.

1. INTRODUCTION

Sound texture synthesis is a group of synthesis techniques
aiming to generate arbitrarily long streams of audio mim-
icking real world soundscapes and sources. Sound texture
synthesis spans a number of different approaches [1], one
of which is concatenative synthesis: a subset of sound tex-
ture synthesis methods where a small amount of recorded
sound is used to produce a sound texture similar to that of
the original recording. The synthesis is performed through
various looping techniques giving these algorithms an ad-
vantage in the production of natural and credible outputs,
as much of the original audio remains intact. The field of
sound texture synthesis is primarily driven by the movie,
broadcast, and video game industries, where the flexibil-
ity provided by the family of techniques is well suited for
media scenes of variable length.

The definition of a sound texture varies somewhat in pre-
vious work. Common definitions include stability on a
large time-scale and possible inclusion of recurring micro
events. A more deliberate definition is written in [2]. The
precise definition is not regarded important for the results
of this paper.

The human ear is exceptional at detecting recurring tran-
sients and sudden timbral changes in signals. The funda-
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Figure 1. Behaviour of the looping synthesis technique.

mental problem that needs to be solved by a decent con-
catenative synthesis algorithm is the randomization of the
playback while retaining the naturalness of the source au-
dio; the algorithm should introduce enough variation into
the output stream to reduce noticeable periodicities while
preserving a structural similarity to the original source ma-
terial and avoiding discontinuities and sudden changes in
the signal.

This paper builds on the findings presented in [3]. The
purpose of this study is to three concatenative synthesis
techniques: looping, concatenation of randomized win-
dows (RND) [4], and concatenative synthesis with descrip-
tor controls (CSDC) [5], with a variety of source material
to learn which approaches best suit the different source
textures. Section 2 introduces the algorithms used in this
paper along with their implementations. Section 3 makes
observations about the general anatomy of sound textures.
The methods used for the analysis of the algorithms and
their outputs are covered in Section 4. Finally, the results
are presented in Section 5 and the discussion and conclu-
sions are in covered in Sections 6 and 7 respectively.

2. ALGORITHMS

This section covers the three algorithms evaluated in this
paper in detail ordered from the simplest to the most ad-
vanced. Each algorithm is first briefly introduced and then
the implementation and its parameters are explained. All
of the algorithms were implemented with MATLAB. The
implementations also utilize the Audio Toolbox.

2.1 Concatenative Synthesis with Looping

The most trivial method of extending a short clip of audio
is to play it back over and over in an infinite loop. This
approach makes no effort in disguising the repetition of
the source material and with only elementary logic and few
parameters, it is very quick to implement. The basic idea
is depicted in Fig. 1.

The algorithm generates sound by copying the source clip
into the output stream in a loop. The approach is described
in close detail in Fig. 2. Crossfading is used to keep the
signal power constant and to avoid discontinuities in the

Proceedings of the 2nd NordicSMC Conference, November 11th – 12th, 2021

48



Figure 2. Structure of the looping synthesis implementation.

Figure 3. Behaviour of the randomized windowing tech-
nique.

output signal. The implementation uses equal power sinu-
soidal fades. The only parameters used by this algorithm
are the lengths of the source material and the crossfade.

2.2 Concatenative Synthesis with Random Windows

The next step from looping synthesis is synthesis with ran-
domized windows (RND) [4]. In this approach, the output
stream is generated by randomly selecting sections from
the source material and copying them to the output stream.
Randomization hides the most obvious repetition in the
output. A graphic depiction of the algorithm is presented
in Fig. 3.

The windows used to generate the output stream are cre-
ated by adding markers to random entry and exit positions
in the source material. First the length of the window is de-
fined at random from a given range. Then, an entry marker
is randomly selected from the source material such that the
distance from the marker to the end of the source clip is
not less than the window length. Finally, the exit marker
is added based on the entry marker and the window length
and the material between the markers is copied into the
output stream. The approach is described in further detail
in Fig. 4.

The parameters used by this algorithm are the length of
the source material, the range of window lengths, and the
length of the crossfade.

2.3 Concatenative Synthesis with Descriptor Controls

In Concatenative Synthesis with Descriptor Controls
(CSDC) the source material is divided into short windows
called atoms [5]. To avoid sudden changes in the timbre
of the output stream and thus preserving longer trends in
the source material, the atoms are grouped by similarity
based on a set of spectral descriptors. The selection of con-
secutive atoms is made according to the spectral similarity
between the atoms. The idea is depicted in Fig. 5.

The implementation of CSDC here uses six descriptors:

spectral slope, spectral spread, spectral centroid, pitch,
acoustic loudness and noisiness, explained in further de-
tail in [6]. The descriptors are used to give each atom a
position in an 𝑛 dimensional space where each dimension
is described by one of the descriptors. The algorithm steps
through the atoms by selecting the next atom for the output
stream randomly from the nearest neighbours of the previ-
ously selected atom. The progression of the algorithm is
described in Fig. 6.

When CSDC is used with relatively long atoms, the spec-
tral content of each atom often shifts considerably over
time. To combat this, the algorithm was extended with sep-
arate entry and exit descriptors. The extended CSDC (CS-
DCe) approach differs only in the selection of the spectral
neighbors. Where the original CSDC implementation de-
fines a single position for each atom in the spectral space,
CSDCe defines a path with a start and end point. The near-
est neighbors of one atom are selected from the nearest
starting points to the end point of the atom in question.

Following the greater complexity of CSDC compared
to its simpler counterparts, comes a wider range of tun-
able parameters. Where all of the algorithms presented in
this paper accept parameters for the length of the source
clip, size of the windows/atoms and the crossfade time be-
tween them, the results from CSDC are also affected by the
weighting between the spectral descriptors. The weights of
the descriptors warp the spectral space such that the higher
the weight of a given descriptor is, the closer two atoms
must be in its axis to be considered a near neighbour. The
number of atoms to consider near neighbours also plays a
role in the output quality: a smaller number of neighbors
ensures greater similarity between the concurrent atoms
but increases the likelihood of the algorithm getting stuck
in a loop of very similar atoms.

3. ANATOMY OF SOUND TEXTURES

By analyzing different sound textures, we can observe that
most of these textures can be classified along two axis: im-
pulsiveness and repetitivity. Following these axis the tex-
tures can be grouped into four categories: repetitive and
impulsive (Fig. 7a), repetitive and smooth (Fig. 7b), time-
varying and impulsive (Fig. 7c), and time-varying and
smooth (Fig. 7d). What should, however, be noted is that a
sound texture can sometimes be formed of several different
sounds, e.g. footsteps in a windy background, where the
layered textures may have different characteristics. Some
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Figure 4. Structure of the randomized windowing implementation.

Figure 5. Behaviour of the CSDC technique.

sound textures consist mainly of static noise, these textures
do not match the four groups being not repetitive nor im-
pulsive but not varying in timbre over time either, thus re-
quiring a class of their own. The sound of rain (Fig. 8) is
one such static texture.

Repetitive sound textures are formed by very similar
sound events equally spaced in time. The less these events
evolve over time, the less there is information in the source
material. Time varying sources are considerably more dif-
ficult to reproduce since there is very little natural repeti-
tion and thus, the textures contain more information. Im-
pulsive sounds are somewhat easier to mimic since the
sound events tend to be shorter than the atoms forming the
synthesis, e.g. fire crackles. When the sound events are
long, e.g. passing cars, they may get divided into multiple
atoms which potentially leading to artifacts.

To hold enough information for natural texture reproduc-
tion, the source material should contain several complete
time events. This is especially important for time varying
textures where the synthesized signal should contain events
that do not bear a close resemblance.

4. THE METHODS OF ANALYSIS

The synthesis results are evaluated according to both, a
subjective aural analysis of the output stream and a more
objective comparison between the spectrographic repre-
sentation of the synthesized output and the original record-
ing. A synthesis result is considered good if the spec-
trographic representation resembles the original recording
over a long period, does not have noticeable repetitions and
does not contain sudden timbral shifts. The aural analysis
is expected to reveal shorter term anomalies not visible in
the spectrograms.The evaluation was done by the authors
and no formal listening tests were conducted.

Analysis is done for many different types of sound tex-
tures to find optimal algorithms and parameters for the four
categories defined in Section 3. If multiple techniques pro-
vide similar results, the approach with the lowest complex-

Class Source
Repetitive, impulsive Punched card computer

Drophammer
Repetitive, smooth Ventilator
Time-varying, impulsive Fireplace

Footsteps
Time-varying, smooth Applause

Traffic
Rain forest

Static Rain
Oil rig machinery

Table 1. The source material used in the analysis.

ity is preferred. The analyzed source materials are listed in
Tab. 1.

5. RESULTS

This section reports the findings from the testing and anal-
ysis of the synthesis techniques covered in Section 2. First,
the general observations about the performance of the al-
gorithms will be discussed followed by a closer inspection
of the different types of sound textures. Both the impul-
sive and smooth repetitive sources showed such similar re-
sults that these texture classes were combined under a sin-
gle subsection.

5.1 Overview of The Algorithms

In general, with an arbitrary choice of parameters and
source material, the algorithms performed according to ex-
pectations. For the looping technique, one or two rep-
etitions could be made without the recurrence becoming
clearly noticeable. With atom sizes of more than 7 seconds,
the periodicity started becoming less obvious. The RND
approach managed to hide obvious repetition for roughly
5 times longer. The algorithm also managed to produce
very natural outputs when given plenty of source material.
Neither the CSDC nor the CSDCe approaches made much
of an audible improvement beyond the RND technique; al-
though, the longer scope results showed that the more ad-
vanced algorithms retained a greater structural similarity
to the source material.

The properties of the probability distribution driving the
RND solution led to the features near the center of the
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Figure 6. Structure of the CSDC implementation.

(a) Repetitive and impulsive texture of a punched card com-
puter.

(b) Repetitive and smooth texture of a ventilator.

(c) Time-varying and impulsive texture of a fireplace.

(d) Time-varying and smooth texture of traffic.

Figure 7. Spectrogram representations of different types of
sound textures.

Figure 8. Static texture of rain.

source clip to be played back with a higher probability.
With the clip length set to or near the length of the source
material, events occurring near the middle could be heard
repeating considerably more often. In some tests this be-
haviour made the implementation to perform worse than
the looping approach.

Using simple crossfades to glue atoms together proved to
be enough to remove noticeable artifacts from the output
streams. Typically fades of around 45 ms were sufficent.
With long fades the phase differences between the over-
lapping segments were occasionally noticeable. Although,
this could likely be resolved using various signal process-
ing techniques such as cross-correlation, the improvement

(a) Synthesized and recorded streams of a punched card com-
puter.

(b) Synthesized and recorded streams of a ventilator.

Figure 9. Synthesized streams from static source material.

was considered beyond the scope of this study.

5.2 Static Textures

The static textures do not contain noticeable timbral shifts
over time and thus do not need to leverage the spectrum
matching capabilities of the CSDC algorithms. Both, the
looping and RND approaches showed promise; however,
the looping technique ended up producing better results
when the length of the source audio was more than 5 sec-
onds. The RND algorithm generated mostly excellent re-
sults, sometimes the same audio segments were played
back in a quick succession, however, making the recur-
rences stand out. Phase mismatches in the output stream
also became audible occasionally.

Evaluating the synthesis results according to their spec-
trograms (Fig. 9), the results are nearly identical. In the
RND synthesis stream some barely noticeable artifacts can
be identified for example around the 7 second mark.

5.3 Repetitive textures

Being inherently repetitive, the repetitive textures can be
synthesized without trying to mask the recurrence in the
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(a) Synthesized and recorded streams of a punched card com-
puter.

(b) Synthesized and recorded streams of a ventilator.

Figure 10. Synthesized streams from repetitive source ma-
terial.

output stream. With parameters synchronized with the pe-
riod of the source material, the looping technique produced
the best results. The strong periodicity in the source ma-
terial managed to hide recurrence in the background noise
of the synthesized streams. The spectrograms of both im-
pulsive and smooth textures of a punched card computer
(Fig. 10a) and a ventilator (Fig. 10b) respectively, show
minimal differences between the artificial and the original
textures.

With the repetitive textures the tonal characteristics of the
source material varies little over time and thus, a review of
the long term similarity between the synthesized signal and
the original recording is not necessary.

5.4 Time-Varying Impulsive Textures

The RND approach provided the best results for source
material with non-periodic short and impulsive sound
events. The looping technique began sounding repetitive
already at the first loop over even with a large amount of
source audio. CSDC on the other hand refused to play the
impulsive sound events altogether due to their abnormal
timbre; instead, the algorithm only generated the back-
ground noise. The RND technique produced somewhat
natural sounding outputs with even as little as 2 seconds
of source audio with atom sizes of around 500 ms and 100
ms fades. Longer clips of source audio with more varying
sound events produced even more realistic results. Increas-
ing the atom sizes to 1 second and fade times to around 200
ms improved the quality of the background texture.

The spectrogram of a one minute stream rendered from
10 seconds of the sound of a fireplace is presented in Fig.
11. From these results it is obvious that the synthesized
stream revisits the same sound events multiple times, struc-
turally, however, the artificial stream has a very close re-
semblance to the original recording.

Figure 11. Synthesized and recorded streams of a fireplace.

Figure 12. Synthesized and recorded streams of traffic.

5.5 Time-Varying Smooth Textures

Long evolving sound textures are the most complicated to
reproduce. Although, the CSDC algorithm is made for
these types of sound textures, the natural reproduction is
still not trivial. A somewhat natural sounding synthesized
stream requires a long clip of source audio and long atoms.
The output quality of this implementation is yet not good
enough to be considered applicable in practice.

Over a long period of time, the CSDC algoritms produce
a great structural resemblance to the source material. This
can be seen in Fig. 12 showing synthesis results generated
from one minute of traffic noise with an atom length of
1.5 seconds, 200 ms fades and 15 spectrally closest atoms
considered near neighbours. What is also immediately ob-
vious is that the stream from the CSDCe approach with it’s
improved timbral flow bears a closer structural similarity
to the original source than that of the basic CSDC imple-
mentation.

6. DISCUSSION

Most of the sound textures used as source material could be
sufficiently well reproduced with an appropriate algorithm.
For the repetitive textures, the looping technique left very
little room for improvement. The reproduction of impul-
sive time-varying textures could be done with an accept-
able quality, although, some clearly repeated transients did
occur. The algorithm proposed in [7] shows great poten-
tial in adding variation to repeated transient sounds which
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could improve the quality of synthesis of impulsive tex-
tures from less source material. The most noticeable arti-
facts in the CSDC output were caused by sound events be-
ing split over multiple atoms. This behaviour could likely
be mitigated through the detection of such events to keep
them intact. One technique with potential in achieving this
is presented in [8]. The looping approach for the synthe-
sis of static textures performed well; however, fine tuning
the probability distribution and introducing phase match-
ing for the RND algorithm would likely bring its quality to
an equal level with less source material.

The examples given in this paper use unprocessed record-
ings from the real world, occasionally comprising com-
plex mixtures of different types of textures. In practise,
a mixture of sound textures could be created in a more
controllable fashion by synthesizing the various textures
on separate streams and blending them together to form
more natural, multi-layered textures. This would also al-
low the use of an optimal technique for generating each
texture. Similar results can also be achieved with synthe-
sis approaches such as montage synthesis and AudioTexture
presented in [3].

Although, progress in the field of sound texture synthe-
sis has long passed the state of the art as it was a decade
ago [1] and the focus in the field is shifting towards neural
networks [9, 10], the results provided in this paper gives
applicable insights for use in low-budget games and other
media where the more complex modern approaches are dif-
ficult to implement.

7. CONCLUSIONS

This paper presented three common methods for concate-
native sound texture synthesis and analyzed them accord-
ing to their performance with varying source material. The
three algorithms were first tested with arbitrary sources and
parameters to gain information about the performance of
the techniques. The source material was then divided into
five classes in Section 3 and an optimal synthesis approach
was chosen for each category.

With no particular attention to the parameters used, the
looping technique generated unnatural and periodic output
streams; the RND approach showed noticeable improve-
ment on these results. The CSDC and CSDCe algorithms
were not able to produce much of an audible improvement
over the RND approach, though structurally the CSDC
streams had a closer resemblance to the source material.
Simple crossfading turned out to be a great way of reduc-
ing artifacts in the streams, some phase issues did, how-
ever, arise with long fades. The algorithms were not uti-
lized with very short atom sizes like they were in [3] as
this was found to produce less natural sounding outputs.

Repetitive sound textures with little evolution over time
were best replicated with the looping technique when the
length of the source material is an integer multiple of
the period of the source. For time-varying textures with
short time events such as clicks and cracks, RND produced
very natural synthesized textures. CSDC achieved the best
results with time-varying textures comprising long time
events; however, the results were not good enough for ap-

plication in practice. The static sound textures were most
naturally reproduced with the looping approach, though
RND seemed like a better option with minor improve-
ments.

8. ENDNOTES

The source audio was obtained from the BBC sound effects
library at https://sound-effects.bbcrewind.
co.uk/. The algorithm implementations and sound ex-
amples covering their successes and shortcomings are
available at https://kuura.parkkola.fi/pub/
material/concatenativesynthesis.
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