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BCAuth: Physical Layer Enhanced Authentication
and Attack Tracing for Backscatter Communications

Pu Wang , Student Member, IEEE, Zheng Yan , Senior Member, IEEE, and Kai Zeng , Member, IEEE

Abstract— Backscatter communication (BC) enables ultra-
low-power communications and allows devices to harvest
energy simultaneously. But its practical deployment faces severe
security threats caused by its nature of openness and broadcast.
Authenticating backscatter devices (BDs) is treated as the first
line of defense. However, complex cryptographic approaches are
not desirable due to the limited computation capability of BDs.
Existing physical layer authentication schemes cannot effectively
support BD mobility, multiple attacker identification and attacker
location tracing in an integrated way. To tackle these problems,
this paper proposes BCAuth, a multi-stage authentication and
attack tracing scheme based on the physical spatial information
of BDs to realize enhanced BD authentication security for both
static and mobile BDs. After initial authentication based on BD
identity with its position information registration, preemptive
authentication and re-authentication are performed according
to spatial correlation of backscattered signal source locations
associated with the BD. By exploiting clustering-based analysis
on spacial information, BCAuth is capable of determining the
number of attackers and localizing their positions. In addition,
we propose a reciprocal channel-based method for BD
re-authentication with better authentication performance than
the clustering-based method for mobile BDs when the BDs
is able to measure received signal strength (RSS), which also
enables mutual authentication. We theoretically analyze BCAuth
security and conduct extensive numerical simulations with
various settings to show its desirable performance.

Index Terms— Backscatter communication, physical layer
security, device authentication, attack detection, positioning.

I. INTRODUCTION

BACKSCATTER communication (BC), which enables
device energy harvesting and ultra-low-power commu-

nications, has emerged as a cutting-edge wireless technology
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to enable sustainable Internet of Things (IoT) applications [1].
Compared with traditional wireless devices with power-hungry
radio frequency (RF) functionalities, backscatter devices (BDs)
have no active RF components, but can conduct ultra-low-
power communications by backscattering RF signals from an
access point (AP) [2]. Another particular feature of BDs is they
can harvest energy from RF signals to power their circuits
even without battery energy [3]–[6]. As a result, BDs can
be made by low-cost hardware with extremely low power
consumption, which facilitates their large-scale deployment in
specific IoT applications, such as implantable medical devices
and industrial sensor systems in a restrictive environment [1],
[7], [8]. But due to the openness and broadcast nature of
backscattering, BC systems face various security threats and
vulnerabilities, i.e., BD identity impersonation and wireless
spoofing attacks [9]–[11].

Device authentication is an essential manner to ensure
fundamental BC security for preventing BD identity imperson-
ation and wireless spoofing attacks. It aims to validate whether
a BD is indeed a legitimate device. Conventional authentica-
tion schemes are mainly based on cryptographic mechanisms
by pre-assigning secret keys and identities for device iden-
tification and authorization [12], [13]. These schemes work
well for devices with powerful capabilities, e.g., smartphones.
But due to the finite energy and limited computation capa-
bility of BDs, it is hard for BDs to employ cryptographic
algorithms [12]. For example, only simple hash functions
are used to protect the identity of tags in radio-frequency
identification (RFID) systems [13], [14] due to their limited
resources. But applying simple cryptographic authentication
protocols makes secret identities easily sniffed by an adversary
which can masquerade as a legitimate tag to intrude a system
by raising identity-based attacks (IBA) [15]. Moreover, as the
scale of BD deployment increases, it becomes quite difficult
to effectively distribute and manage keys to realize crypto-
graphic authentication. Physical layer authentication (PLA)
can achieve effective and light-weight device identification
and authentication without any encryption operations at BDs,
which has been validated by many existing works [16]–[18].
Specific features of RF signals or device hardware are
extracted by a verifier for authentication without requiring
extra operation from devices [17], [19], [20]. It is suitable for
resource-limited BDs due to low computation cost and trivial
energy consumption.

However, the literature still lacks an effective physical
layer BD authentication scheme for securing BC systems.
For example, Qiu et al. [21] proposed a deep learning-based
authentication approach to learn and track the variations of
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channel characteristics in order to enhance authentication
security, but this approach requires data for training a proper
learning model, which is not context-adaptive. Whether it can
be applied into mobile BD authentication and detect attackers
requests additional investigation. Geneprint [22] leverages
the internal similarity of backscattered signals to extract
BD hardware features for authentication in RFID systems.
Mehmood et al. [23] used the non-reciprocity of the residual
channel between a reader and an RFID tag as the fingerprint of
the tag to defend fault tag attacks. However, the existing works
about RFID tag authentication including the above [17], [22],
[24], [25] assume a sophisticated signal analyzer applied by
an RFID reader to extract specific features. Such an analyzer
brings high hardware costs, making it infeasible for general
BC systems. Besides, such features as applied are sensitive
and hard to be stably measured in dynamic environments.
These limitations make existing approaches infeasible to be
applied to mobile BC systems, where BDs could be static or
mobile. More seriously, the hardware/software-based features
of backscattered signals are vulnerable to signal counterfeit,
signal relay and replay attacks, since attackers can learn
constant signal features or record RF signals to mimic a
legitimate BD [26]. But few existing schemes offer attack
tracing and attacker number identification. All above related
work cannot support mutual authentication between a BD and
an AP. Therefore, it is highly expected to develop a novel
physical layer BD authentication scheme that can effectively
enhance authentication security by supporting BD mobility,
tracing the location of attackers and identifying their number.
Mutual authentication is also preferred at the same time if BD
has sufficient capability to identity a fake AP.

But how to employ suitable physical layer features in BC
systems to offer such effective authentication as expected
above is not a trivial problem. We are facing a number
of challenges. First, it is hard to perfectly estimate or
measure the features or fingerprints of physical channel,
considering environmental interference. Thus, imperfect
channel estimation greatly impacts authentication accuracy.
Second, it is hard to authenticate mobile BDs. Prior arts
about physical layer authentication mainly focus on static BD
authentication [20], [21], [23], [27]. Seldom, they consider
BD mobility, especially when a BD could move across the
coverage of multiple APs. Third, it is not an easy job to
locate the concrete positions of the sources of attackers and
identity their concrete number. Existing schemes [22] based
on channel features or fingerprints cannot realize this goal
since they do not collect any information about locations and
analyze it. In particular, counting the number of potential
attackers need special efforts due to the mixture of signals
from legitimated devices and attackers.

To tackle the above challenges, in this paper, we pro-
pose BCAuth, a multi-stage authentication and attack tracing
scheme based on the physical spatial information of BDs.
We set up a hierarchical architecture of the BC system where
a server controls APs to simultaneously transmit RF signals to
power BDs and receive information from them. In such a hier-
archical BC system, the server and APs cooperatively authen-
ticate a BD, when the BD responds to the APs. We employ

preemptive authentication at the AP and re-authentication at
the server to offer enhanced authentication security for both
static and mobile BDs. The AP first authenticates BD based
on BD identity with BD position registration in a prior stage,
different from some existing schemes [19], [22] that only
apply physical layer features. Without any need to extract
specific features, e.g., average baseband power [22], [24] that
requests specific hardware, positioning information can be
calculated from the received signal strength (RSS) and the
angle of arrival (AoA) of backscattered signals, which are
easily estimated in BC systems with high accuracy based on
the advance of prior-arts [28]. In addition, we randomize the
power of carrier signals from AP to randomize the RSS values
of backscattered signals, so as to make RSS values unpre-
dictable and unforgeable. Except for identity impersonation
or spoofing attacks, our scheme can prevent signal counterfeit
and replay attacks, as well as relay attacks in the physical
layer, due to the randomness of RSS values.

In the following stages of authentication, the server exploits
a clustering-based algorithm to analyze the spatial correla-
tion of estimated locations associated with the BD to per-
form re-authentication. Accurate authentication can be ensured
based on correlated locations provided by multiple APs and
meanwhile a mobile BD can be authenticated based on BD
trajectory estimation and matching by using machine learning,
concretely location clustering [28]. In particular, BCAuth can
also conduct accurate attack detection through spacial informa-
tion analysis by clustering multiple locations provided by the
APs after the preemptive authentication. Besides, in case that
the BD has the capability of recording RSS values of downlink
signals from the AP, a reciprocal channel-based method can
be proposed to perform BD re-authentication with the returned
RSS records from the BD at the server. This method can
improve the performance of mobile BD authentication by
comparing the RSS records reported by BD with the ones
saved by AP. Mutual authentication can also be realized if
the BD is capable of measuring RSS and calculating the
correlation of its recorded RSS values of AP with the ones
provided by AP [29], [30]. In case authentication failure,
BCAuth can further determine the number of attackers through
clustering-based analysis on the location information related
to the BD and then locate potential attackers, as well as judge
the number of attackers.

Specifically, the main contributions of this paper are sum-
marized as below:

• We propose BCAuth, a multi-stage authentication and
attack tracing scheme in BC systems based on physical
spatial information of BDs. BCAuth is the first work to
provide enhanced authentication security for both static
and mobile BDs and is capable of determining the number
of attackers and tracing their locations. Except for identity
impersonation attacks, BCAuth can also detect signal
counterfeit attacks, replay attacks, and relay attacks.

• We propose a re-authentication method by exploiting
spatial correlation of estimated locations associated with
the BD. We also design another reciprocal channel-based
method for re-authentication in case that the BD is
capable of measuring the RSS of downlink signals to
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TABLE I

COMPARISON BETWEEN EXISTING WORKS AND BCAUTH

improve authentication performance for mobile BDs.
With the capability of RSS measurement at BD, mutual
authentication between BD and AP can also be achieved.

• We conduct both theoretical analysis and extensive
numerical simulations under different parameters to show
the desirable security and performance of BCAuth for BD
authentication and attack tracing.

The rest of the paper is organized as follows. We review
the literature and qualitatively compare BCAuth with a
number of related physical layer authentication schemes
in Section II. Section III introduces the system and
security models of BCAuth and overviews the overall
procedure of BCAuth. In Section IV, we present the detailed
design of BCAuth, including authentication initialization,
preemptive authentication, re-authentication and attack
tracing. We conduct security analysis in Section V, followed
by performance evaluation results based on numerical
simulations in Section VI. Finally, we conclude the paper and
indicate our future work in the last section.

II. RELATED WORKS

In this section, we review the existing works of device
authentication based on cryptography and physical layer fea-
tures, respectively. We also compare existing related physical
layer authentication schemes with BCAuth in Table I.

A. Cryptographic Authentication

Existing authentication schemes applied in BC systems in
practice mainly focus on RFID systems, some of which highly
depend on cryptographic technologies [31], [32]. For instance,
in the RFID systems that employ EPCgloable standards, each
RFID tag stores a unique and random number allocated by a
back-end server as an identity (ID) for authentication [33]. But
it can be easily intercepted by adversaries, which could induce
serious threats to the BC systems, such as tracking, IBA, replay

attack and device cloning. To relieve these vulnerabilities,
a pre-shared encryption key is applied to secure BD identity or
generate a random code, such as encrypted ID and Electronic
Product Code (EPC) [34]. But this kind of methods still
cannot prevent some interception adversaries with powerful
capabilities, and it faces serious challenges regarding key
distribution and update.

Due to limited supply energy and computational resource
of BDs, light-weight authentication schemes are proposed
since it is hard to employ complex cryptographic algorithms
at BDs. Some protocols only employ XOR or simple hash
functions to hide ID information with a pre-shared key to
reduce complexity and cost, e.g., the EPCglobal C1G2 and
YA-TRAP protocol [33], [35]. However, XOR and hash
functions cannot provide sufficient security since an attacker
can easily intercept the ID information by sniffing initial
communications [36]. Therefore, only applying cryptography
is infeasible to authenticate BDs with sufficient security to
avoid authentication vulnerabilities and threats, especially for
resource-limited BDs.

B. Physical Layer Authentication

A number of approaches have been proposed to authenticate
a BD by extracting the physical layer features of its backscat-
tered signals or BD hardware as its fingerprints [17], [21],
[22], [24], [25], either using machine learning [21], [37] or
fingerprint matching [22], or both [27].

Reference [38] proposes a channel-based physical layer
authentication (PLA) enhancement scheme by exploiting the
inherent two-dimensional properties of multipath fading chan-
nels, such as channel amplitude and multipath time delay
spread. Reference [39] introduces a PLA scheme by applying
tagged signals as a proof of authentication, which is generated
by a secret key shared between a sender and an authenticator.
Both schemes work in a non-BC scenario, not for BD authen-
tication. That is their working scenarios are different from
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ours. These two schemes cannot support mobility, nor trace
attackers and identify their number. Mutual authentication is
not mentioned. The scheme in [38] can only resist identity
impersonation/spoofing attacks, while the scheme in [39] can
resist replay and impersonation attacks to some extent. Since
both schemes do not apply ML, thus there is no need to train
an ML model. Both request signal analysis and are not resilient
to imperfect channel state estimation.

Some researchers apply machine learning for authentication
based on physical layer features. Qiu et al. [21] proposed
a deep learning-based authentication approach to learn and
track the variations of channel characteristics in order to
enhance authentication security and detect spoofing attacks.
Liu et al. [37] used channel state information (CSI), available
from off-the-shelf WiFi devices to conduct fine-grained user
authentication and detect a spoofer. They applied machine
learning based user authentication techniques (e.g., Support
Vector Machine) to distinguish two users with similar sig-
nal fingerprints. It requests labelled data to train a machine
learning (ML) model and depends on a signal analyzer for
CSI analysis. Commonly, the above two approaches require
data to train a learning model. In practice, it is normally hard
and costly to collect sufficient data and label them to train
an effective model that can be applied into various contexts.
Whether they can work for mobile BD authentication needs to
be further investigated. Mutual authentication is not considered
in these two works. It is impossible for them to track the
locations of attackers and identify their number.

BD authentication in RFID systems has been studied in
the literature, but current schemes still suffer from some
shortcomings. Geneprint [22] leverages the internal similarity
of backscattered signals, concretely the covariance among
two consecutive sequences of RN16 preamble, as fingerprints
for tag authentication in RFID systems. Wang et al. [24]
proposed Hu-Fu for RFID tag identification by utilizing
the unique inductive coupling feature of two adjacent tags
as identification information. Danev et al. [25] proposed an
authentication scheme by extracting the modulation shape and
spectral features of backscattered signals. Zanetti et al. [17]
proposed a fingerprinting scheme that measures average
baseband power (ABP) and time interval error (TIE) from
the fixed RN16 preamble as tag identification information.
Mehmood et al. [23] used the non-reciprocity of the residual
channel between a reader and an RFID tag as the fingerprint of
the tag to defend fault tag attacks. However, such features, e.g.,
modulation shape and TIE, are sensitive to environments, thus
unstable for device authentication when BD is moving. The
above schemes easily suffer from imperfect channel estima-
tion. They are also vulnerable to signal counterfeit, replay and
relay attacks although they can resist identity impersonation
attacks. This is because attackers can easily learn the constant
RF signal features of a genuine device or record its RF
signals to mimic a legitimate device [26]. Besides, using a
sophisticated signal analyzer usually increases hardware cost,
making it infeasible as a general solution for BC systems.
Unfortunately, all above schemes cannot support BD mobility,
attacker tracing, and attacker number identification, as well as
mutual authentication.

Fig. 1. System model and security model.

There are other works in the literature, which utilize
backscatter or spacial information for device authentica-
tion [20], [27], [40]. For example, ShieldScatter [27] is an IoT
device authentication scheme by using multiple backscatter
tags attached to AP to intentionally create fine-grained mul-
tipath signatures for helping AP identify a device and detect
impersonation attackers. Both machine learning and fingerprint
matching are applied in authentication. It can work in both
static and dynamic environments. For authentication, model
training is needed due to the use of support vector machine
(SVM). Wang [20] proposed an authentication scheme for
mobile wireless sensor networks, assisted by physical layer
features. It explores the reciprocity and spatial uncorrelation
of the wireless channel to verify a transmitter and judge
whether all messages are from a same sender and detect
spoofing attacks. This scheme can overcome imperfect channel
estimation to some extent. But device mobility is not supported
by this scheme. Mutual authentication is not mentioned in the
above two works. They can detect an attacker, but cannot trace
its location and identify the number of attackers.

Table I compares the above reviewed works with BCAuth
in terms of mobility support, attacker location tracing, attacker
number identification, mutual authentication, detected attacks,
ML model training avoidance, and signal analyzer indepen-
dence, as well as resilience to imperfect channel state esti-
mation. We can see that the literature still lacks an advanced
BD authentication scheme to support mobility, offer attacker
tracing, identify attacker number, and overcome imperfect
channel estimation to some good extent. BCAuth shows great
advance with regard to the above merits and functionalities.
It can detect not only impersonation or spoofing attacks, but
also signal counterfeit, replay and relay attacks. Thus, it also
shows great advance on attack resistance. In addition, it does
not request data collection for ML model training, neither
depends on an expensive signal analyzer. Thus, it is also
economic and easy to be deployed in practice.

III. BCAUTH OVERVIEW

In this section, we first introduce the system model and
security model of BCAuth, and then overview the procedure
of BD authentication and attack tracing.

A. System Model

Fig. 1 shows the system model of BCAuth. We consider a
hierarchical BC system with three types of parties in BCAuth:
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a server, access points (APs) and backscatter devices (BDs).
Multiple APs are set up in fixed positions and are controlled
by the server. The server controls each AP to simultaneously
transmit RF signals to power BDs within its coverage and
receive information from the BDs [8], [41], [42]. BDs and
potential attackers could be static and mobile. All BDs within
the coverage of one AP alternately perform backscatter trans-
mission in a time-division manner, as designed in prior arts [2],
[4], [5], [43]. In each slot of time, the AP selects only one
BD by signaling, making the RF signals backscattered only
from this BD without mutual interference at the receiver AP.
This setting is the same as our previous work and proved feasi-
ble [2]. The selected BD responds to the AP via backscattering
and then communicates with the server. The server cooperates
with the AP to verify the identity of the BD in each message
responded by the BD to prevent receiving illegal messages
from attackers. Herein, APs can estimate the positions of
BDs based on the backscattered signals by probing their
RSS and AoA, and/or measuring Time of Arrival and AoA
according to some trustworthy method as we have previously
explored [28]. And then APs help the server authenticating
the BDs within its coverage when the BD transmits message
packets. With this method, we can reduce authentication cost
at the server when a large-scale of BDs are deployed in the
BC system with the support of multiple APs since this method
does not rely on any expensive signal analyzer. Additionally,
we can achieve accurate positioning based on truth discovery
from the positions provided by multiple APs [28] in order to
reduce the impact of estimation errors of RSS and AoA, and
subsequently improve the accuracy of authentication (Refer
to our experimental results shown in Fig. 8 and Fig. 11.
in Section VI.)

BCAuth solves the following fundamental problems in the
above modeled BC system. First, the server with the help
of the AP can validate whether the replies of a BD are
from a legitimate BD or an attacker. Second, BCAuth is
capable of adapting application scenarios to authenticate static
or dynamic BDs. Third, in case authentication failure due to
attacks, the server can conduct further analysis to detect the
number of attackers and trace their locations.

B. Security Model

We assume that the server is trusted. APs work as BCAuth
design. They are cooperative with each other and with the
server. APs communicate with the server in a secure way
by applying some existing technique, such as OpenSSL
(https://www.openssl.org/). Each AP can obtain a synchro-
nized timestamp (e.g., from public GPS signals or a reli-
able time system [41]). Meanwhile, a timestamp validation
algorithm [42] is applied by the server to verify the truth
of the timestamp attached to each AP. The server controls
all APs to work in a synchronized way, i.e., sending RF
signals following the same time slot arrangement. During
initialization, we assume that the source AP sends a synchrony
message to all BD and APs, or that a BD injects some constant
preamble symbol in each message when it backscatters signals
for information transmission to realize synchronization at all

APs. Since the BD is a passive device to only reflect AP’s
signals, it relies on the AP to direct its communication. Once
APs are synchronized, it is easy to let BD follow the pace
of APs based on their synchronization messages or handshak-
ing messages. Regarding the working scenario of BCAuth,
we assume that it is applied into such a field as a warehouse
where BDs are attached to goods and an apartment where
BDs are embedded into different objects. In such scenarios,
we model the relatively complex channel between APs and
BDs as the Rayleigh channel model because there could be
some obstacles blocking the main channel between the AP and
the BD.

We assume a powerful attacker that can eavesdrop on
any communications between the APs and legitimate BDs to
obtain the identity information of BDs. Then, the attacker can
masquerade as genuine BDs by modifying its identity to carry
out identity impersonation attacks. Besides, in the physical
layer, the attacker can intercept the features of the RF signals
from a genuine BD and then perform wireless impersonation
attacks. Concretely, we define a counterfeit attacker, i.e.,
Attacker-1 in Fig. 1, who can eavesdrop on the backscattered
signals of a genuine BD and record corresponding features,
i.e., RSS and AoA. Then, it similarly backscatters the RF
signal to imitate the behavior of the genuine BD to make the
RF signals arriving at the AP the same as the previous ones
of genuine BD. In addition, a replay attacker could record
any RF signals backscattered by BDs and replay the identical
signals of prior communication to the AP, i.e., Attacker-2
in Fig. 1. Besides, a signal relay attacker just relays the
backscattered signal of a legitimate BD to the AP when the
BD is backscattering signals, i.e., Attacker-3 in Fig. 1. And,
there could be a more powerful signal relay attacker that is
able to block the backscattered signal from the BD to the AP.
Based on the attacking techniques above, the attacker intends
to insert fake messages to deceive the server when the server
is communicating with the genuine BDs. Thus, some or all
of the received messages of the server might be sent from an
attacker, as shown in Fig. 1.

Besides, since BDs could be static or mobile, the attacker
could behave adaptively as static or mobile. We assume that
attackers normally take attacking actions that are most likely to
succeed. For example, the attacker chooses to stay static when
BDs are static, otherwise hardly for it to launch counterfeit
and replay attacks. For a mobile BD, we mainly consider
such a case that there is only one attacker that is close to
a legitimate BD and follows its moving trajectory. But in
practice, an attacker cannot be very close (less than a few
multiples of wavelength) to any legitimate BDs in a physical
space.

C. BCAuth Overview

BCAuth performs BD authentication and attack detection
by analyzing the physical spatial information of BDs, i.e.,
positioning information. RSS and AoA values are widely avail-
able in wireless communication systems and highly correlated
with the physical location of a wireless device. Location can
be calculated with several ways, for example based on RSS
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Fig. 2. BCAuth overview.

and AoA, or based on time of signal arrival and AoA, etc.
RSS and AoA are independent with each other. Different
ways of location calculation and multiple positioning results
reported by different APs benefit accurate positioning [28],
which helps finding a ground truth. In this paper, we use
RSS and AoA to calculate the location of a signal source,
as an illustration. Thus, the accurate positioning information
estimated from the RSS and AoA values represents a mean
to distinguish different BDs. Therefore, the main idea of the
proposed BCAuth is to use the positioning information of a
BD to perform authentication and attack detection. As shown
in Fig. 2, the proposed BCAuth mainly consists of three parts:
a) Initialization phase, b) Authentication phase, c) Attack
detection and tracing phase.

1) Initialization Phase: In this phase, a new BD need
to register at the server with their identity information
(I D). This BD sends its I D via backscatter communica-
tion to a AP that it belongs to and the server. Except for
receiving I D, the AP records the corresponding RSS and
AoA values of backscattered signals. Then, the AP will
calculate the location information Lr

0 and store the vec-
tor {I D, RSS0, AoA0, Lr

0} for subsequent BD authentication.
If BDs are mobile, the AP build a position prediction algo-
rithm based on physics-based approaches [44], [45] or RSS
fingerprint-based approaches [46], [47] by collecting trajectory
information of the BD over a period of time [44], [45]. The
initialization is needed when every new BD enters the coverage
of an AP controlled by the server and joins the system for the
first time.

2) Authentication Phase: This phase is composed of two
authentication stages to successively validate whether a mes-
sage is responded by a legitimate BD or an attacker. When the
AP receives a message packet from a BD, the AP measures
the RSS and AoA values of its backscattered signals. Based
on the received I D, RSS and AoA information, the server and
the AP can perform multi-stage authentication to enhance BD
authentication security.

Concretely, in the first stage, the AP authenticates the
BD via the received I D and its positioning information L.
In case of a static BD, the AP directly compares the vector
{I D, L} with registered ones {I D, Lr

0} to determine whether

it is legitimate. In case of a mobile BD, the AP can predict
BD’s location L p based on its previous location trajectory and
compare {I D, L} with {I D, L p} to validate the BD. In the
second stage, after receiving N messages of the BD relayed
from the AP for a certain period, i.e., N time slots, the server
re-authenticates BD based on a number of its N positioning
values. In BCAuth, the server utilizes a clustering algorithm to
analyze spatial correlation of N positioning values to detect
potential attacks, so as to re-authenticate the BD regarding
its N messages. Moreover, in case that the BD can measure
RSS by itself, it can send N RSS values measured in the
past N time slots to the server for BD re-authentication.
Concretely, based on the reciprocity of a backscatter channel
between the BD and the AP, the server can validate the BD by
comparing the two sets of N RSS values provided by the BD
and recorded by the AP, respectively. This technique can be
viewed as an upgraded method to replace the clustering-based
re-authentication in the mobile BD case in order to achieve
better performance. With the capability of RSS measurement,
the BD can also authenticate AP by calculating the correlation
of its recorded RSS values of AP with the ones provided by
AP. For this purpose, the AP need to send its RSS values to
BD. Thus, mutual authentication can also be realized.

3) Attack Detection and Tracing Phase: In case BD authen-
tication fails and there are potential attackers, the server can
utilize the recorded positioning values to detect the number of
attackers and track their locations. In case of static BDs, first
of all, a clustering algorithm run by the server is used to cluster
the location values, so as to determine the number of attackers.
Then, the server utilizes the medoids or the average values of
different RSS clusters to localize the positions of attackers.
In case of mobile BDs, our design can filter out abnormal
positioning values and try to trace the motion trajectory of
potential moving attackers.

IV. BCAUTH DESIGN

This section describes the details of BCAuth design, includ-
ing initialization, multi-stage authentication, as well as attack
detection and tracing.

A. Initialization

When deploying the BC system in practice, all BDs need
to register at the server with their real identities. The server
firstly starts an inventory round by controlling all APs to send
an identification query. Based on the slotted ALOHA protocol
with multiple BDs [48], a BD in a selected slot responds
with a random number RN and meta I D = h(I D||k), where
h(I D||k) is the hash value of its real identity I D and a secret
key k, which is preset by an upper security protocol. The server
authenticates the BD by searching its database to find the
corresponding record meta I D, because the information (e.g.,
I D, k and meta I D) of all legal BDs has been stored in the
server ahead of time. If there is, it sends an acknowledgement
message to the AP, including h(RN), h(I D) and h(k). h(I D)
is the hash value of I D. Otherwise, it returns an authentication
failure message to the AP, which no longer receives messages
from the underlying BD. After receiving h(I D) and h(k) from
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Fig. 3. Initialization phase for BD attachment.

the server, the AP retains P I D = h(I D) as the pseudonym of
BD and sends h(RN) and h(k) to the BD. The BD compares
h(k) with the hash value of the secret key it stores. If the
values match, it authenticates the server and sends h(I D)
to the AP. The AP compares P I D from the server with the
one from the BD to authenticate the BD. If they match, the
AP records the RSS and AoA values of the backscattered
signals and calculates its location L0 as a spatial feature
vector {RSS0, AoA0, L0}. If the BD is mobile, the AP needs
to obtain multiple locations to setup a location prediction
algorithm based on physics-based approaches [44], [45] or
RSS fingerprint-based approaches [46], [47]. The procedure of
the initialization phase for BD identification and attachment at
AP is shown in Fig. 3.

B. Preemptive Authentication at AP

With such stored spatial information, AP can directly per-
form preemptive authentication of BDs with two factors,
consisting of P I D and positioning information, when they
subsequently transmit messages to the AP. As in existing pro-
tocols of BC systems, AP firstly broadcasts a query command
to select a BD and then transmits a carrier signal to bear
information from the BD via backscatter communications.
We propose to design the carrier signal, assumed in time slot
t j , with a random transmission power Pt j in our scheme. The
different random power Pt j selected in each slot can make the
received RSS value unpredictable in subsequent slots, so as
to prevent RF signal counterfeit and replay attacks. This is
because the random power can make RSS at BDs unable
to form any patterns, as RSS is mainly correlated to the
transmission power and the distance between the BD and the
AP. The signal power received by the BD is as follows,

P B D
t j

= Pt j h(d) + P B D
w , (1)

where h(d) is the power attenuation function of the downlink
channel with a parameter d , which is the distance between the
BD and the AP. P B D

w is the power of environmental noise at
the BD.

After receiving the query command, the selected BD
backscatters the carrier signal and transmits its pseudonym
ID and other information in a message packet. The power of
the backscattered signal received by the AP is as follows,

P AP
t j

= κ Pt j h(d)hb() + κ P B D
w h(d) + P AP

w , (2)

Fig. 4. Multi-stage authentication procedure.

where hb(d) is the power attenuation function of the backscat-
ter channel, κ is the backscatter coefficient of the BD, and
P AP

w is the power of environmental noise at the AP. We mea-
sure the received signal power P AP

t j
as the RSS value RSSb

t j
,

and calculate the distance d with the RSS value based on
function h(d) by assuming h(d) is equal to hb(d) because of
the channel reciprocity between the BD and the AP. Besides,
we do not consider the P B D

w at the AP since it suffers the
attenuation of backscatter channel hb(d) and the backscatter
coefficient κ .

The AP obtains the pseudonym ID from the backscattered
message and records the RSS value, RSSb

t j
, and the AoA

value, AoAb
t j

of the backscattered signals. Then, the AP
calculates the location Lt j = (x, y) of the BD as follows:

x = xAP + d sin AoAb
t j
, (3)

y = yAP + d cos AoAb
t j
, (4)

d = 1

2

√
κ Pt j /4π RSSb

t j
, (5)

where (x AP , yAP ) is the location of the AP. With P I D
and location information Lt j , the AP performs a preemp-
tive authentication to verify whether this message packet
is from a legitimate BD. With the calculated location and
location history, AP determines whether the BD is static or
mobile and adaptively adopts different detailed techniques
for authentication. Concretely, based on the RSS and AoA
of BD backscattered signals, the location of BD can be
calculated according to Eq. (3)-(5). If the calculated locations
of the BD with the same PID at different time slots are
changed, we can judge that the BD is moving. Otherwise, it is
stationary. If the BD is static, the AP compares {P I D, Lt j }
with the registered one {P I D, L0}. If the BD is mobile, the
AP compares {P I D, Lt j } with {P I D, L p

t j
}, which consists

of the predicted location of BD, to authenticate the device.
This process can be iteratively used to authenticate the BD
regarding each transmission message packet.

If succeeding over past N time slots, the AP sends the loca-
tion value list D� = {Li , Li+1, . . . , Li+N−1} with N values to
the server. The server can exploit the spatial correlation of N
location values to re-authenticate the BD with a clustering-
based method. In this way, it can also reduce the server’s
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burden without verifying the identity of N message packets
one by one. In some specific case, if the BD has the ability to
measure the RSS of the incident carrier signal from the AP,
it records the RSS value RSSt j of the carrier signal. In such
a case, the server can require the BD to return its RSS value
list C � = {RSSi , RSSi+1, . . . , RSSi+N−1 } over past N time
slots. With RSS list Cb = {RSSb

i , RSSb
i+1, . . . , RSSb

i+N−1}
uploaded from the AP, the server can exploit these two RSS
lists to re-authenticate the BD based on the reciprocity of the
backscatter channel, and vice versa. Thus, mutual authentica-
tion can be achieved. Fig. 4 illustrates the detailed procedure
of multi-stage authentication, which consists of preemptive
authentication at the AP and the re-authentication at the server.

C. Clustering-Based Re-Authentication

After N time slots, each of which the AP receives a message
from a BD, the AP uploads N location values to the server
for re-authenticating the BD. The server can determine the
number N by considering the trade-off between authentication
accuracy and time. Due to the previous preemptive authentica-
tion, the server only needs to conduct a one-time verification
on the identity of N message packets. This method is able to
reduce the authentication overhead at the server by distributing
authentication tasks to APs with high scalability.

1) Authenticating Static BDs: In the case of a static BD, the
sever conducts spatial correlation analysis on the set of loca-
tion values by applying clustering algorithms, such as K-means
and Partitioning Around Mediods (PAM) method [49]. The
calculated location values are highly related to the practical
physical location, though they are affected by estimation bias.
If there is no attack, for each BD with the same P I D, all
location values are close to each other. They fluctuate around
a mean value, because the RSS and AoA of backscattered
signals are affected by noise and environments. And the
distances among different clusters are small if dividing N
locations into several clusters. However, if under an attack,
there is more than one device at a different physical location
claiming the same P I D. The location values claiming the
legitimate BD are mixed with the values related to at least
one different location. Normally, the location values of the
legitimate BD belong to the same cluster, while the location
values of attackers located in different physical locations
should fall into different clusters. And the distances among
different clusters, especially the distance between the cluster
of the legitimate BD and the cluster of the attacker, are larger
than the distances when there are no any attacks.

This observation suggests that the server can conduct clus-
tering analysis on the calculated locations claiming the same
P I D to achieve one-time authentication on the BD identity of
N message packets. If there are N location values related to
the same P I D, the clustering algorithm partitions N values
into K (i.e., K = 2) disjoint subsets Sj . In our simulation,
we use the k-means algorithm and set K = 2 during clus-
tering by classifying the locations into two classes: normal
locations of the legitimate BD and abnormal locations of
potential attackers. BCAuth provides a generic BD authentica-
tion framework for BC. Obviously, more advanced clustering
algorithms (e.g., the algorithms that can automatically decide

the number of clusters) can be applied to further improve
BCAuth performance. Each subset Sj contains contains N j

values, so as to minimize the sum-of-squares criterion to obtain
an optimal clustering result as follows:

Jmin =
K∑

j=1

∑

Lm∈S j

||Lm − μ j ||2, (6)

where Lm is a location value representing the m-th value and
μ j is the geometric centroid of subset Sj .

Besides, we formulate the re-authentication as a statistical
significance test, where the null hypothesis is

H0 : success (no attack). (7)

In this significance test, a test statistic T is used to evaluate
whether the observed data belongs to the null hypothesis or
not. If the observed test statistic Tobs differs significantly from
the hypothesized values, the null hypothesis is rejected and we
claim that the re-authentication fails and there is a presence
of attacks.

Based on the null hypothesis, we thus choose the distance
between any two cluster centroids as the test statistic Tobs for
re-authenticating BD and detecting potential attacks,

Di, j = ||μi − μ j ||, (8)

where i, j ∈ {1, 2, . . . , K }. Under the conditions of success
(no attack), the distances between the centroids of different
clusters should be small. This is because all positioning
values are in high proximity to the real physical location.
Otherwise, there is more than one device at a different location
claiming the same pseudonym ID. As a result, the distance
Di, j becomes large as the clusters are associated with different
locations. Therefore, we utilize the distance Dt j to validate the
BD regarding its N messages at the server at once.

Next, we use empirical training from a collected data set
to determine a threshold for defining the critical region for a
significance testing. Appropriately setting a threshold ρ can
ensure the accuracy of re-authentication and its reliability,
considering false authentication or false acceptation. In the
phase of initialization, we can obtain multiple calculated
locations of a BD in a known location and obtain the distances
between any two centroids to determine the threshold. In the
phase of authentication, based on the positioning values of a
BD with P I D, we can calculate an observed value Dobs

i, j . Our
condition for declaring re-authentication failure and attack is:

Dobs
i, j > ρ, ∃i, j ∈ {1, 2, . . . , K }. (9)

2) Authenticating Mobile BDs: In the case of a mobile BD,
because the BD is moving around, the distribution of estimated
positions is highly dependent on the movement pattern of the
BD. It is prohibitive to directly apply clustering algorithms
to analyze all position values even with the knowledge of the
movement pattern of the BD. Based on the position values,
the server exploits a partitioning approach to separate the
positioning values into two classes in each time interval.
Then, these two classes are used to reconstruct two location
trajectories over all time intervals. In a success (no attack)
situation, two trajectories will be correlated and directly reflect
the movement pattern of the BD, whereas they are uncorrelated
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under potential attacks as the movement trajectories of the vic-
tim BD and the attacker are different. Therefore, by examining
the degree of correlation of the location trajectories in physical
space, the server can determine whether there is an attacker
present in the system.

We denote all position values sent from the AP related to
one BD within a time window TN is L. We equally divide
all values into M non-overlapping time intervals. Denote
positioning values in m-th time interval as Lm , while L
can be represented as {L1,L2, . . . ,LM }. Within each time
interval, the positioning values are partitioned into two classes
La,m and Lb,m . We assume that one belongs to the victim
BD and the other belongs to a potential attacker. Similarly,
we exploited K-means with K = 2 as the location partitioning
approach to partition the location values Lm in each time
interval. Identically, we need to analyze how to obtain the
optimal threshold that can minimize the partitioning error of
the positioning value.

From two partitioned classes in each time interval,
we further reconstruct two location trajectories, V1 =
{v1,1, . . . , v1,M } and V2 = {v2,1, . . . , v2,M }, over the whole
time window TN . If under attacks, one trajectory is associated
with the victim BD and the other associated with the potential
attacker. These two reconstructed trajectories are next used
to authenticate the identity of all packets by measuring their
similarity via a correlation coefficient. Since each time interval
is small, we can directly use the average value, represented as
l̄a,m and l̄b,m , of each location class La,m and Lb,m in a time
interval for trajectory reconstruction. Then, in the m-th time
interval, trace reconstruction needs to determine whether to
assign l̄a,m to v1,m and l̄b,m to v2,m or on the contrary.

Since we do not have prior knowledge of the movement
patterns of BDs except for past position values, we cannot
directly construct the trajectory of a moving BD. However,
there is a temporal spatial constraint presented in location
trajectory that the position values within few consecutive time
intervals are correlated [50]. Though, the location trajectory in
the whole time window TN may not follow any form of curves,
the location trajectory within several small time intervals can
be modeled to follow a conic curve [50]. In the m-th time
interval, we can use some past position values based on conic
curve fitting to predict the location values in the (m + 1)-th
time interval. We then compare the predicted values l p

a,m+1
and l p

b,m+1 with l̄a,m+1 and l̄b,m+1 and decide how to assign
l̄a,m+1 and l̄b,m+1 to v1,m+1 and v2,m+1, respectively.

We develop the prediction algorithm to predict the location
values during the location trajectory reconstruction. The algo-
rithm utilizes the determined location values in the last L time
intervals ranging from (m − L + 1)-th to m-th time interval
to perform conic curve fitting and predict the location values
l p
a,m+1 and l p

b,m+1 in the (m + 1)-th time interval:
l p
a,m+1 = ka,1,m + ka,2,m(m + 1) + ka,3,m(m + 1)2, (10)

and

l p
b,m+1 = kb,1,m + kb,2,m(m + 1) + kb,3,m(m + 1)2, (11)

where the coefficients {ka,1,m, ka,2,m, ka,3,m} and
{kb,1,m, kb,2,m, kb,3,m} are determined by the latest L location

values {v1,m−L+1, . . . , v1,m} and {v2,m−L+1, . . . , v2,m}
according to the least-squares polynomial approximation [50].
L is a variable, which is set as L = 4 in our study
based on experimental results. Setting L as 4 can obtain
sufficient authentication performance with relatively low
time complexity for mobile BD authentication. Besides,
it is suggested to set it with a small value based on [51]
when constructing the trajectory of a moving object with a
relatively low velocity.

We further define the prediction error as:
pe,1 = (l p

a,m+1 − l̄a,m+1)
2 + (l p

b,m+1 − l̄b,m+1), (12)

and

pe,2 = (l p
a,m+1 − l̄b,m+1)

2 + (l p
b,m+1 − l̄a,m+1). (13)

If pe,1 ≤ pe,2, we assign l̄a,m+1 to v1,m+1 and l̄b,m+1 to
v2,m+1. Otherwise, we assign l̄a,m+1 to v2,m+1 and l̄b,m+1 to
v1,m+1. In the initial setup, when m = 1, we set v1,1 = l̄a,1,
v2,1 = l̄b,1 and l p

a,2 = v1,1, l p
b,2 = v2,1. When 1 < m <

L, we use the first m location values of V1 and V2 to fit
conic curves and then predict and determine the (m + 1)-
th location values. Therefore, we finish reconstructing two
location trajectories whose similarity is exploited to perform
re-authentication of the BD regarding its all message packets.

In a success (no attack) situation, the location trajectories
V1 and V2 are correlated and belong to one legitimate BD,
whereas they are uncorrelated under potential attacks as they
belong to the victim BD and the potential attacker, respec-
tively. Then, we measure the correlation coefficient to capture
their similarity as below [52], [53],

r =
∑n

i=1 (v1,i − v̄1)(v2,i − v̄2)

(n − 1)δ1δ2
, (14)

where v1,i ∈ V1, v2,i ∈ V2, v̄1 and v̄2 are the means of
V1 and V2, δ1 and δ2 are the standard deviations of V1 and V2,
respectively. 0 ≤ |r | ≤ 1. Similarly, we exploit the similarity
r as the test statistic for re-authentication and potential attack
detection. Thus, only |r | near 1 indicates V1 and V2 trend to
change together with high positive linearity, which means they
are from the same BD. Thus, the server re-authenticates the
legitimate BD about the location values associated to its N
message packets uploaded from the AP.

D. Reciprocal Channel Variation-Based Authentication

If the BDs have the ability to measure the RSS value of
the carrier signal transmitted by AP, the server can require
the BD to feedback the list of a number of N RSS records,
C � = {RSS�

t j−N+1
, . . . , RSS �

t j−1
, RSS �

t j
}, over a past cer-

tain period of time. Then, with the RSS record list C =
{RSSt j−N+1 , . . . , RSSt j−1, RSSt j } uploaded from the AP, the
server can validate the BD identity of its N message packets
at once. It can perform re-authentication by comparing these
two RSS lists [15] by replacing the clustering-based method
as described above, especially for improving authentication
performance in the case of mobile BDs. This is because the
increase of BD moving speed could worsen the authentication
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performance of the clustering-based method. The authenti-
cation performance can be partly improved by increasing
the number of the coefficients of the conic curve to obtain
more accurate trajectory, but also inducing high complexity
of reconstruction for the server. With the development of
BC technology, BDs will be able to measure the RSS val-
ues of incident signals when they are harvesting RF signal
energy [54]. Thus, the BDs can measure the RSS values of
the carrier signals from the AP and send them back to the
server for device re-authentication. And identically, the AP
can upload the RSS values of the backscattered signals from
the BD to the server.

After receiving the two RSS record lists, the server first
compares the length of C � and the length of C. If they are
not equal, AP directly outputs an authentication failure. This
is because if the length of C is larger than the length of
C �, it means some transmissions are probably from attackers
that impersonate the legitimate BD to communicate with the
AP. Otherwise, the server then constructs two corresponding
vectors as follows CB D = {2RSS�

t j−N+1
, . . . , 2RSS�

t j
} and

CAP = {Pt j−N+1 + RSSt j−N , . . . , Pt j + RSSt j } based on C �
and C, respectively. This construction is performed to eliminate
the impact of the random transmission power Pt j on two RSS
lists. Because of the reciprocity, the channel attenuation ha,b

from the AP to the BD is equal to the channel attenuation
hb,a from the BD to the AP. We denote the RSS received
at the BD is RSS�

t j
= Pt j − ha,b and the RSS at the AP is

RSSt j = Pt j − ha,b − hb,a = Pt j − 2ha,b with round-trip
channel attenuation. Thus, the corresponding elements in two
calculated vectors about the RSS values are equal to each
other, i.e., 2RSS �

t j
= Pt j + RSSt j . If no attacks, the two

constructed RSS vectors are highly correlated with each other,
though the RSS values are affected by environmental noises.

If there is an attacker that sends fake messages to AP by
impersonating the legitimate BD, the location of the attacker
is different from the one of the BD. The attacking channel
from the attacker to the AP is uncorrelated with the legal
channel between the legitimate BD and the AP. This is because
the well-known Jakes model [55] states that there is a rapid
decorrelation between the attacking channel and the legal
channel over a distance of over half a wavelength, and even
independent if the distance is over several wavelength. Thus,
the server can measure the correlation coefficient ρAP of
the two calculated RSS vectors for one-time re-authenticating
the BD regarding its N message packets [15], [56]. If the
correlation coefficient is larger than a threshold ρAP > ρrss

set based on previous data, the server assumes successful
re-authentication without any attacks and considers the BD as
a legitimate BD. Otherwise, it outputs authentication failure
and raises an alarm about potential attacks. The gist behind
the method is that if there is no attack, the RSS vectors
of the BD and AP should be highly correlated according
to the reciprocity of the wireless channel. If there is an
attack, the RSS vector of AP is a mixture of the RSS value
of the legitimate BD and the RSS value of the attacker, which
seriously degrade their correlation.

Likewise, the BD can authenticate the AP by requesting it
to feedback its recorded RSS list. Thus, mutual authentication

can be achieved between the BD and the AP. Since the BD
does not have any knowledge of the random signal power Pt j ,
it requests the AP to transmit the RSS value vector C �

AP =
{Pt j−N+1 + RSSt j−N+1 , . . . , Pt j + RSSt j }. Then, it constructs its
own RSS value vector C �

B D = {2RSS �
t j−N+1

, . . . , 2RSS�
t j
}. The

BD firstly compares the length of C �
AP with the length of C �

B D.
If they are equal, the BD continuously calculates the correla-
tion coefficient ρB D of these two vectors to authenticate the
AP. If the coefficient is lower than a pre-set threshold, the BD
outputs authentication failure and raises an alarm on the AP.

E. Attack Detection and Tracing

If the authentication of BD fails at the server, this implies
that some adversaries are implementing attacks, such as coun-
terfeit attack and replay attack. In this subsection, we conduct
further analysis on the location values estimated by AP to
determine the number of attackers and localize their positions.
With the security assumption that there could be various attack
actions, including static and mobile attackers, we only consider
the cases where the attacks are most likely to succeed. Thus,
in the static BD scenario, we only consider the case that
attackers are static but with various amounts. And in the
mobile BD scenario, we only consider there is a moving
attacker that is close to a legitimate BD and follows its moving
trajectory.

In the static case, since there could be several attackers, the
locations with the same ID may be mixed with locations of
both the legitimate BD and a number of attackers from differ-
ent physical positions. Averaging location list L cannot differ-
entiate the location of the legitimate BD and attackers, thus not
feasible for localizing attackers. As we do not know how many
attackers use the same ID to launch attacks, we need firstly to
determine the number of attackers. With the N locations, dis-
covering the attacker amount is a multi-class detection problem
and is similar to determine how many clusters existing in the
location set. Thus, we can directly utilize the existing methods,
such as the SILENCE algorithm [57] and Silhouette Plot [58],
over locations L to obtain the number of clusters. In our
paper, we utilize the SILENCE algorithm to detect the attacker
amount, since it takes the advantage of both the Silhouette
Plot [58] and System Evolution [59] to eliminate the effect of
location variations and outliers. With the number of clusters
over N locations, we can determine the number of attackers
and then estimate the location of each cluster with the mean of
each cluster. All returned locations above include the location
estimation of the legitimate BD and the potential attackers.
To this end, we first determine the normal location of the
legitimate BD via their relationship with the registered location
and then determine the location of all potential attackers. Then,
the server raise alarms with essential security information,
including the location of the legitimate BD and the number
of potential attackers with their estimated locations.

Besides, in the mobile case, we obtain two returned tra-
jectories from the re-authentication process. However, even
though we assume there is only one mobile attacker, the server
cannot directly identify which trajectory is from the legitimate
BD and which is from the attacker. Thus, we first perform
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clustering to analyze the location values, i.e., Lm , in each
time slot and partition Lm into two classes La,m and Lb,m .
Then, we similarly apply the conic curve fitting method with
previous location values of the legitimate BD to predict which
class belongs to the legitimate BD. In this way, we can obtain
the location of the moving attacker in m-th time slot, and so
forth, until we get the locations of the attacker in all time slots.
With all locations in every time slot, we can trace the moving
trajectory of the attacker. Then, the server can raise an alarm
by announcing the trajectories of both the legitimate BD and
the attacker.

V. SECURITY ANALYSIS

In this section, we theoretically analyze BCAuth security
with regard to identity impersonation attack, signal counterfeit
attack, signal replay attack and signal relay attack. In addition,
we further justify the rationality of BCAuth for static and
mobile BD authentication.

A. Identity Impersonation Attack

Regarding the identity impersonation attack, it is assumed
that an attacker knows which authentication scheme is used.
In conventional communication systems, i.e., IEEE 802.11,
an attacker can intercept P I D of a legitimate BD and mas-
querade as the legitimate BD by transmitting the P I D to the
AP. But, BCAuth not only exploits the P I D of the BD for
device authentication, but also utilizes the position information
as an additional factor to realize multi-stage authentication
and re-authentication. Based on the equations 1 2, we can
theoretically measure the distance d between the BD and the
AP with h2(d) = RSSb

t j
/κ Pt j and the angle of backscatter

signal AoAb
t j

. Then, we can calculate the position of the
BD with the above two parameters based on the equations
(3)(4)(5) as the authentication proof of the BD. In practice, the
attacker cannot be very close (i.e., less than a few multiples
of wavelength) to any legitimate BDs in a physical space.
If an attacker impersonates a legitimate BD to backscatter RF
signals, the AP calculates a distinct location of the attacker.
This is because the AP obtains h2(d) = RSSb

t j
/κ Pt j from the

abnormal RSS value RSSb
t j

, which is not correct regarding the
legal BD.

Thus, the authentication attempts from the attacker only
with the P I D cannot succeed at AP. Besides, the server can
perform attack detection by re-authenticating the BD with high
accuracy. Therefore, with these two stages of authentication,
BCAuth can provide enhanced authentication security to resist
the identity impersonation attack. It does not introduce any
additional overhead to the BD for authentication, since the
BD only needs to respond with its identity like existing
BC systems. Therefore, BCAuth is compatible with existing
cryptography-based schemes in BC systems but with enhanced
security by exploiting the advantages of both physical-layer
authentication and upper-layer authentication.

B. Signal Counterfeit Attack

In the counterfeit or forge attack, an attacker tries to imitate
the behavior of the legitimate BD to make the RF signals

arriving at the AP the same as the ones of the BD. But the
attacker cannot be very close (less than a few multiples of
the wavelength) to any legitimate BDs in a physical space.
Due to the independence of Rayleigh fading channel, the
RF signals backscattered from the attacker have different
and uncorrelated features, including RSS and AoA, from the
ones of those from the legitimate BD. Besides, even the
attacker observes the backscattered signal in a previous slot,
it cannot know the random power of the backscattered signal
in next slot. If the attacker backscatters signals according to
the previous backscatter behavior of the BD, the AP obtains
different position information regarding RSS and AoA, which
are affected by channel environment and transmission power.
Thus, the AP can detect the signal counterfeit attack by
performing two-factor authentication even though the attacker
uses the real P I D of an legitimate BD.

C. Signal Replay Attack

In the signal replay attack, an attacker’s goal is to record
signals from a target BD in a digital form, and then re-transmit
(or replay) these signals towards passing authentication. The
attacker does not modify the captured signals, that is, the
analog signal and the data payload are preserved. In the BC
systems, the AP receives the information backscattered from
a selected BD only when it is broadcasting the carrier signal.
In BCAuth, the carrier signal is designed with a random signal
power Pt j , which is different in each time slot. Even a strong
relay attacker staying in the same location as the legitimate
BD re-transmits the recorded RF signals of a past time slot for
authentication, the AP can easily identify and detect the signal
replay attacks. This is because the AP calculates a completely
unrelated location from the measured RSS value, which is
affected by the random power assigned in the current slot.

D. Signal Relay Attack

Compared with the signal replay attacks, the signal relay
attack just relays the backscattered signal of the legitimate BD
to the AP. The AP can directly detect the signal relay attack,
since the AP receives the signals including both the relayed
signal and the backscattered signal from the BD. Besides,
we assume that the attacker can work hard to block the
backscattered signal from the BD. But the relay attacker keeps
a certain distance from the BD, which makes the received
signal at the AP spreading through a different cascade channel
from the legitimate BD to the attacker and then to the AP.
Thus, the AP obtains different position information of the
relay attacker due to different RSS values of the backscattered
signals, which makes the attack fail. Therefore, the signal relay
attacker cannot succeed due to the preemptive authentication
and re-authentication by checking BD location.

E. BD Authentication

Static BD: If a BD is static, through positioning, we can
easily judge if the BD is the previously authenticated one by
matching the currently calculated position of the BD with
the one initially registered. Therefore, on the basis of the
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Fig. 5. Simulation setting.

initialization and preemptive authentication of BCAuth, it is
capable of BCAuth to authenticate a static BD.

Mobile BD: If a BD is moving, BCAuth can judge if a mov-
ing BD is in a position as expectation through positioning and
trajectory prediction based on location clustering, trajectory
reconstruction, trajectories correlation, and conic curve fitting.
Thus, BCAuth is capable of authenticating a moving BD.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of BCAuth in
terms of different scenarios under different parameters with
extensive simulations.

A. Simulation Setting

In our simulations, we consider a BC system consisting
of several APs, a static BD surrounded by several attackers
located around the BD within a circle with a radius of 0.5m,
and a mobile BD followed by a mobile attacker, both moving
within a defined circular region. As shown in Fig. 5, APs with
multiple antennas are located at fixed positions to transmit
carrier signals to power BDs. Concretely, AP-1 locates at
(0,0) as the main AP for the one AP case. In the mobile
BD case, we assume there are only one BD and one attacker,
whose moving trajectories are emulated with a random way
point (RWP) mobility pattern [60]. The attacker masquerades
as an legitimate BD with intercepted P I D information to
inject illegal messages, when the legitimate BDs are commu-
nicating the AP.

We assume that BCAuth is applied into a field where
there could be some obstacles blocking the main channel
between the AP and the BD, such as a warehouse where
BDs are attached to goods and an apartment where BDs are
embedded into different objects. Thus, all related channels
are modeled by an independent complex Gaussian random
variable (Rayleigh fading) with its average power that follows
a profile [61] and the channel reciprocity holds in each time
block within coherence time. The forward and backward
channel gains are set as 10−2d−2 referring to our previous
work [2] and [61], where d denotes the distance between the
BD and the AP. The received noise power at APs is set to
be σ 2 = −30dBm, and the maximum average power of the
RF signal is assumed as P=1dBm. For each authentication

simulation, the AP sends the carrier signals with random
power to the BD, decodes the BD’s identity information from
backscattered messages. At the same time, the AP measures
the features of the BD’s backscattered signals, including RSS
and AoA, and estimates the BD’s location information for
subsequent authentication. Similarly, we assume the attackers
also perform backscattering to inject illegal messages, and
the AP also measures related features of backscattered signals
from the attackers.

B. Evaluation Metrics

After the preemptive authentication at AP and the
clustering-based or reciprocal channel-based authentication
at the server, an authentication result can be obtained with
either “Accept” or “Reject”. We use the following metrics to
evaluate the performance of authentication: 1) Authentication
Rate, defined as the true positive rate that a legitimate BD
is truly accepted by BCAuth and 2) False Acceptance
Rate (FAR), defined as false positive rate, which is the
rate that attackers are accepted by BCAuth. Then, we use a
Receiver Operating Characteristic (ROC) curve to denote
the trade-off between the authentication rate and FAR by
varying authentication thresholds.

For the statistical characterization of detection performance,
we consider the percentage that the number of attackers can
be accurately detected over all possible testing attempts with a
mixed number of attackers. Associated with a specific number
of attackers, i , we define the Hit Rate H Ri = Ntrue

Ni
i

, where

Ntrue is the amount of the true positive detection for the
attacker number i and Ni

i is the total amount of testing
attempts for asserting attacker number i . And we define the
false positive rate F Pi = N f alse

Nni
i

, where N f alse is the amount

of false detection for the attacker amount i and Nni
i is the total

amount of testing attempts for asserting other attacker number.
And the Precision is defined as Precisioni = Ntrue/(Ntrue +
N f alse). F-measure is originated from information retrieval
and measures the accuracy of detection by considering both
the Hit Rate and the Precision [57], [62]

F − measurei = 2
1

Precisioni
+ 1

H Ri

. (15)

C. Simulation Results

In this part, we first evaluate authentication performance at
the AP in the preemptive authentication step with numerical
results. Then, we test the performance at the server for
BD re-authentication with N location values, as well as the
performance of detecting attacker amount in the static BD
case.

1) Performance of Preemptive Authentication: In the case
of a single BD without any attackers, Fig. 6 illustrates the
impact of distances between BD and AP over authentication
performance. As the distance increases, the authentication rate
gradually decreases. This is because the increased distance
reduces the signal-noise ratio (SNR) of the backscattered
signal at the AP, which induces a greater error of location
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Fig. 6. Authentication rate vs. the distance between BD and AP (static).

Fig. 7. ROC under different signal powers and distances between BD and
an attacker.

estimation with RSS and AoA information. Likewise, if the
AP reduces the average power of its carrier signals, the
authentication rate also decreases. Thus, we mainly consider
the impact of SNR on the measurement of RSS by setting
different transmission power and the distance between BDs
and APs. Besides, by setting a stricter threshold for the residual
between the estimated location and the registered location, the
authentication rate also drops.

Fig. 7 shows the ROC performance when there is one
single BD followed by an attacker, under different distances
(De) between the BD and the attacker, different average
powers (P) of carrier signals, and different noises (n). From
Fig. 7, we observe that when FAR grows, the authentication
rate also grows in each curve. Therefore, in the preemptive
authentication, by choosing an appropriate threshold, we are
able to authenticate the BD with an expected authentication
rate. Besides, as the AP reduces the average power of its
carrier signals, both the authentication rate and FAR become
worse. We also find that the higher the SNR, the better the
authentication rate is. In particular, if satisfying a low FAR
with the signal power P = 0.5, the authentication rate is
also low, which implies that a legitimate BD has a high
probability to be wrongly authenticated by the AP. Besides,
by comparing the ROCs when De = 0.1 and De = 0.3,
we find that the closer the attacker is to the BD, the higher the
risk that the attacker is falsely authenticated by the AP. But
we can improve authentication performance by increasing the
average signal power at the AP. Theoretically, we can obtain
RSSb

Tj
= κ Pt j h

2(d) without considering environmental noise

to calculate the distance with h2(d) = RSSb
t j
/κ Pt j , so as

to perform authentication with the estimated position of the
BD. In Fig. 7, without considering noise (i.e., n = 0) and
estimation error, we also illustrate the ideal performance with
the estimation equations (1)-(5) in Fig. 7. As observed, the
ideal performance is better than the one with noises even
with the same De, demonstrating an inevitable estimation error
makes performance slightly declined.

Fig. 8. ROC with different numbers of APs and density of attackers.

Fig. 9. Authentication rate vs. velocity of a moving BD.

Fig. 8 presents the ROC performance under different num-
bers of APs and different densities of attackers around the
BD. From our numerical results, we can see that increasing the
number of APs is able to improve authentication performance,
as each AP estimates the locations of both the BD and
the attackers and then sends them to the AP-1 to reduce
the estimation error of their locations. Besides, Fig. 8 also
compares ROC performance with different number of attackers
that randomly locate around the BD within a circle with a
radius of 0.5m. In Fig. 8, we can see that BCAuth achieves
an authentication rate > 90% against FAR < 7% under
nume = 6. Correspondingly, the larger the attacker number
is, the lower the ROC performance. Because it increases the
probability that the attackers locate closer to the BD, which
could cause high FAR, as shown in Fig. 7.

We exploit two location prediction algorithms, a physics-
based (PH-based) approach and a RSS fingerprinting-based
(FP-based) approach, to predict the location of the mobile BD
in the next time slot. Then, under different thresholds, the pre-
dicted locations are compared with the estimated location cal-
culated with the RSS and AoA information for authentication.
Fig. 9 shows the authentication rate under different velocities
of the moving BD. With the increase of the velocity, which
induces the difficulty of location prediction and increases
prediction deviation, the authenticate rate degrades apparently.
But the authentication rate can be improved by setting a loose
threshold. Besides, compared to the PH-based approach, the
FP-based approach provides a higher authentication rate. How-
ever, the FP-based approach needs to collect all RSS values
and historical trajectory information to build a fingerprint map,
which incurs considerable cost and complexity, especially at
the BD. On the contrary, the PH-based approach only stores
location information and motion states in the past period
of time to predict the next location with comparatively low
complexity. It has no additional requirement on BDs.

In addition, we analyze the ROC performance of the moving
BD followed by a moving attacker as shown in Fig. 5.
As shown in Fig. 9, the increase of moving velocity induces a
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Fig. 10. ROC under different distances, velocities and methods.

Fig. 11. ROC under different numbers of locations and APs, and attackers.

large prediction deviation, making authentication performance
worse. From Fig. 10, we can observe that increasing velocity
of the BD obviously decreases the ROC performance, includ-
ing the decline of authentication rate and the rise of FAR.
Besides, we compare the ROC performance under different
distances De between the BD and the attacker. The smaller
the distance De is, the worse the ROC performance is, which
implies that the attacker is more likely to be falsely accepted
by the AP. The same as the authentication rate, the ROC
performance of the PH-based approach is inferior to the
FP-based approach even with comparatively lower velocity
and larger distance De.

2) Performance of Re-Authentication: Fig. 11 presents
the ROC performance under different parameters for
clustering-based authentication in the static BD case.
We observe that in the single AP case with an attacker,
when the number of location values is larger than 50,
all authentication rates are above 94% and the FARs are
larger than 1%. Furthermore, with 100 locations, BCAuth
can achieve 89.8% authentication rate even with 0% FAR.
The performance with only 25 locations is worse than the
100 locations and 50 locations, and its authentication rate is
above 90% but the FAR is below 2%. These results show
that the server can well authenticate the BD with enough
location values by exploiting the clustering-based method.
However, accumulating enough location values at the server
takes time, which could cause a delay on potential attack
detection and BD re-authentication. Note that the locations
values are clustered into 2 clusters to perform authentication,
the dimension of the RSS value is 1, which does not affect
the performance of the re-authentication scheme.

Furthermore, we study whether increasing the number of
APs improves ROC performance. Every AP receives the
signals backscattered from the BD when BD performs commu-
nications with its main AP via backscattering, i.e., AP-1. Every
AP measures the features of the backscattered signals and send
them to the server. The server estimates the corresponding

Fig. 12. ROC under different numbers of locations and APs, and velocities.

locations of BD based on these feedback features and then
jointly considers the locations reported from AP-1 to per-
form clustering-based re-authentication. From Fig. 11, we can
observe that the authentication rate increases with decreased
FAR when the number of APs is increased. Particularly, when
the number of locations is below 100, the authentication rate
increases from 89% to 93% and further to 95% with FAR
0% when the number of APs increases from 1 to 3 and to
6. This result suggests a practical deployment solution with
multiple APs for BD authentication in a real BC systems, e.g.,
warehouse systems.

Besides, we analyze the impact of the attacker number on
the ROC performance as shown in Fig. 11. We select different
numbers of attackers in a circle with the BD as its center and a
radius of 0.5 meter. As the number of attackers increases with
more attackers distributed in the circle, the ROC performance
of the clustering-based authentication decreases. But the cost
of attacking also increases since it becomes easier to discover
the attackers. Moreover, we can deploy more APs to enhance
the ROC performance.

In the mobile BD case with a following attacker, we study
the ROC performance under different location values, veloci-
ties and AP amounts, as shown in Fig. 12. Firstly, we observe
that the ROC performance with a large number of location
values outperforms the one with a small number of location
values. This is because more location information can be
utilized to construct two location trajectories V1 and V2. With
longer trajectories V1 and V2, the similarity can be calculated
more accurately, so as to improve the ROC performance with a
higher authentication rate and lower FAR. However, similar to
the performance of mobile BD in preemptive authentication,
ROC performance decreases when the velocity of the BD
increases. For example, with the same FAR 0%, the authentica-
tion rate decreases from 86% to 79% when the velocity of the
BD increases from 0.2m/s to 0.5m/s. But its ROC performance
can be improved by increasing the number of APs. With the
same location amount N = 100 and velocity v = 0.5m/s,
deploying two additional APs can enhance the authentication
rate of the legitimate BD and the true rejection of the attacker,
i.e., the authentication rate increases from 87% to 89.5% with
the same FAR 5% in Fig. 12.

3) Performance of Reciprocal Channel Variation-Based
Authentication: For authenticating a static BD using the
reciprocal channel variation-based (RSS-based) authentication,
we collect RSS values during the initialization phase and then
calculate the correlation coefficient between the AP’s RSS
list and the BD’s RSS list as the initial threshold ρrss . For
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Fig. 13. ROC of re-authentication with different methods (AP=1).

Fig. 14. ROC of re-authentication with different methods (AP=3).

authenticating a mobile BD, after obtaining the correlation
coefficient as the threshold ρrss in the initialization phase,
the RSS values collected by both the AP and the BD for
an underlying round of authentication are used to update the
threshold after each successful authentication.

In our simulation, we collect 100 sets of RSS and AoA
of the backscattered signals from 100 backscattered message
packets from the BD and estimate the corresponding location
values of packet sources in both the static BD case and the
mobile BD case with v = 0.5m/s. These location values are
used to authenticate the BD regarding its 100 message packets
at one time with the clustering-based authentication method.
Besides, we assume the BD can measure the RSS of the
downlink signal for these 100 packets and send them to the
server, in both static and mobile cases. The server performs the
RSS-based authentication by comparing BD’s 100 RSS values
with AP’s 100 RSS values. The initial threshold is set with
the correlation coefficient calculated with two RSS lists with
50 values in the initialization phase. The threshold is changed
to obtain an ROC curve with different authenticate rates and
FARs. Fig. 13 shows the ROCs of the two methods in the static
and mobile BD cases. We can see that the ROC performance
of the RSS-based method is only slightly inferior to that of the
clustering-based method in the static BD case. But the ROC
performance of the RSS-based method are much better than
that of the clustering-based method in the mobile BD case.
Therefore, the RSS-based method is suitable in general when
we do not know whether the BD is static or mobile. There
is no doubt that the ROC performance of the clustering-based
method in the mobile BD case is much worse than that in the
static BD case, and it is getting worse with the increase of
BD velocity. There is similar impact of the velocity on the
ROC performance of the RSS-based method, i.e., the ROC
performance decreases when the velocity of a mobile BD
increases. However, its ROC performance only suffers from
a slight decline as shown in Fig. 13. For example, under
the same FAR 0%, the authentication rate reduces from 84%

TABLE II

PERFORMANCE OF DETERMINING THE NUMBER OF ATTACKERS

to 83% and further to 81.5% when the velocity of the BD
increases from 0m/s to 0.2 m/s and to 0.5m/s.

As tested already, increasing the number of APs can
enhance the ROC performance of the clustering-based method.
We also deploy 2 additional APs to communicate with BD via
backscattering. Likewise, each AP communicates with the BD
and measure related RSS values. Meanwhile, the BD measures
the RSS values of the downlink signals from the corresponding
APs. Fig. 14 shows that the ROC performance with three APs
gets better compared to the ROC performance with one AP
in Fig. 13. Specifically, under the FAR 0%, the authentication
rate of the RSS-based method in the case of static BD is 90%
with three APs compared to 84% with one AP.

4) Performance of Attacker Amount Detection: Table II
provides the experimental results of Hit rate, Precision, and
F-measure when the attacker number i = {1, 2, 4, 6}. E.g.,
i = 2 means that there are two attackers to masquerade a
legitimate BD by injecting illegal messages. We carried out our
test for 1000 times in each case and exploited the SILENCE
mechanism to determine the amount of attackers and their
locations. There is no doubt that when the number of attackers
equals to 1, i.e., one attacker masquerades the same identity of
BD in the BC system, the SILENCE mechanism achieves the
highest Hit Rate, above 99%, and the highest F-measure, over
98%. Likewise, we found that BCAuth also provides good per-
formance with 99.46% Hit Rate and 94.97% F-measure when
there are 2 attackers. In the case of 6 attackers, BCAuth can
also provide a good Precision with 94.49%, which indicates
that the detection of attacker amount is comparatively accurate,
but it only achieves 80.89% Hit Rate. But, the Precision in the
case of 4 attackers is lower than that of other cases. This is
because BCAuth could make a mistake to claim 4 attackers in
the cases of 2 and 6 attackers. From our results, we can also
see that the Hit Rate reduces with the increase of the attacker
amount. But the more attackers, the more likely for them to
be exposed to the physical world.

Based on the qualitative comparison between BCAuth and
other related works. We found that BCAuth is the first
physical layer BD authentication scheme that can effectively
enhance authentication security by supporting BD mobility,
tracing the locations of attackers and identifying their number,
as well as providing conditional mutual authentication if BD
is capable of measuring RSS. It can detect not only imper-
sonation/spoofing attacks, but also signal counterfeit, replay
and relay attacks, showing great advance on attack resistance.
With our best efforts, we compare its authentication rate with
existing works [17], [24], both of which are applied in RFID
systems. We set parameters in our simulation as distance
d = 3m between the BD and the AP, signal power P = 1, the
threshold λ = 0.06 in the static BD case, and the threshold
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TABLE III

COMPARISON OF AUTHENTICATION RATE

ρ = 0.03 (Cluster-based) and ρrss = 0.04 (RSS-based) in the
mobile BD case. From Table III, we can see the authenticate
rates of three schemes in both static and mobile BD cases.
Although the scheme in [24] has a bit better authentication
rate than BCAuth, it needs a complex signal analyzer to obtain
a specific inductive coupling feature. Although the scheme
in [17] performs better than BCAuth in the static scheme,
it does not support mobility and needs a signal analyzer to
obtain the average baseband power of RF signals. Considering
other advanced properties of BCAuth, we think BCAuth has
great potential for practical application.

VII. CONCLUSION

This paper proposed BCAuth, a multi-stage BD authentica-
tion and attack tracing scheme for offering enhanced authenti-
cation security in BC systems with resource-limited static and
mobile BDs. It mainly exploits physical layer features, includ-
ing RSS, AoA and position information for BD authentication
by holistically considering the specific characteristics of BDs
and BC. Besides, we designed an attack tracing method to
determine the number of attackers and trace their positions
and trajectories. We analyzed the security of BCAuth and
validated its feasibility and performance through numerical
simulations with various experimental settings. The results
show that BCAuth can achieve desirable performance in the
tested scenarios and is capable of enhancing high security
without introducing significant overhead. In the future, we will
continue our research by prototyping BCAuth with real BD
hardware to further evaluate its performance and improve our
design towards practical applications.
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