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Abstract
We consider mixed finite element approximations of viscous, plastic Bingham flow in
a cylindrical pipe. A novel a priori and a posteriori error analysis is introducedwhich is
based on a discrete mesh dependent norm for the normalized Lagrangemultiplier. This
allows proving stability for various conforming finite elements. Numerical examples
are presented to support the theory and to demonstrate adaptive mesh refinement.

Mathematics Subject Classification 65N30 · 65N12 · 76M10

1 Introduction

In this work we consider a viscous, plastic (Bingham) fluid which behaves like a solid
at low stresses and like a viscous fluid at high stresses, see [1–4] and the more recent
review article [5]. An everyday example is toothpaste which extrudes from the tube
as a solid plug when stress is applied, remains solid in the middle of the plug and
exhibits fluid-like behavior near the tube wall. The velocity stays constant within the
solid part, i.e. ∇u = 0, and this condition is enforced using a normalized vectorial
Lagrange multiplier λ. Note that the physical stress vector is gλ, and the shear stress
is given by its length g|λ|. Here g > 0 is a given fixed threshold value for the shear
stress at which the solid becomes liquid when exceeded. According to Section 8 in [6]
this gives the strong formulation

−μ�u − g div λ = f in �, (1a)

λ · ∇u = |∇u| in �, (1b)
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820 T. Gustafsson, P. Lederer

|λ| ≤ 1 in �, (1c)

u = 0 on ∂�, (1d)

where μ is the viscosity of the considered fluid, and f describes the pressure drop
along the pipe. Note that in practice the pressure drop is often constant over the cross
section. However, in this work we assume that f ∈ L2(�).

Several contributions in the field of Bingham-type fluid computations were made
by Glowinski and collaborators; cf. [7–9]. In the latter a linear approximation was
introduced and a suboptimal a priori error estimate for the velocity was given. An
optimal linear convergence of some low order (mixed) methods was discussed in the
works [10, 11]. Glowinski also provided an exact solution for the model problem of
a circular domain with a constant load. Since even this simple geometry and loading
leads to a solution that is only in H5/2−ε(�), ε > 0, a higher regularity for general
Bingham-type flows is unlikely. Due to this non-smooth nature of the problem, the
use of adaptive error control seems highly desirable, see for example [12] and the
references therein, and more recently in [13]. In particular, we would like to highlight
the work [14] where the authors introduced the same a posteriori estimator that we
derive in this work. More precisely they bound the velocity error in terms of the load,
the discrete velocity uh and the discrete approximation of the Lagrange multiplier λh ,

‖u − uh‖1 � η( f , uh,λh),

where η is some estimator. Although their definition of η is reasonable, proper error
control is not guaranteed since their stability analysis does not include a bound for
λh . The main problem can be traced back to the lack of a Babuška–Brezzi condition
for the considered linear Lagrangian velocity space and the space of element-wise
vector-valued constants for the Lagrange multiplier (which is the same discretization
used in [9]). As a result discrete stability for both uh and λh is not present, i.e. the
estimator η could be arbitrarily large.

The main contribution of this work is a novel stability and error analysis of a
mixed finite element approximation of (1). For this we build upon the ideas from
one of the authors work [15] on obstacle problems, and the corresponding references
therein. Our analysis is based on proving a discrete Babuška–Brezzi condition using
a mesh dependent norm; cf. [16]. This allows us to consider various finite element
pairs suitable for approximating (1). Beside continuous and discrete stability (see
Sects. 2 and 3) we derive an a priori error estimate and discuss linear convergence
for sufficiently regular solutions in Sect. 4. Our approach then further allows deriving
a residual based a posteriori error estimator (see Sect. 5) which is globally reliable
and locally efficient up to a consistency term. We want to emphasize that our analysis
gives full control for both the error of the velocity and the error of the (divergence of
the) Lagrange multiplier. We conclude the work in Sect. 6 where we give insight on
how to solve the discrete system and provide several numerical examples to validate
our analysis.
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Mixed finite elements for Bingham flow in a pipe 821

2 Continuous stability

The weak formulation of (1) finds u ∈ V and λ ∈ � such that

(μ∇u,∇v) + (g∇v,λ) = ( f , v) ∀v ∈ V , (2a)

(g∇u,μ − λ) ≤ 0 ∀μ ∈ �, (2b)

where V = H1
0 (�) and � = {μ ∈ L2(�,R2) : |μ| ≤ 1 a.e. in �}; see also [8].

Combining (2a) and (2b) gives

(μ∇u,∇v) + (g∇v,λ) + (g∇u,μ − λ) ≤ ( f , v) (3)

for every (v,μ) ∈ V × �. Note that the solution of (3) is unique up to a divergence-
free component, i.e. λ + ξ is also a solution if div ξ = 0. For the stability analysis
we choose the standard H1-norm for the space V , and the dual norm ‖div (·)‖−1
for �. Note that the latter is strictly speaking not a norm, but only a seminorm.
Thus, all error estimates for λ from this work will not prove any convergence of the
corresponding approximation in a strong sense, but only show convergence of its
distributional divergence.

To simplify the notation we will from now on set g = μ = 1. In the following we
use the shorthand notation

B(w, ξ ; v,μ) = (∇w,∇v) + (∇v, ξ) + (∇w,μ). (4)

Using Cauchy–Schwarz and the continuity of the duality pairing

(∇v, ξ) = 〈div ξ , v〉−1 ≤ ‖v‖1‖div ξ‖−1 ∀v ∈ V , ξ ∈ Q,

with Q = L2(�,R2), one immediately sees that B is continuous, i.e. we have

B(w, ξ ; v,μ) � (‖w‖1 + ‖div ξ‖−1)(‖v‖1 + ‖divμ‖−1). (5)

Throughout the paper we write a � b (or a � b) if there exists a constant C > 0,
independent of the finite element mesh, such that a ≤ Cb (or a ≥ Cb). If a � b and
b � a then we write a ∼ b.

Theorem 1 For every (w, ξ) ∈ V × Q there exists a function r ∈ V such that

B(w, ξ ; r ,−ξ) � (‖w‖1 + ‖div ξ‖−1)
2 (6)

and

‖r‖1 � ‖w‖1 + ‖div ξ‖−1. (7)
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822 T. Gustafsson, P. Lederer

Proof We have

B(w, ξ ;w,−ξ ) = ‖∇w‖20. (8)

Moreover, let q ∈ V . Then

B(w, ξ ; q, 0) = (∇w,∇q) + (ξ ,∇q). (9)

If q is chosen as the solution to

(∇q,∇z) = (ξ ,∇z) ∀z ∈ V , (10)

then testing with z = q gives (ξ ,∇q) = ‖∇q‖20. By the definition of ‖ · ‖−1 and
Cauchy–Schwarz we have

‖div ξ‖−1 = sup
v∈V

(ξ ,∇v)

‖v‖1 ≤ ‖∇q‖0. (11)

Now choose r := w +q. Combining (8), (9) and (11), and applying Cauchy–Schwarz
and Young’s inequalities on (9) gives the first result (6).

For (7) the triangle inequality gives ‖r‖1 ≤ ‖w‖1+‖q‖1. Using Friedrichs inequal-
ity we get

‖q‖21 � ‖∇q‖20 = (∇q, ξ ) = 〈q, div ξ〉−1 ≤ ‖q‖1‖div ξ‖−1,

which concludes the proof. ��

3 Finite element method

Let Vh ⊂ V and Qh ⊂ Q. We define the discrete subspace �h ⊂ Qh as �h = {μh ∈
Qh : |μh | ≤ 1 a.e. in �}. Let Th be a shape regular triangulation of � and hT denote
the diameter of T ∈ Th . Further let Eh denote the set of edges with length hE for all
E ∈ Eh , for which we have, due to shape regularity, hE ∼ hT . The discrete norm for
μh ∈ �h is

‖divμh‖2−1,h =
∑

T ∈Th

h2
T ‖divμh‖20,T +

∑

E∈Eh

hE‖�μh · n�‖20,E , (12)

where �·� is the usual jump operator. The discrete formulation reads: find (uh,λh) ∈
Vh × �h such that

B(uh,λh; vh,μh − λh) ≤ ( f , vh) ∀(vh,μh) ∈ Vh × �h . (13)
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Mixed finite elements for Bingham flow in a pipe 823

As in the continuous setting, we can prove stability of the mixed method (13) if the
following Babuška–Brezzi condition is valid

sup
vh∈Vh

(ξh,∇vh)

‖vh‖1 � ‖div ξh‖−1 ∀ξh ∈ Qh . (14)

Theorem 2 Suppose Vh and �h satisfy (14). Then for every (wh, ξ h) ∈ Vh × Qh there
exists a function rh ∈ Vh such that

B(wh, ξ h; rh,−ξ h) � (‖wh‖1 + ‖div ξh‖−1)
2, (15)

and

‖rh‖1 � ‖wh‖1 + ‖div ξ h‖−1. (16)

Proof This is similar to the proof of Theorem 1 but using (14) in the intermediate step
(11). ��

An explicit proof of condition (14) might be difficult depending on the choice of Vh

and Qh . To this end, we show that it is sufficient to prove a discrete condition using
the mesh dependent norm (12), see Theorem 3. In order to prove Theorem 3, we first
consider the following preliminary result. In the following, let �h : L2(�) → Vh

be the Clément quasi interpolation operator [17] with the stability and interpolation
properties

‖�hv‖1 ≤ Cs‖v‖1 ∀v ∈ V , (17a)
( ∑

T ∈Th

h−2
T ‖v − �hv‖20,T +

∑

E∈Eh

h−1
E ‖v − �hv‖20,E

)1/2 ≤ Ci‖v‖1 ∀v ∈ V .

(17b)

Lemma 1 There exists constants C1, C2 > 0 such that

sup
vh∈Vh

(ξh,∇vh)

‖vh‖1 ≥ C1‖div ξh‖−1 − C2‖div ξh‖−1,h ∀ξ h ∈ Qh . (18)

Proof Choose an arbitrary ξh ∈ Qh . By Theorem 1 there exists a function r ∈ V such
that

(ξh,∇r) ≥ C ′‖r‖1‖div ξh‖−1.

Using the Clément operator we have for the difference
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824 T. Gustafsson, P. Lederer

(ξ h,∇(�hr − r)) =
∑

T ∈Th

(ξh,∇(�hr − r))T

= −
∑

T ∈Th

(div ξh,�hr − r)T + (�hr − r , ξh · n)∂T

≥ −
∑

T ∈Th

h−1
T ‖r − �hr‖0,T hT ‖div ξ h‖0,T

−
∑

E∈Eh

hE‖ �ξ h · n� ‖0,E h−1
E ‖r − �hr‖0,E

≥ − 2Ci‖r‖1‖div ξh‖−1,h .

Thus, in total we have

(ξh,∇�hr) = (ξh,∇(�hr − r)) + (ξ h,∇r)

≥ −2Ci‖r‖1‖div ξh‖−1,h + C ′‖r‖1‖div ξ h‖−1

≥ −C2‖div ξh‖−1,h‖�hr‖1 + C1‖div ξh‖−1‖�hr‖1,

where C2 = 2Ci/Cs and C1 = C ′/Cs , which proves (18). ��

Theorem 3 If the discrete Babuška–Brezzi condition

sup
vh∈Vh

(ξ h,∇vh)

‖vh‖1 � ‖div ξ h‖−1,h ∀ξ h ∈ Qh, (19)

holds true, then the discrete spaces also fulfill (14).

Proof Suppose that (19) is valid with a constant C3 > 0, then we have for a convex
combination with t > 0 and using Lemma 1 that

sup
vh∈Vh

(ξh,∇vh)

‖vh‖1 = t sup
vh∈Vh

(ξ h,∇vh)

‖vh‖1 + (1 − t) sup
vh∈Vh

(ξh,∇vh)

‖vh‖1
� t(C1‖div ξ h‖−1 − C2‖div ξh‖−1,h) + (1 − t)C3‖div ξh‖−1,h

� C̃‖div ξ h‖−1,

where we have chosen t := 1
2C3(C2 + C3)

−1 and thus C̃ = C1C3/(2(C2 + C3)). ��

3.1 Some stable discretizations

Theorem 3 shows that it is sufficient to prove condition (19) for some finite element
spaces Vh and Qh . In the following we discuss some stable choices. Let Pl(K ) denote
the space of polynomials of order l ≥ 0 on K ∈ Th , and let Pl(K ,R2) denote its
vector-valued version. The same notation is used for polynomials on E ∈ Eh .
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Mixed finite elements for Bingham flow in a pipe 825

The PkPk−2 family

For k ≥ 2, we choose the spaces

Vh := {vh ∈ V : vh |T ∈ P
k(T ) ∀T ∈ Th}, (20a)

Qh := {μh ∈ Q : vh |T ∈ P
k−2(T ,R2) ∀T ∈ Th}. (20b)

Lemma 2 The discrete spaces defined by (20) fulfill the discrete condition (19).

Proof Let ξh ∈ Qh be arbitrary. We choose vh ∈ Vh such that

vh(xi ) = 0 ∀ vertices xi , (21a)
∫

E
vhr ds =

∫

E
hE �ξ h · n� r ds ∀r ∈ P

k−2(E),∀E ∈ Eh, (21b)
∫

T
vhl dx = −

∫

T
h2

T div ξhl dx ∀l ∈ P
k−3(T ),∀T ∈ Th . (21c)

Element-wise integration by parts and using that �ξh · n� ∈ P
k−2(E) for all edges

E ∈ Eh , and div ξh ∈ P
k−3(T ) for all elements T ∈ Th , we have

(∇vh, ξ h) = ‖div ξ h‖2−1,h .

By a standard scaling argument we have on each element T ∈ Th

‖∇vh‖20,T ∼
∑

E⊂∂T

1

hE
‖vh‖20,E + 1

h2
T

‖vh‖20,T

∼
∑

E⊂∂T

1

hE
‖�k−2

E vh‖20,E + 1

h2
T

‖�k−3
T vh‖20,T ,

(22)

where �k−2
E and �k−3

T are the edge-wise and element-wise L2-projection onto poly-
nomials of order k−2 and k−3, respectively. Note that the second equivalence follows
due to vh vanishing at all vertices, see (21a). Using this equivalence we have by the
moments (21) and the Cauchy–Schwarz inequality

‖∇vh‖20,T �
∑

E⊂∂T

1

hE

∫

E
(�k−2

E vh)2 ds + 1

h2
T

∫

T
(�k−3

T vh)2 dx

=
∑

E⊂∂T

∫

E
�k−2

E vh �ξ h · n� ds −
∫

T
�k−3

T vhdiv ξh dx

�
( ∑

E⊂∂T

1

hE
‖�k−2

E vh‖20,E + 1

h2
T

‖�k−3
T vh‖20,T

)1/2
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826 T. Gustafsson, P. Lederer

( ∑

E⊂∂T

hE‖ �ξh · n� ‖20,E + h2
T ‖div ξh‖20,T

)1/2
.

Summing over all elements and using the norm equivalence (22) we conclude the
proof.

��

The MINI family

For k ≥ 1, we choose the spaces

Vh := {vh ∈ V : vh |T ∈ P
k+2(T ) ∀T ∈ Th, vh |E ∈ P

k(E) ∀E ∈ Eh}, (23a)

Qh := {μh ∈ Q : vh |T ∈ P
k(T ,R2) ∀T ∈ Th} ∩ H1(�,R2). (23b)

Note that since now Qh is a subset of H1(�,R2), the normal jumps in ‖div (·)‖−1,h
vanish.

Lemma 3 The discrete spaces defined by (23) fulfill the discrete condition (19).

Proof Let ξ h ∈ Qh be arbitrary.We choose vh ∈ Vh such that it vanishes at all vertices
and all edges, i.e. vh ∈ H1

0 (T ) for all elements T ∈ Th . In addition vh fulfills

∫

T
vhl dx = −

∫

T
h2

T div ξ hl dx ∀l ∈ P
k−1(T ),∀T ∈ Th .

Using integration by parts and the fact that div ξh ∈ P
k−1(T ) for all elements

T ∈ Th , we have again

(∇vh, ξ h) = ‖div ξ h‖2−1,h .

With similar scaling arguments as in the proof of Lemma 2 we also have ‖∇vh‖0 �
‖div ξh‖−1,h , which concludes the proof. ��
Remark 1 The Crouzeix–Raviart method.The last method wewant to mention is using
a nonconforming approximation of the velocity. We define the spaces

Vh := {vh ∈ L2(�,R) : vh |T ∈ P
1(T ) ∀T ∈ Th,

vh is continuous and vanishes at midpoints

of interior and boundary edges, respectively},
Qh := {μh ∈ L2(�,R2) : vh |T ∈ P

0(T ,R2) ∀T ∈ Th}.

Since the degrees-of-freedom of the velocity are again associated to edges, the stability
analysis is similar as for the P2P0 method. Further note that since∇vh ∈ Qh locally on
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Mixed finite elements for Bingham flow in a pipe 827

each element, one can reformulate the mixed method (13) as a primal method (without
the Lagrange multiplier λh) which is similar to the nonconforming approximations
from [10] and (as explained in [10]) the method in [11]. Due to the extensive analysis
therein, we do not consider this method in the present work, but want to mention that
our techniques can be applied accordingly.

4 A priori error analysis

In this section we present an a priori error estimate and prove a linear convergence for
H2-regular velocity solutions. This stands in contrast to the suboptimal resultO(h1/2)

(for a linear approximation) from [7, 9] and is in accordance to the linear convergence
results from [10, 11]. Although the analysis could be extended to provide a better rate
for smooth solutions, a higher regularity can not be expected for Bingham-type flows
as discussed in the introduction.

Theorem 4 Let (uh,λh) ∈ Vh × �h be the solution of (13), then for any (wh, ξ h) ∈
Vh × Qh it holds

‖u − uh‖1 + ‖div (λ − λh)‖−1

� ‖u − wh‖1 + ‖div (λ − ξ h)‖−1 + √
(∇u,λ − ξh).

Proof Let (wh, ξ h) ∈ Vh × Qh be arbitrary. By the discrete stability, see Theorem 2,
we find vh such that

(
‖uh − wh‖1 + ‖div (λh − ξ h)‖−1

)2
� B(uh − wh,λh − ξ h; vh, ξ h − λh)

≤ ( f , vh) − B(wh, ξ h; vh, ξ h − λh).

Using the continuous problem (3) we get

( f , vh) − B(wh, ξ h; vh, ξ h − λh)

= (∇u,λh − ξh) + B(u − wh,λ − ξh; vh, ξ h − λh)

≤ (∇u,λ − ξh) + B(u − wh,λ − ξ h; vh, ξ h − λh),

which concludes the proof with the continuity of B, see (5), and

‖u − uh‖1 + ‖div (λ − λh)‖−1

≤ ‖u − wh‖1 + ‖div (λ − ξ h)‖−1 + ‖uh − wh‖1 + ‖div (λh − ξh)‖−1.

��
The following lemma shows that we can expect a linear convergence whenever the

solution is at least H2-regular. Note that it is essential to bound the error just in terms
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828 T. Gustafsson, P. Lederer

of div λ, since our analysis does not provide any control for the divergence-free part
of λ. According to [7] we further have for a convex domain and a smooth soulution
the stability estimate

|u|2 + ‖div λ‖0 � ‖ f ‖0.

Lemma 4 Let � be simply connected and convex. Choose Vh and Qh as in Sect. 3.1,
and let (uh,λh) ∈ Vh × �h be the corresponding discrete solution. Further let u ∈
V ∩ H2(�) and λ ∈ � ∩ H(div ,�). Then there holds

‖u − uh‖1 + ‖div (λ − λh)‖−1 � h(|u|2 + ‖div λ‖0) � h‖ f ‖0,

where h = max
T ∈Th

diam(T ).

Proof We solve the Dirichlet problem: find θ ∈ H1
0 (�) such that

(∇θ,∇v) = (div λ, v) ∀v ∈ H1
0 (�),

for which we have due to the assumptions on the domain that |θ |2 � ‖div λ‖0. Further,
since λ−∇θ is divergence free (by construction) Theorem 3.1 in [18] shows that there
exists a φ ∈ H1(�) such that λ = ∇θ + curl φ.

Let wh := ILu, where IL is the Lagrange interpolation operator onto Vh , then by
the approximation properties of IL we have

‖u − wh‖1 � h|u|2.

Using integration by parts and that curl∇v = 0 for all v ∈ V we have

‖div (λ − ξh)‖−1 = sup
v∈V

(λ − ξ h,∇v)

‖v‖1 = sup
v∈V

(λ − curl φ − ξh,∇v)

‖v‖1 .

For the Pk Pk−2 family we choose ξh = �0∇θ , then

(λ − curl φ − ξh,∇v) = ((id−�0)∇θ,∇v) � h|θ |2‖∇v‖0 � h‖div λ‖0‖∇v‖0.

It remains to bound the last term. For this note that since id−�0 is orthogonal on
constants we have with similar steps as above

(∇u,λ − ξh)=(∇u, (id−�0)∇θ)=((id−�0)∇u,(id−�0)∇θ)� h|u|2h‖div λ‖0,

from which we conclude the proof.
For the MINI family, we use the same steps as above, but choose ξh = �h∇θ .

Using Theorem 2.6 from [19] we get again the bound

(∇u,λ − ξh) � h|u|2h‖div λ‖0,
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Mixed finite elements for Bingham flow in a pipe 829

and we conclude the proof with Theorem 4. ��

5 A posteriori error analysis

Since a high regularity of the solution cannot be expected in general, this section is
dedicated to a posteriori error control, enabling the use of adaptive mesh refinement.
We define the local error estimators – including the dependency on g and μ to allow
for a direct implementation – as

η2T := h2
T ‖μ�uh + g div λh + f ‖20,T ,

η2E := hE‖ �(μ∇uh + gλh) · n� ‖20,E ,

η2con,T := g
∫

T
(|∇uh | − λh · ∇uh) dx,

and the global estimator

η :=
√ ∑

T ∈Th

η2T +
∑

E∈Eh

η2E +
∑

T ∈Th

η2con,T .

The element and edge estimators ηT and ηE , respectively, are standard residual esti-
mators as known from the literature. The additional term ηcon,T can be interpreted as
a consistency estimator of Eq. (1b). Further we want to emphasize that all estimators
only depend on the distributional divergence of λh for which we have discrete stability,
see Theorem 2. While this is clear for ηT and ηE , through integration by parts this is
also evident for ηcon,T .

Theorem 5 There holds the a posteriori error estimate

‖u − uh‖1 + ‖div (λ − λh)‖−1 � η.

Proof Using the continuous stability we find v ∈ V such that

(‖u − uh‖1 + ‖div (λ − λh)‖−1)
2

� B(u − uh,λ − λh; v,λh − λ)

= (∇(u − uh),∇v) + (∇v,λ − λh) + (∇(u − uh),λh − λ),

and ‖v‖1 � ‖u − uh‖1 + ‖div (λ − λh)‖−1. We continue with the first two terms.
Using the Clément operator we have

(∇uh,∇�hv) + (∇�hv,λh) = ( f ,�hv) = (∇u,∇�hv) + (∇�hv,λ),

and thus

(∇(u − uh),∇v) + (∇v,λ − λh)
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= (∇(u − uh),∇(v − �hv)) + (∇(v − �hv),λ − λh)

=
∑

T ∈Th

(∇(u − uh),∇(v − �hv))T + (∇(v − �hv),λ − λh)T .

Since div (−∇u−λ) = f , see (1a), and f ∈ L2(�),wehave that∇u+λ ∈ H(div ,�),
i.e. it is normal continuous. By that we have with integration by parts on each element

(∇(u − uh),∇v) + (∇v,λ − λh)

=
∑

T ∈Th

( f + �uh + div λh, v − �hv)T +
∑

E∈Eh

(�(∇uh + λh) · n� , v − �hv)E .

Using the properties of �h , cf. (17), we finally arrive at

(∇(u − uh),∇v) + (∇v,λ − λh) �
( ∑

T ∈Th

η2T +
∑

E∈Eh

η2E

)1/2‖v‖1.

It remains to bound the other term. For this note that (2b) gives (∇u,λh) ≤ (∇u,λ),
and thus as |λ| ≤ 1,

(∇(u − uh),λh − λ) ≤ (∇uh,λ − λh) ≤
∑

T ∈Th

∫

T
(|∇uh ||λ| − ∇uh · λh) dx

≤
∑

T ∈Th

∫

T
(|∇uh | − ∇uh · λh) dx,

which concludes the proof. ��
Theorem 6 and Lemma 5 below provide local and global efficiency estimates,

respectively, for the residual based estimators ηT and ηE . The proofs follow with
similar steps as in [15], i.e. we will provide all details of the local efficiency but refer
to [15] for the proof of Lemma 5. Further note that similarly as in [15] it is not possible
to provide an upper bound for the consistency error ηcon,T .

For the efficiency estimates we need some additional notation. Let ω ⊂ � be
arbitrary then we define for all μ ∈ � the local dual norm by

‖divμ‖−1,ω := sup
v∈H1

0 (ω)

〈v, divμ〉−1,ω

‖v‖1,ω = sup
v∈H1

0 (ω)

(∇v,μ)ω

‖v‖1,ω .

The subsetωwill be either an element T ∈ Th orωE , whereωE denotes the edge-patch
for a given edge E ∈ Eh . Finally, let fh := �q f be the element-wise L2 projection
onto P

q(K ) where q is the polynomial order of the space Qh , and let

oscT ( f ) := hT ‖ f − fh‖0,T and osc( f ) :=
( ∑

T ∈Th

h2
T ‖ f − fh‖20,T

)1/2
.
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Theorem 6 Let vh ∈ Vh and μh ∈ �h be arbitrary. There holds the local efficiency

hT ‖�vh + divμh + f ‖0,T � ‖u − vh‖1,T + ‖div (λ − μh)‖−1,T + oscT ( f ),

h1/2
E ‖ �(∇vh +μh) · n� ‖20,E � ‖u − vh‖1,ωE +‖div (λ − μh)‖−1,ωE +

∑

T ⊂ωE

oscT ( f ).

Proof The proof commences with the usual localizing technique by means of a
element-wise qubic bubble function bT . We define the localized error on T by

δT |T := h2
T bT (�vh + divμh + fh),

and δT = 0 on�\T . Since bT vanishes on the element boundary we have that δT ∈ V .
Using the norm equivalence for polynomial spaces we then have

h2
T ‖�vh + divμh + fh‖20,T
� h2

T ‖b1/2T (�vh + divμh + fh)‖20,T
= (�vh + divμh + fh, δT )T

= (�vh + divμh, δT )T + ( f , δT )T + ( fh − f , δT )T

= (�vh + divμh, δT )T + (−�u, δT )T − 〈div λ, δT 〉−1,T + ( fh − f , δT )T ,

and, with integration by parts also

h2
T ‖�vh + divμh + fh‖20,T
� (∇(vh − u),∇δT )T + 〈div (μh − λ), δT 〉−1,T + ( fh − f , δT )T . (24)

By the inverse inequality for polynomials we have

‖δT ‖1,T � h−1
T ‖δT ‖0,T ∼ hT ‖�vh + divμh + fh‖0,T , (25)

and thus, with Cauchy–Schwarz inequality we derive the first estimate with

h2
T ‖�vh + divμh + fh‖20,T
� ‖u − vh‖1,T ‖δT ‖1,T + ‖div (λ − μh)‖−1,T ‖δT ‖1,T + oscT ( f )h−1

T ‖δT ‖0,T .

For the other term we proceed similarly. For this let δE := bEE(�(∇vh + μh) · n�)
where E is the well known extension operator onto H1

0 (ωE ), see [20], and bE is the
quadratic edge bubble. Scaling arguments and the Poincaré inequality give

‖ �(∇vh + μh) · n� ‖0,E ∼ h−1/2
E ‖δE‖0,E ∼ hE‖δE‖1,ωE .

With the same steps as for the volume term we derive the estimate

‖ �(∇vh + μh) · n� ‖20,E �(�vh + divμh + f , δE )ωE

+ (∇(vh − u), δE )ωE + 〈div (μh − λ), δE 〉−1,ωE ,
(26)

123



832 T. Gustafsson, P. Lederer

from which we conclude the proofs using the Cauchy–Schwarz inequality, the esti-
mates of the volume term from before and (25). ��
Lemma 5 Let vh ∈ Vh and μh ∈ �h be arbitrary. There holds the global efficiency

( ∑

T ∈T h

h2
T ‖�vh + divμh + f ‖20,T

)1/2
� ‖u − vh‖1 + ‖div (λ − μh)‖−1 + osc( f ),

( ∑

E∈Eh

hE‖ �(∇vh + μh) · n� ‖20,E

)1/2
� ‖u − vh‖1 + ‖div (λ − μh)‖−1 + osc( f ).

Proof The proof followswith the same steps as in [15] using the intermediate estimates
(26) and (24). ��

6 Numerical examples

We apply an iterative algorithm to approximate the solution of the discrete prob-
lem (13). It is based on a reformulation of the inequality constraint (2b) as

λ − P(λ + ρ∇u) = 0, ρ > 0, (27)

where P(μ) = μ
max(1,|μ|) scales any vectors ofR

2 tomaximum length one, cf. [7, 8] for
discussion on similar algorithms and proofs of their convergence. The reformulation
is based on the fact that λh in

(ξh − λh,μh − λh) ≤ 0 ∀μh ∈ �h,

is the orthogonal projection of ξh ∈ Qh onto �h , and the orthogonal projection is
alternatively characterized by P [8, Section 3].

Algorithm 1 (Uzawa iteration) Let (u0
h,λ0

h) ∈ Vh × �h be an initial guess, T O L a
given tolerance and set i = 1

1. Solve ui
h from (μ∇ui

h,∇vh) = ( f , vh) − g(λi−1
h ,∇vh) for every vh ∈ Vh .

2. Calculate λi
h = P(λi−1

h + ρπh∇ui
h) where πh : Q → Qh is the L2 projection

onto Qh .
3. Stop if ‖∇(ui

h − ui−1
h )‖0/‖∇ui−1

h ‖0 < T O L . If not, increment i and go to step
(1).

We first attempt to approximate an analytical solution on a circle � = {(x, y) ∈
R
2 : x2 + y2 < R2} using uniform mesh refinements; see Fig. 1 for the sequence

of meshes. For constant loading f , the coincidence set is a smaller circle with the
radius Rp = 2g/ f . The analytical solution reads u(r) = R−r

2 (
f
2 (R + r) − 2g) when

r > Rp and is equal to the constant u(Rp) when r ≤ Rp. Substituting the above
expression into the strong formulation (1a) we find also an analytical expression for
the divergence of λ.

123



Mixed finite elements for Bingham flow in a pipe 833

Fig. 1 The sequence of uniformly refined meshes for the convergence study

The error of the different components of the discrete norm are given in Fig. 2 with
T O L = 10−7, R = 1, g = 0.1, f = 0.5 and ρ = 10 in accordance to the suggestion
in [8, Remark 3]. We observe that for the MINI and P2P0 methods all components
converge at least linearly whereas for P3P1 method the H1 seminorm of u − uh is
approximately O(h1.7) and the discrete norm of λ − λh is approximately O(h1.6),
i.e. less than the quadratic convergence order that interpolation estimates would imply
for a completely smooth solution.

Next, our aim is to improve the convergence rate with respect to the total number
of degrees-of-freedom N using mesh adaptivity. We use an adaptive mesh sequence
based on the a posteriori estimate of Sect. 5. An element-wise error estimator ET is
given by

E2
T = η2T +

∑

E∈Eh ,
E∩∂T �=∅

( 12ηE )2 + η2con,T ,
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Fig. 2 Error in the different components of the discrete norm for the circle problem as a function of the
mesh parameter h using the uniform mesh sequence

and we split T ′ ∈ Th if

ET ′ > 0.5 max
T ∈Th

ET .

The mesh is refined using the red-green-blue refinement strategy and Laplacian
smoothing is applied on the refined mesh to improve its shape regularity. Some exam-
ples from the sequence of adaptive meshes are given in Fig. 3. A comparison of the
error between the uniform and adaptivemesh sequences is given in Fig. 4. In particular,
we observe that while the convergence rate of the error is ultimately dictated by the
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Fig. 3 Some examples from the sequence of adaptively refined meshes for the circle problem

largest component of the discrete norm (i.e. ‖λ−λh‖−1,h), there is a visible improve-
ment in all of the components and, as a conclusion, the quadratic rate is recovered
with respect to the number of degrees-of-freedom.

Finally, we consider an example in a square domain � = (0, 1)2 with f = 3.6,
g = 1.25, ρ = 1.5, and no analytical solution; cf. [14, 21] for similar examples. Some
meshes from the adaptive sequence and the total error estimators are given in Fig. 5.
The final discrete solution is depicted in Fig. 6. As before, we observe the adaptive
refinement focusing on the interfaces between the liquid and solid regions. Moreover,
the estimators successfully locate and refine the so-called stagnating regions at corners
of the square.

Remark 2 Weused a quadratic representation of the circle boundary in order to neglect
the effect of inexact geometry representation.
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836 T. Gustafsson, P. Lederer

Fig. 4 Error in the different components of the discrete norm for the circle problem using P3P1 method.
The horizontal axis is the square root of the total number of degrees-of-freedom N . A comparison is made
between the uniform mesh sequence (circles) and the adaptive mesh sequence (squares)

Remark 3 We found the following equivalent form of the estimator ηcon,T to be more
robust against numerical tolerances in Algorithm 1:

g
∫

T
(|∇uh | − P(λh + ρπh∇uh) · πh∇uh) dx .

Remark 4 We consider methods only up to a linear Lagrange multiplier because for a
higher order method, in general, λh /∈ �h when using Algorithm 1.
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Fig. 5 Some examples from the sequence of adaptively refined meshes for the square problem, and the total
error estimator η
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Fig. 6 The length of the discrete Lagrangemultiplier |λh | and the discrete velocity uh for the square problem
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