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ABSTRACT
Chromia-bearing raw materials in nickel and copper matte smelting are difficult to process due to their 
tendency of forming solid chromite spinel precipitates, leading to formation of mushy slag and buildups 
in the smelting vessel. The solubility of chromia in smelting slags, and especially in mattes, are not known 
accurately and new data for iron-silicate slags in equilibrium with low-iron nickel mattes have been 
measured at 1350–1450°C. Typical copper-bearing nickel mattes with Ni:Cu≈2 (w/w) in the DON (Direct 
Outotec Nickel) process with 2 to 10 wt% [Fe]matte have been equilibrated in carefully controlled S2-O2-SO2 
-Ar gas atmosphere experiments with the corresponding silica saturated iron-silicate slags. The phase 
assays post quenching were measured by electron probe X-ray microanalysis, including the molten slag 
and matte as well as the solid phase of chromite spinel. Laser ablation ICP mass spectrometry was used to 
measure the trace elements in the matte. An additional variable in the slag composition was magnesia 
concentration, varying from zero to 10 wt% (MgO)slag. The solubility of chromium in the slag at 1400°C was 
≈0.7 wt% (Cr) and in the nickel matte 30–100 ppm [Cr], depending on the iron concentration of the sulfide 
matte. The impact of MgO on the chromium concentration in slag was small and within the experimental 
error of the measurements.

KEYWORDS 
Nickel; sulfide matte; slag; 
thermodynamics

Introduction

Nickel matte smelting is chemically close to copper matte 
smelting and their fluxing practices are essentially the same 
(Font, Hino and Itagaki 2001; Kellogg 1987). Nickel sulfide 
ores are generally mineralogically and geochemically distinct 
from copper sulfide ores. Besides the often lower content of 
sulfides, the nickel concentrates contain silicate gangue mate
rials rich in MgO and in certain cases also Cr2O3, i.e. traces of 
ferrochromite (Cramer 2001). These features make the primary 
smelting operation very demanding, due to the higher liquidus 
temperature of the slag and new dense compounds becoming 
stable in the operation and deporting as solid precipitates on 
the matte-slag interface in the smelting vessel (Barnes and 
Newall 2006; Nell 2004; Ritchie and Eksteen 2011).

Limited experimental studies have been conducted to inves
tigate chromium behavior in iron-silicate slags and matte sys
tems in nickel and copper matte smelting conditions. Kwatara 
(2006) studied chromium in copper matte – slag system under 
various pS2 and pO2 conditions at 1300–1500°C, whereas Du 
Preez (2009) equilibrated Cu-Ni-Fe-S matte and iron-silicate 
slag with different additives (Al2O3, MgO, CaO) with pO2 
= 10−8 atm and pS2 = 10−3.5 atm at 1550 °C. Additionally, De 
Villiers and Kleyenstüber (1984) investigated chromium equili
brium in iron matte – alumina/magnesia-containing iron- 
silicate slags at 1450°C. Wright, Jahanshahi and Sun (2009) 
instead studied the chromium distribution behavior in the 
matte – Pt-alloy system under reducing conditions of fixed 
pS2 = 2.5x10−5 atm and varying pO2 = 10−15–10−12 atm at 
1400°C. Sukhomlinov et al. (2020) measured chromium 

dissolution in alumina/lime-containing iron-silicate slags 
under black copper smelting conditions at 1300°C. Henao, 
Hino and Itagaki (2001) determined the chromium distribution 
between a nickel alloy and FeOx-MgO-SiO2 slags at 1500–1600 ° 
C at MgO saturation and calculated the activity coefficient of 
chromia in the slag.

In PGM extraction, high MgO and Cr2O3 concentrations in 
iron-nickel-copper concentrates of the Bushveld Complex 
require higher smelting temperatures than nickel matte smelt
ing, close to 1600°C (Andrews 2005; Coetzee 2006; Eksteen, van 
Beek and Bezuidenhout 2011; Nell 2004; Nelson et al. 2019). This 
is most likely the case also elsewhere where the ore body contains 
chromite minerals (Maier and Groves 2011). Despite the indus
trial importance, very little fundamental data are available in the 
literature on the chemistry and phase equilibria of chromia in 
iron-silicate slags, as well as the combined effect of chromia and 
magnesia in smelting slags. Murck and Campbell (1986) studied 
the dissolution of chromium in iron-silicate slags at 1300–1500° 
C under various oxygen partial pressures. Similarly, Roeder and 
Reynolds (1991) did experimental research for basaltic melts at 
chromite saturation and as a function of oxygen partial pressure 
between 1200 and 1400°C. Eguchi, Uchida and Chiba (1977) 
measured the solubility of chromium in a solid iron – iron- 
silicate slag system at 1230–1400°C, providing solubility of Cr2 
O3 as 1.5, 3 and 5 wt% at 1230, 1300 and 1400°C, respectively. In 
the study by Nell (2004), the chromia solubility in iron-silicate 
slag increased at low pO2, being >5 wt% (Cr2O3) with pO2 
< 10−11 atm at 1550 °C. In addition, Chen, Jak and Hayes 
(2005) investigated the liquidus line at 1400–1600°C with 2 wt% 
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Cr2O3 at silica saturation. Ilyushechkin, Hayes and Jak (2015) 
determined phase equilibria in silica-spinel and silica-spinel- 
pyroxene saturation under air and reducing conditions at 
1350–1490°C. They presented chromia solubilities between 0.2 
and 0.5 wt% in the oxide slag at the oxygen partial pressures 
(7.8*10-7-2.7*10-4) generated with the volumetric ratio CO2:H2 
= 132:1. According to Sommerville et al. (2004), a spinel of 
(Mg,Fe)(Al,Cr,Fe)2(O)4 was precipitated and the solubility of 
chromium in the molten silicate was 0.3–1.3 wt% Cr at 
1350–1630°C. They reported also chromium bearing olivine 
(Fe,Mg,Cr)2SiO4 and pyroxene (Fe,Mg,Cr)SiO3 to be stable 
below 1450°C as primary phases. In reducing conditions and 
iron-free slags related to ferrochromium smelting, intensive 
experimental and modeling studies have been conducted in the 
literature, for example Curr, Wedepohl and Eriç (1988), Xiao 
and Holappa (1993), Pan and Eric (2004), Arnout et al. (2009) 
and Albertsson et al. (2013). Several papers are also available on 
the Cr2+/Cr3+ and Cr3+/Cr6+ equilibria in various slags (Farges 
2009; Hanson and Jones 1998).

The aim of the present study was to determine the equili
brium solubility of chromium in DON (direct Outotec nickel) 
slags at typical iron concentrations (2–10 wt%) of the DON 
matte (Mäkinen and Ahokainen 2009) and to quantify the dis
tribution of chromium between the matte and iron-silicate sags 
with varying MgO concentrations at silica and chromite spinel 
saturations. The measurements were carried out at a fixed SO2 
partial pressure of 0.1 atm that is generally used in the matte-slag 
studies and is based on the sulfur-oxygen potential diagram, i.e., 
Yazawa diagram (Yazawa 1974). The temperature range between 
1350 and 1450°C was selected based on industrial practices of 
nickel matte smelting where the magnesia concentration of the 
feed mixture and thus that of the slag determines the practical 
slag tapping temperature (Mäkinen and Taskinen 2008).

Materials and methods

The experimental techniques included a high-temperature 
equilibration at controlled temperature and CO-CO2-SO2-Ar 
gas atmosphere, quick drop-quenching to an ice water mixture 
and direct phase analysis by electron probe X-ray microanaly
sis (EPMA) and laser ablation high resolution inductively 
coupled mass spectrometry (LA-HR-ICP-MS). Nickel matte 
was equilibrated with iron-silicate slag in silica crucibles in 
a temperature range of 1350–1450°C and matte grade range 
of 2–10 wt% [Fe]. This paper is a continuation of our previous 
work (Strengell et al. 2016) where we presented and discussed 
the results for nickel and matte phases in the DON process. 
The same experimental technique and assembly were used in 
this study as those described in detail in Strengell et al. (2016).

The experiments were carried out in a vertical tube furnace 
(Lenton PTF 15/45/450) employing controller unit of 
Eurotherm 3216 PID. The temperature was followed and mea
sured during the experiments next to the sample with 
a calibrated S-type Pt/90%Pt–10%Rh thermocouple (Johnson- 
Matthey, UK; accuracy ± 2°C) and the ambient room tempera
ture with a calibrated Pt100 sensor (Platinum Resistance 
Thermometer; SKS Group, Finland).

An equal amount (0.05 g/each) of premixed Cu2S-FeS-Ni3S2 
matte and Fe2O3-SiO2-MgO-Cr2O3 slag were equilibrated in silica 
crucibles under controlled partial pressures of pS2, pO2 and pSO2 
at fixed temperature. All the aforementioned materials used were 
commercially available pure, high-grade reagents (>99.5%) sup
plied by Umicore, Alfa-Aesar or Sigma-Aldrich. The partial pres
sure of sulfur dioxide was held constant at 0.1 ± 0.01 atm and the 
partial pressures of O2 and S2 were fixed to a certain target ‘matte 
grade’ in each experiment, calculated using MTDATA software 
(databases of MTOX and SGTE pure substance) (Davies et al. 
2002), see Table 1 for the used gas flows and corresponding pO2 
and pS2. Inert argon was added to the gas mixture in order to 
increase the flow rate and N2 post-experiment for flushing. The 
reactive gases of CO2, CO and SO2 were controlled by accurate 
mass-flow controllers (Aalborg DFC26, USA, accuracy of ±1% 
from full range) and were also calibrated employing a bubble- 
o-meter device (Dublin, OH). The inert gases of Ar and N2 were 
controlled by rotameters (Aalborg 052–01-SA, USA; accuracy ±  
2%). The use of silica crucible created silica saturation and the 
addition of Cr2O3 was 2 wt% (0.002 g/sample) to ensure spinel 
saturation. A 4-h equilibration time was shown to be sufficient to 
reach equilibrium (results presented in (Strengell et al. 2016)) and 
thus, employed in the experiments. After 4-h equilibrium the 
sample was quickly quenched and prepared by using metallo
graphic techniques for preliminary SEM-EDS and primary EPMA 
and LA-HR-ICP-MS analyses.

Two identical experimental series were carried out to deter
mine the concentration of chromium in slag and matte, as well 
as the matte-slag distribution coefficients. Each series con
tained nine experiments at 1400°C (three matte grades with 
three MgO concentrations), and three experiments at 1350 and 
1450°C, respectively, at a constant 5 wt% [Fe] in matte with 
three MgO concentrations. In the following sections, parenth
eses () and [] refer to the slag and matte phases, respectively, 
except when examining the spinel result that are also presented 
with () parenthesis.

The primary phase analyses were executed using a Cameca 
SX100 EPMA (Cameca SAS, France) with wavelength disper
sive spectrometers (WDS) housed at Geological Survey of 
Finland. The EPMA settings used, detection limits and stan
dards have been presented earlier in detail (Strengell et al. 
2016). The detection limit of chromium in the EPMA measure
ments were 125, 109, and 199 ppmw in matte, slag and spinel, 
respectively. The laser ablation single collector ICP-MS 

Table 1. The used gas flows and their partial pressures at each experimental 
temperature.

Temp/ 
°C

Target Fe 
in matte/ 

wt-%

MgO in 
slag/wt- 

%

log  
PO2/ 
atm

log  
PS2/ 
atm

CO/ 
mL  

min−1

CO2/ 
mL  

min−1

SO2/ 
mL  

min−1

Ar/ 
mL  

min−1

1350 5.0 0, 5 and 
10

−7.25 −3.17 8 55 40 300

1400 2.5 0, 5 and 
10

−6.74 −3.41 8 55 40 300

1400 5.0 0, 5 and 
10

−6.91 −3.15 9.9 55 40 300

1400 10.0 0, 5 and 
10

−7.18 −2.67 16 55 40 300

1450 5.0 0, 5 and 
10

−6.67 −3.03 13.3 55 40 300
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analyses of the mattes were executed by using a Nu AttoM SC- 
ICP-MS (Nu Instruments Ltd., Wrexham, UK) and an Analyte 
G2 193 nm ArF laser-ablation system (Teledyne CETAC 
Technologies, Omaha, USA). The laser was run at a pulse 
frequency of 10 Hz and a pulse energy of 4 mJ at 40% attenua
tion to produce an energy flux of 3 J/cm2 on the sample surface. 
Mass1 and 57Fe was used as external and internal standards, 
respectively, for quantification, and BCR2G and BHVO-2 G for 
quality control. The measurements were performed for Mg, Si, 
S, Cr, Ni and Pb at low resolution (M/ΔM = 300) using the fast 
scanning mode. The instrumental uncertainty of the LA-HR- 
ICP-MS technique was evaluated as ± 5–10 wt%. Eight analyses 
points per phase were measured with both analytical techni
ques, and the averages and standards deviations of those were 
calculated and used as results.

Results

The obtained chromium concentration of the slag at 1400°C as 
a function of iron concentration of the nickel matte is shown in 
Figure 1. The data were calculated averages of EPMA results 
from the glassy and originally molten part of the silicate slag.

The scatter and uncertainty of the observations were rela
tively large and it is difficult to conclude whether the oxygen 
partial pressure or MgO concentration in slag have an impact 
on the chromium solubility in the composition range investi
gated. At least the influence of MgO over the studied concen
tration rage was small.

The temperature dependence of chromium solubility at 
silica-spinel saturation is shown in Figure 2. The measured 
solubility tended to increase slightly with temperature, in 
spite of the severe increase in silica concentration which 

lowered the solubilities of several other metals in iron-silicate 
slags, as indicated by Takeda (1997) and Park et al. (2011). This 
was particularly true in high-iron slags with less than 30 wt% 
(SiO2), i.e. on the basic regions away from the orthosilicate 
composition of the Fe-O-SiO2 system. Again, experimental 
scatter was relatively large.

The saturation phase of chromia in the slag was a spinel- 
type solid solution in all MgO concentrations of the slag. It had 
higher density than the molten bulk slag which characterized 
its deportment in smelting vessels (Barnes and Newall 2006). 
The composition of the spinel as a function of the prevailing 
oxygen partial pressure and MgO activity of the slag changed as 
magnesia dissolved into the spinel from the slag. EPMA ana
lyses indicated that the spinel did not contain copper oxide or 
silica. In the case of the alumina-bearing slags, the equilibrium 
spinels would dissolve alumina (Ilyushechkin, Hayes and Jak 
2015; Klemettinen, Avarmaa and Taskinen 2017) but due to 
the low alumina levels in the DON slag, the synthetic slags used 
in this study and the spinels were free of alumina.

Distribution of chromium between spinel and slag is shown 
in Figure 3 at different magnesia concentrations at 1400°C and 
at different temperatures with about 5 wt% MgO in the slag. It 
was defined in the conventional way as: 

Lsp=sMe¼ wt%Með Þspinel= wt%Með Þslag (1) 

where Me denotes the dissolved metal in the spinel (sp) and 
molten silicate slag (s) phases, respectively. It is 
a thermodynamic variable which is independent of the scale of 
the system and thus particularly suitable for industrial use. This 
thermodynamic relation (1) also results in an estimate of the 
uncertainties of the obtained distribution coefficients as: 
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ΔL ¼ L � Δ Með Þsp= Með ÞspþΔ Með Þslag= Með Þslag

n o
(2) 

where ∆(Me)sp is the standard deviation of EPMA measure
ment of the spinel and ∆(Me)s is that in the slag, and L, (Me)sp 

and (Me)s are the distribution coefficient, solubility of Me in 
spinel and in slag, respectively.

The distribution coefficient obtained indicated that chro
mium was preferentially deporting in the solid spinel and thus 
it contained much more chromium than the average slag. No 
significant dependence could be seen between the distribution 

coefficient and iron concentration of the matte, nor the MgO 
concentration in slag and temperature.

The LA-HR-ICP-MS results of the matte domains allow an 
estimation of the chromium solubility in the nickel matte at 
silica-spinel saturation, Figure 4. The dissolved chromium 
concentrations in the matte were below the detection limit of 
EPMA but were at suitable levels for measurement by LA-HR- 
ICP-MS techniques as presented in Figure 4.

The only available data on chromium solubility in matte 
concerning slag-matte equilibrium in the literature are the ICP 
and EDS measurements by Kwatara (2006). Their values 
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Figure 2. The impact of temperature on the chromium solubility in silica-spinel saturated, molten iron-silicate slags at 1350–1450°C and 5 wt% [Fe] in the DON matte; 
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0

20

40

60

80

100

120

140

160

0 2 4 6 8 10 12

Ltneiciffeoc
noitubirtsi

D
sp

/s
 C

r

Fe in matte [wt%]

MgO=0
MgO=5
MgO=9

1400 °C

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12

D
is

tr
ib

ut
io

n 
co

ef
!ic

ie
nt

  L
sp

/s
  C

r

Fe in matte [wt%]

1350 °C
1400 °C
1450 °C

(MgO) ≈ 5 wt%

(a)                                                                                       (b)

Figure 3. Distribution coefficient of chromium between spinel and molten slag (a) at 1400°C as a function of the iron concentration of the DON matte and (b) at 5 wt% 
MgO in the slag at 1350–1450°C; the error bars in (a) refer to the experimental data at 0 wt% MgO in the slag and in (b) at 1350°C. The red horizontal lines show the 
average of the experimental points presented in each diagram. 

204 K. AVARMAA ET AL.



ranged from 0.3 wt% [Cr] to about 0.6 wt% [Cr] at 1300–1500° 
C by ICP analyses and with EDS they measured concentrations 
from 0 to 1 wt% [Cr] depending on the analyzed ‘sub-phase’ of 
the matte and the experimental conditions. The ICP-based 
concentrations were significantly higher than measured in the 
present study by the LA-HR-ICP-MS technique, whereas part 
of the EDS results by Kwatara (2006) were below the detection 
limits and could be in the same range as our results. The ICP 
technique requires manual phase separation and thus increased 
risk for distorted results as described by Fallah-Mehrjardi et al. 
(2017). The effect of MgO concentration in the slag seemed to 

have a small impact on the chromium solubility in the matte. 
Nevertheless, MgO had much greater influence on the activity 
of iron and thus on the composition of matte in the system.

The obtained matte-to-slag distribution coefficient of chro
mium is shown in Figure 5 at various MgO concentrations. The 
error bars were calculated in a similar way as presented in the 
distribution data for chromium between spinel and slag phase, 
according to Equation (2). As a function of iron concentration 
of matte, the distribution coefficient of chromium Lm/sCr 
increased slightly which indicated a small tendency for chro
mium to increase its solubility in the matte when oxygen 
pressure was lowered and sulfur pressure increased.

The current results indicated that from industrial point of 
view, the solubility of chromium in the sulfide matte of nickel 
smelting is negligible, and practically all chromium in the feed 
mixture of the primary smelting vessel in the DON process is 
deported in the slag, either as dissolved chromium oxide in the 
silicate slag or as high-density solid chromite. It is obvious that 
the composition of chromite spinel is a function of the spinel 
forming from the present slag components, such as alumina, 
nickel oxide, zinc oxide or magnesia (De Wilde et al. 2015).

The lattice structure of the spinel solution phase can be 
expressed as (Me)(M)2(O)4 where Me are predominantly diva
lent cations and M predominantly trivalent. If the deviations 
from cation:anion ratio of 3:4 are taken into account, the 
sublattice model of the spinel solution includes interstitial 
cations and vacancies in one or several cation sublattices 
(Barry et al. 1992). In this case, a simplified version was applied 
due to the relatively low experimental temperature where no 
major deviations from cation stoichiometry of 3:4 exist. The 
distribution of cations in spinel was calculated from mass 
balances, assuming that Mg and Ni are predominantly in the 
normal spinel location, i.e. in the first sublattice, and chro
mium in the second (Farges 2009). The results at 1400°C are 
shown in Figure 6 as a function of magnesia concentration in 
the slag. One can see that the dissolution of magnesia from the 
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silicate into the spinel lattice gradually pushed iron from the 
inverse spinel location (Fe,M) in the octahedral sites to tetra
hedral sites (Fe,Me).

Discussion and conclusions

The experimental results obtained in this study indicated that 
chromium (oxide) solubilities are small in iron-silicate slags at 
matte smelting temperatures and conditions used in nickel and 
copper smelting. An average concentration value of 0.66 wt% 
(Cr) or 0.96 wt% (Cr2O3) dissolving in the slag at double 
saturation of chromite spinel and silica at 1400°C was obtained 
in the current study. Although some experimental points 
included relatively big scatter, the overall trends and distribu
tion coefficient results were very consistent providing reliabil
ity for the results.

The matte-slag equilibrium results obtained in this study 
were much lower than presented by Kwatara (2006) at 
1300–1500°C. The distribution coefficients Lm/s based on ICP 
measurements in Kwatara’s study were between 0.07 and 0.13 
depending on temperature, pO2 and pS2.

Bartie (2004) measured chromium distributions in the slag 
phase between different equilibrium phases at 1400–1600°C as 
a function of oxygen pressure. His slags contained about 5 wt% 
alumina and lime, and their magnesia concentrations varied 
from 15 to 20 wt% MgO. His results for chromium solubilities 
in slags and the distribution coefficients between spinel and 
slag are in good agreement with the present data at 1400°C. 
Roeder and Reynolds (1991) measured the solubility of chro
mium in a molten silicate at chromite saturation and as 
a function of oxygen partial pressure at 1200–1400°C. Their 
silicate was a low-iron, sulfur-free basalt, high in alumina and 
silica. The obtained chromium solubilities clearly increased 
with decreasing oxygen pressures and were clearly lower, 

about 0.1-0.2 wt% (Cr2O3) at pO2 = 10−7-10-8 atm and 1400° 
C. Sukhomlinov et al. (2020) reported chromium solubilities of 
0.1–0.25 wt% at 1300°C and oxygen partial pressures of pO2 
= 10−5–10−9 atm in ternary Fe-O-SiO2 slags at silica-spinel 
saturation that are slightly on the lower side compared with 
the results achieved in this study.

The small distribution coefficient of chromium between 
the nickel matte and molten silicate slag at 1350–1450°C 
suggests that the expected carryovers of chromium from an 
electric furnace (EF) to the converting stage (e.g. Eksteen, van 
Beek and Bezuidenhout 2011) are due to slag and not matte 
transferred from EF to converters. The entrainment of slag 
into matte during tapping should then be avoided more care
fully than today’s practices permit. The current results also 
make possible to estimate the maximum chromium permitted 
in the feed mixture in order to avoid the formation of the 
buildups on the furnace walls and heart (Lennartsson et al. 
2015). Due to the operational windows of copper matte 
smelting being close to that of DON smelting (Mäkinen and 
Taskinen 1998; Matousek 2014), the results obtained in the 
present study can be applied also in copper smelting 
operations.
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