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ABSTRACT
Letp; > 2 and consider the following anisotropic p-Laplace equation
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1. Introduction

In this article we are interested in the question of existence of a weak solution to the
following anisotropic p-Laplace equation

Pi—2 4, 1 )
Fy =g(x)eu, u>0inQ (1)
i

du
3xi

N
d
_ga_x,

where Q is a bounded smooth domain in RN with N > 3 and g € L!(Q) is nonnegative
which is not identically zero.

Alongside we present nonexistence results concerning stable solutions to the following
equation

Pi=2 5y
_ . TN
5%, = g(x)f (u) in R™,

ou

ou u>0inRN (2)
Bx,-

N
d
_Ea_xt

1
where f(u) is either —(u=® +u~7) with 8,y > 0 or —ew%. The weight function g €
Lllo . (RN) is such that g > ¢ > 0 for some constant c.
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Throughout the article, we assume that p; > 2. If p; = 2 for all iand g = 1 Equation (2)
becomes the Laplace equation

—Au=f(u) inQ. (3)

Observe that the nonlinearities in our consideration is singular in the sense that it blows
up near the origin. Starting from the pioneering work of Crandall et al. [1] where the exis-
tence of a unique positive classical solution for f (#) = u~% withany § > 0 has been proved
for the problem (3) with zero Dirichlet boundary value. Lazer-McKenna [2] observed
that the above classical solution is a weak solution in H}(R) iff 0 < § < 3. Boccardo-
Orsina [3] investigated the case of any § > 0 concerning the existence of a weak solution in
HILC(Q). Moreover, Canino-Degiovanni [4] and Canino-Sciunzi [5] investigated the ques-
tion of existence and uniqueness of solution for singular Laplace equations. Canino et al.
[6] generalized the problem (3) to the following singular p-Laplace equation

—Apu:%inﬁ, u>0inQ, u=00ndQ (4)
to obtain existence and uniqueness of weak solution for any § > 0 under suitable hypoth-
esis on f. For more details concerning singular problems reader can look at [7-9] and the
references therein.

Farina [10] settled the question of nonexistence of stable solution for the Equation (3)
with f (#) = e¥. There is a huge literature in this direction for various type of nonlinearity
f (u), reader can look at the nice surveys [11, 12]. For f(u) = —u—® with § > 0 Ma-Wei
[13] proved that the Equation (3) does not admit any C! (RY) stable solution provided

25N~:2+1_}_L6(6+\/M).

Moreover many other qualitative properties of solutions has been obtained there. Consider
the weighted p-Laplace equation

— div (w(x)|VulP > Vu) = g(x)f (u) inR". (5)

For w = g = 1, Guo-Mei [14] showed nonexistence results in C!(R") for (5), provided
2<p<N< %andé‘ > g, where

(» — D[ — p)N? + (p2 4+ 2p)N — p*] — 2p2,/(p — D(N — 1)
(N —p)@— DN —p(p+3)] ‘

By considering a more general weight g € Lllo C(RN ) such that |g| > C|x|* forlarge | x|, Chen

et al. [15] proved nonexistence results for the Equation (5), providled w = 1and 2 <p <
p—1

qc =

and § > g, where

_2N+a)p+a)—(N—p)(p—D(N+a)—p—a]— B
T (N—p)l(p — DN —p(p + 3)]

3

for

N-—p
,B:Z(p+a)\/(p+a) (N-I-a—l- pTl)

Recently this has been extended for a general weight function w in [16, 17].
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Our main motive in this article is to investigate such results in the framework of the
anisotropic p-Laplace operator, which is non-homogeneous. Such operators appear in
many physical phenomena, for example, it reflects anisotropic physical properties of some
reinforced materials [18], appears in image processing [19], to study the dynamics of fluids
in anisotropic media when the conductivities of the media are different in each direction
[20]. The first part of this article is devoted to the existence of a weak solution for the
anisotropic problem (1). Some recent works on singular anisotropic problems can be found
in [21, 22]. The singularity et is more singular in nature compared to u~® which protects
one to obtain the uniform boundedness of u, as in [3]. We overcome this difficulty using
the domain approximation method following [23]. In the second part we provide nonexis-
tence results of stable solutions for the anisotropic p-Laplace equation (2) with the mixed
singularities — (4% 4+ u~7) and —eii. We employ the idea introduced in [10] to establish
our main results stated in Section 2 for which Caccioppoli type estimates (see Section 5)
will be the main ingredient. The main difficulty to obtain such estimates arises due to the
nonhomogenity of the anisotropic p-Laplace operator which we overcome by choosing
suitable test functions in the stability condition.

2. Preliminaries

In this section, we present some basic results in the anisotropic Sobolev space.
Anisotropic Sobolev Space: Let p; > 2 for all i, then for any domain D define the
anisotropic Sobolev space by

Wi(D) = [v e Wh'(D) : g_v € LP-'(D)]
Xi

and
Wo?' (D) = WD) n W' (D)

endowed with the norm

N

IWlyioi ) = D

i=1

av
0x;

LPi(D)

The space Wlloc‘ (D) is defined analogously.
We denote by p to be the harmonic mean of py, p;, . . ., py defined by

1 1 1
P N&p
and
[~
N-p

The following Sobolev embedding theorem can be found in [24-26].
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Theorem 2.1: For any bounded domain Q, the inclusion map
L,p; r
Wo™'(€2) — L'(Q)

is continuous for every r € [1,p*] if p < N and for every r > 1 if p > N. Moreover, there
exists a positive constant C depending only on Q2 such that for every v € Wé’p (Q)

, VYrellLp*].
LPi(Q)

N
Vi@ < CI] ==
i1 3x,'

Weak Solution: We say that u € Wltci (2) is a weak solution of the problem (1) if u >0
a.e. in Q and for every ¢ € C1(Q)

Stable Solution: We say that u € ‘W1 Pi(RN) is a stable solution of the problem (2), if
u >0 a.e. in Q such that both g(x)f (u), g(x)f’(u) € LL (RY)and for all ¢ € CL(RY),

du
3x;

P2 9u 3
ugodx

f g(x) ehpdx. ©)

0x; 0x;

loc

N -2
qulPi™ du d
3 f - 2 dx= f 2X)f () dx @)
— Jr¥ 3x; 3x, 0X; BN
and
N i—2 2
du |Pi dp
- 2 E : L _ - _r
ANg(x)f (e dx < izl(Pt D RN | 0X; ox; (®)

For a general theory of anisotropic Sobolev space, we refer the reader to [24, 25, 27, 28].
Assumption and notation for the nonexistence results: We denote by @ = RN for N > 1
and assume2 < p; <py <--- < pN.
We will make use of the following truncated functions later. Fork € N, > py — 1and
t > 0, define

(l—a)ka+l( 1+a )’ OStﬁl,
ax(t) = L k(1 —a) ) k
T, ift>—,
“k
and
1 1
—Q'k”’“( ﬂ), ifo<t< -,
bi(t) = kat Lk
=, if t > -

Then it can be easily verified that both aj and by, are positive C'[0, 00) decreasing functions.
Moreover, ay and by, satisfies the following properties:
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(a)
ar(H)? > th(t), VYt>0.
(b)
ak P |ap (O 7P + br(OF (D)7 < C e,
for some positive constant C(p1, pa, - - -, PN» &)-
()

N2
gyt = <V

b, (t)], Yt=0.
The following notations will be used for the nonexistence results.

Notation: The Equation (2) will be denoted by (2); and (2), for f(u) = —u% —y77 and
1
f(u) = —e¥ respectively. Without loss of generality we assume 0 < § < y.

We denote by B;(0) to be the ball centred at 0 with radius r > 0.
N .
We denote by u; = g—; foralli=1,2,...,Nandg = Zﬁlﬂ

Denote by
p=fv-a o, _ % 4"l 4 -2 _4-!
2 Ng-1 2 MNG-1) 2
We denote by
A= (MaDonD )
4
_ (0, : ) C= (0, u )
N(@—DpE~n—1) N(N-1)(q—1)
Define
N
I=(I
i=1
where

pe(—Na-ve-n )
pi(N(@—1)+4) —N?(q—-1)
provided p;(N(q — 1) +4) — N*(g— 1) > Oforalli=1,2,...,NandJ = BNC.
Weassume § € Aand M € J. Observe that§ € Aimpliesl, > [;and]; > 0. AlsoM €]
implies I3 > I} and I3 > 0.
If C depends on € we denote by C, and if C depends on ry, 73, ..., 1, we denote it by
C(ri,ras....rm).
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Throughout this article Yz € C}(RY) is a test function such that
0<yp<1inRYN, v =1inBg(0),
Yr=0 inRY\By(0)
with
C
[Vyr| < R
for some constant C > 0 (independent of R).

3. Mainresults

The main results of this article reads as follows:

Theorem 3.1: Let Q C RN be a bounded smooth domain, N > 3 andpy > ---p2 > p1 >
2. Then the problem (1) admits a weak solution u in Wltii(ﬂ) N L% (2) such that (u —

et e Wé’pi(ﬁ)for every € > 0, provided

(a) g€ L™(R2) for some m > ﬁ% ifp < N where p* > pn.

(b) g € L"™(Q) for some m > r—]}m ifp > N wherer > pn.

Theorem 3.2: Letu € Wllc;ci(Q) besuchthat0 < u < 1a.e. in Q. Assumethat1 <6 <y
be such that § € AN 1. Then u is not a stable solution to the problem (2)s.

Theorem 3.3: Letu € WIL’?(Q) be such that u > 1 a.e. in Q. Assume that 0 < § < y be
suchthat § € Aandy € 1N [1,00). Then u is not a stable solution to the problem (2);.

Theorem 3.4: Let u € Wltgj(Q) be such that u> 0 a.e. in Q. Assume that 1 <=1y €
AN I Then u is not a stable solution to the problem (2);.

Theorem 3.5: Letu € Wltg"(Q) be suchthat0 < u < M a.ein Q, provided M € ]J. Then u
is not a stable solution to the Equation (2),.

We present the proof of the above theorems in the following two sections.

4. Proof of existence results
For n € N, define g,,(x) = min{g(x), n} and consider the following approximated problem
N 4 1
- Z 3—(|uiIP‘_2uf) =gn(x)e™®  inQ. 9)
- Xi
i=1

Lemma 4.1: Let

(1) g € L™(2) for some m > % ifp <Nor
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(2) g € L™(Q) for somem > —— if p > N wherer > pn.

r—pN

Then for every n € N the problem (9) has a positive solution u, € Wé’p '(Q). Moreover,
one has

(i) luplize(@) < C for some constant C independent of n.
(ii) upy1 > uy and each u, is unique.
(iii) there exists a positive constant c,, > 0 such that for every @ CC Q we have u, >

cy > 0.

Proof: Existence: Let v € L' (Q2) for some r > 1. Then the problem
N o 1
=3 Sl u) = gu(x) e 0D
P 0x;

has a unique solution u = A(v) € Wé’p "(Q) since the r.h.s belongs to L® (L), see [25].
Choosing u = A(v) as a test function and using Theorem 2.1 together with Holder’s
inequality we obtain

lullzr@) < Cn

for some constant Cy independent of u. Now arguing as in Lemma 2.1 of [21] gives the
existence of u,,.

(i) (1) Letp < Nandg € L™(Q2) for some m > %.Choosing Gi(un) = (up — k)
for k> 1 as a test function in (9) we get

1
pi
Ik gy < e [ sGetumiax)

Using Theorem 2.1 with r = p* and Holder’s inequality we get
I—)t’ 3%
Gl gy < [ 1e ax
A(K)

Now for 1 <k < h denote by A(h) = {x € Q : u(x) > h}, we get

(h — kP Ah)| P

pi

—\ P
s([ |Gk(un)|f’)
AK)

—f ﬁ (ﬁ__l)
([
A(k)
q

Now using Holder’s inequality with exponents g = }_}% andq = 7T We get

piE*—Dm—p*)

. 5 i
(h—KPIAR)F < cliglingAGK)| FeD .
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Therefore we have
=3

cllgllfme
A()] < (h—)‘pH w1,
where g = w > 1sincem > . By Stampacchia’s result [29] we

m(p—1) I_" —-r°
get [|lun|lfo () < Cwhere Cis independent of n.

(2) Choosing Gg(un) = (up — k) as a test function in (9) and using Holder’s
inequality we get
1

Gkl 101 ) = ellgFy

Using Holders inequality with exponents 7 and - we get

(gt
| Gi(un)l 14’:(9) C"glle(Q)lA(kN mr(pi=1) |
Now for 1 < k < h we have

(h — ki A(H)[F
Bi

([
A(h)

i
< ( (u— k)fdx)
A(K)

N
<3 fQ 104Giun) P dx
i=1

pj(m—r’)

< cllglfi gy |AGK) e

Therefore we have

gl > IAGR)[Y

|A(h)| < ¢ T

r(m r') .
)>lsmcem> - P

[[4n]l Lo () 5 C where C is independent of n.
(ii) Let u, and uy,4 satisfies the Equations (9). Then for every ¢ € Wé’P ()

where y = . By Stampacchia’s result [29] we get

N 1
> [l i = [ guet=Tgas (10)
— Jo Q

and

N i
Z[ |(Hn+1)ilp‘_2(un+1)f¢fdx=j3n+1e(“”+‘+"_‘”)¢dx- (11)
i=1 V&2 Q
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Choosing ¢ = (un — un+1)™ as a test function and subtracting (10) and (11) we
have

N
> L (1)l ™2 )i = |Gt D)ilP 2 Wng1)i) (= 1)} dx
i=1

1

1
i 1
= f gn+1(x) {e("“—i] — ety ] (up — un—i—l),—"_ dx < 0.
Q

Using the algebraic inequality (Lemma A.0.5 of [30]) we get for any p; > 2

Therefore (i) holds. The uniqueness follows similarly as in the monotonicity.
(iii) Observe that u; € L*(£2) by using (i). Hence

N

_ 1 1
Zf 1)l =% (u1)ipi dx = g1 €TI0 > gy eTTooT,
i=1 V2

Since g is nonnegative and not identically zero, by the strong maximum principle
(Theorem 3.18 of [24]) we get the property (iii).

Proof of Theorem 3.1: Letp < N such that p* > pyand Q = | J; Qf where Q) CC Q4
foreach k. Let y; = infq, up > 0. Choosing¢ = (un — y1)T asatest function in (9), using
Lemma 4.1 and Theorem 2.1 we get

N
) f{ )il dx
i=1

un>y1)
1
—T

= f gnem (uy — }"1)+d-x

{un>y1}

+
< clgllim@ | Gin = 1) lLgron g
where ¢ is a constant independent of n. Using Lemma 4.1 and the fact

lunllwrei @y < lunllwteiqun=yp)

we get the sequence {u,} is uniformly bounded in W'Pi(2;) and as a consequence of
Theorem 2.1 it has a subsequence {u,ﬂk} converges weakly in W'Pi(2;) and strongly in
LPi(Q2;) and almost everywhere in Q; to ug, € Wi (Q,), say.

Proceeding in the same way for any k, we obtain a subsequence {uﬁj} of {uy} such that

k
Hm

converges weakly in WP (), strongly in LP/(€;) and almost everywhere to ug, €
WLPi(Qy). We may assume uﬁfl is a subsequence of uﬁf for every k, and that nﬁ — 0o as

k — o0. Therefore ug,,; = ug, on Q. Define u = ug, and u = ug, , on Qg \ L for
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each k. Therefore by our construction the diagonal subsequence {uy,} := {uk .} converges
weakly to u in W, 05 (), strongly in LPi(2;) and almost everywhere in Q2. Now we claim

that {up, } converges strongly to u in Wllc;i)i(Qk). Let Q' CC Q. Let ¢ € C°(L2) such that
0<¢<1inQ,¢=1o0nQ andlet k; > 1 such that supp ¢ C Q,. For every k,m > 1
we have

N
3 [ (D21 = Nt P2, ) o, =
i=1
N
< Z fﬂ (1)l 2 ()i — |ty )ilP 2 (i, )i) (6 (i — tay,,)),; dx

—Z {1 )ilP 2 ()i — |t )il (tn,,)i) Bi} (i — 1ty,,) dx

S,
=A—B.
Now the fact that uy, is uniformly bounded in W'Pi(Q,) and converges strongly in

LPi(S,) implies B — 0 as k,m — 00. Choosing ¥ = ¢ (up,, — uy,,) and either n = ny or
n=n, wegetforl =k,m

| un)il? 2 (un)i (¢ (tny, — un,,)); dx|

1

(uny+5) d_x
= gn(x)e 1 |”nk - unml .
le

Now Lemma 4.1, g € L™ () and the strong convergence of u,, gives A — 0ask,m — oo.
Now the algebraic inequality (Lemma A.0.5 of [30]) gives

N
3 [ 160 = Gan i — 0
i=1 v

as k, m — 00. Therefore for any ¢ € C(Q2) we have

N N
[t gt = 3 [ g dx
i=1 v i=1 /¢

Lemma 4.1 and the fact un, > csuppg > 0 gives
1

(uny +5=)
fgnk(x)e KT p dx
Q

1
< e“wr? @] 1o lIgll1 ()

By Lebesgue dominated theorem we obtain

(un i—) 1
fgnk(x)e o ¢dx:fg(x)eu¢dx.
Q Q

Hence u € W]i)’cj(Q) is a weak solution of the problem (7). Now observe that (u,, — €)™
in bounded in Wé’p '(2) and it has a subsequence converges to v weakly in W& Pi(Q). Since
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up, converges almost everywhere to u, wehave v = (u — €)™ € W& Pi(Q). The case p>=N
follows similarly using Theorem 2.1. |

5. Proof of nonexistence results

To prove our main results we establish the following a priori estimate on the stable solution
to the problem (2).

5.1. Apriori estimate

Lemma 5.1: Let u € WIL’P "(Q) be a positive stable solution to either of the Equation (2);

C
or (2)e and a > pn — 1 be fixed. Then for every € € (0,a), there exists a positive constant

C = Ce(p1,P2, - - - » PN» 4> @) such that for any nonnegative ¥ € CL(R), one has
| stouf @byt ax
N
<C) [ ety s
=1V

(@ —12(N(q —
4a(l —¢€)

1)+ €
22 [ swrbwyras (12)
Q
As a corollary of Lemma 5.1 we obtain the following Caccioppoli type estimates.

Corollary 5.2: Letu € V&fllcici(ﬁ) be a positive stable solution to the problem (2);. Then the
following holds:

(1) Assumethat0 <u <1a.e in Qand1 <8 <y be such that 6 € AN 1. Then for
any B € (I1, 1), there exists a constant C = C(py,p2, . . .,PN>q, N, B) such that for
every ¥ € CL(Q) with0 < ¢ < 1in Q, we have

v 28+8+q—1 N o
v dr<C ! dx 13
[« (%) < ;bw (13)

where
- 2B+d+4g-1 9{_2,B+6+q—1
O 2B4aq-p T S+pi—1
(2) Assumethatu > la.e.inQand0 <& < y besuchthatd € Aandy € IN[1,00).
Then for any B € (1, 1), there exists a constant C = C(p1,p2, - - -,PN-q, N, B) such

that for every ¥ € CH(Q) with0 < Y < 1in Q, we have

v\ Aty ta-l N o
v <Y [ it ax 14
s (%) < ;LIWI (1)

where
c‘_2,8+y+q—1 , 26+y+q-—1
© 2B4q-p T yApi—1
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(3) Assumethatu>0a.e.inQand1 <8 =y € AN I Then forany B € (I1,1), there
exists a constant C = C(py1,p2, - - ., PN G, N, B) such that for every € CL(Q) with
0 <y <1inS, we have

Y\ 2B+ N ’
[ (%) aecy [ 1w ax (15
Q u v
where
_2B+8+4g-1 9,_2,B+6+q—1
© 24aq-pi T S+pi—1

Corollary 5.3: Letu € W]tgj(Q) be a positive stable solution to the problem (2), such that
0 < u < M a.e. in Q for some positive constant M. Then for any B € (I, 13) there exists a
constant C = C(py, P, - - -»PN->q> N, B) such that for every ¥ € C1(Q) with0 < ¢ <1 in
Q, we have

AN dx 3 26+4 4x
— C i .
i g(x)(u) <cy [ 1w (16)

Proof of Lemma 5.1: Letu € WIEEE(Q) be a positive stable solution to the Equation (2)
and ¥ € Cg (2) be nonnegative in €. Then u satisfies both the equations (7) and (8). We
prove the lemma into the following two steps.

Step 1. Choosing ¢ = bx(u)y? as a test function in (7), we have

N
B WACIILAEE
i=1

N
<qy | v @wlP Puidx — | g@f whwyidx.  (17)
i—1 Y82 Q

Using Young’s inequality with € € (0, 1), we obtain

N
i~y il U dx
q;Lw K@) P 2up

N N
< e;L|b;(u)||ui|wqd_x+cgfﬂbk(u)p;|b;(u)|1—p,-|wilp,.wq_p‘. dx,

for some positive constant depending C = C(p1, p2,- - -»PN>9)-
Therefore for € € (0, 1), we obtain

N
(1 =€) Y 1wl |uit'y9 dx

i=1

N
< CZ br(w b ) Pyt Pidx — | g(x)f (u)bg(u)yrd dx. (18)
i=1 V2 Q
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Step 2. Choosing ¢ = ak(u)y';% in the inequality (8), we obtain

N 2
f gCf War(wy’Yldx <) (pi—1) (Xf + ‘%Yi + qu) , (19)
Q

i=1

where
Xi= L lap () |wilPyidx, Yi= qu—zak(u)%udf’f—zwiﬁ dx,
and

Zi= fg () g ()T gl ] .

Using (c) noting that

(x

Xi=

U [ gty a
4a o k 1 t]

from the estimate (18), we obtain

N @-12 &
Xi = f 16,0 P dx
LN= T L o

_ (e—1y?
T 4da(l —¢€)

N
HCZLbk(u)”"Ibi(u)ll_""lwslp"wq_f"dx
i=1
- Lg(x)f(u)bk(u)wqu}.

Moreover, using Young’s inequality we have

2
(Pi—l)%Ys

2
—pi-nL f 2 () s P2 g dx
4 Ja
2 2pi=2  gpi—2)
— - f (|uf|Pf—2|a;(u)| oy )
Q2

20 4 2(2—_.0;'] 5 2(q—_P.')
x | ak@) lap(w)| 2 |gil"y Fi ) dx

€ C L, o P
<X+ L ak ()Pl () 2P Py TP dx,
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and
(pi — 1)qZ;

= (pi — 1)q L |} (u) | ag () ¥ u P~ ] dx

i 4 2-pi
= (pi—1)q f (|ui|P-'—1|a;<u)|P?wPi) (ak(u)lauuw_f|w|P"wq—P*) dx

— 2N
for some positive constant C = Cc(p1,p2,- - -» PN>q.N).
Using the above estimates in (19) together with (a) and (b) we obtain

L guf (Wb (w)yr? dx

C ) ) ) )
< <X+ S f ax ()Pl () PP Py I P

< L g(Of (war(u)* ¥ dx

N N
€ -, . .
< (p—1+5) X+ Y [ @ laf PPy
i=1 i=1

(p1—1+ )ZX, (Pz—l—l- )ZX,+ +(pN—1+ )ZX,

i=1
N
+CZj;zak(u)p‘|a;c(u)|2_P‘|1ﬁi|Pl'¢-q_Pid_x
i=1
N N
=(N@@—1 +e¢) ZXs + CZ fQ ax (u)Pi|al () > Pi g Pip P dx
i=1 i=1

_@—1’(N@—1) +¢)
- 40(1 —€)

N
{C 2 fg br ()P b o) | g PP e
=1
N
- j;zg(x)f(u)bk(u)lﬁqu] + CZLak(u)P-'|a;c(u)|2—Pf|,/,i|Pf¢q—P.-dx
=1

N
< CZL {bk(u)‘p"lbi(u)|1_f"’ + ak(u)an;c(uNZ—Pf} |9, [PigrdPi dx
i=1

(@- 1)2<N<q
4a(1 —

N
<€) f uP = |y Py A dx
i—1 7€

— ZN _
(e 1110({(1((1 1)+€)f£(x)f(u)bk(u)wqu

-1
)+ )fg(x)f(u)bk(u)wqu
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for some positive constant C = C¢(py, . - .,pN. 4 N, @). |
Proof of Corollary 5.2: Letu € ng’gi (£2) be a positive stable solution to the problem (2);.
Observe that the fact g > [; implies « =28 + q— 1 > py — 1. Then by Lemma 5.1,

using the fact 0 <8 <y and f(u) = —u~? —u~7 in the inequality (12), for some
C = Cc(p1,...,pN>q, N, ) we obtain

N
ac [ g +ubwyidr < C Y [ wmetiypy i
@ =179

—12(N(g—
whereae =8 — W Observe that

_ LY.
limaezcﬁ—N(q De—-1) >

lim ™ 0, VBe(ih).

Hence we can fix 8 € (I}, ];) and choose € € (0, 1) such that @, > 0. As a consequence we
have

N
f W +u by ldx < C) f WPy Py Pide (20)
for some positive constant C = C(p1, . . ., pn. 4, N, ).

(1) Sinced < yand0 < u < la.e.in,forany B € (I1, 1) the inequality (20) becomes
N
f geu b (wylde < C) f |ufP 2P|y Pigp P dx.
By the monotone convergence theorem we obtain

N
fg(x)u_z’g_a_%l!ﬁqus CZ[ |u|p;—2,ﬂ—q|wi|p,-wq_‘uj dx.
@ i=1 V<

2B+5+q—1

Replacing ¢ by ¥ ¢  and using the Young’s inequality for € € (0, 1) with the
_ 2B+bé+gq—1 9/ — 28+6+q—1

= TZFFqpi 0 T Tl

28+6+q—1
f g(x) (ﬂ) dx
Q u

N
< CZ[ upf—23—4w23+5+q—19i—1|,J,l.|Pfd_x
i=1 V&

()

w 2B+8+q—1 N _ef , ,
Eefgg(x)( ) de+ €Y [ gy Oy ax
i=1

exponents 6; in the above inequality we obtain

u
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(2)

3)

Using § > 1 and choosing 0 < ¢ < 1 in Q2 together with the fact g > ¢ we obtain

v 2B8+8+q—1 N !
— dx<C iP5 dx,
[« (%) < ;:fg"""

for some positive constant C = C(py, . ..,pN. 4, N, B).
Since § < y andu > 1a.e. in €, for any B € (1, ;) the inequality (20) becomes

N
f gRu by ldx < CY f | PP =)y Py TP .,
@ i—1 7

By the monotone convergence theorem we obtain

N
[ tytae< 3 [ gy d
@ i=1 V<

2B+y+gq-1
Replacing ¢ by~ ¢  and using the Young’s inequality for € € (0,1) with the
— 2Bty+g-l .y 2B+v+q-l

exponents {; = in the above inequality we obtain

r
2B+q—pi & = y+pi—1

2B+y+q-1
f g(x) (K) dx
Q u
N
< CZLupi—zﬂ—QwZﬂﬂ'-i-q—Pi—lhh_'P:‘d_x
i=1
N v 2p+q—pi _
Lo
i=1

g\ 2B+l N g o
seLg(x)(;) dx+CZLg o =8 [y P! i,
i=1

Using ¥ > 1 and choosing 0 < ¥ < 1 in Q together with the fact g > ¢ we obtain

v\ 2Bty a1 N oie!
= dx<C iPisi dx,
Lg(")(u) < ;Lw

for some positive constant C = C(py, . ..,pn-4, N, B).
Sinced = ¥ > landu > 0a.e.in Q, forany B € (I1, ) the inequality (20) becomes

N
f g ()Y ldx < C) f |l 2E |y AP dx,
@ i=1 Y52

Now proceeding similarly as in Case (1) we obtain the required estimate.
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Proof of Corollary 5.3: Assume M € Jandletu € Wltﬁj(Q) be such that0 < u < M a.e.
in Q is a positive stable solution of the Equation (2),. Let 8 € (I}, ]3) and define = 28 +
g — 1. Observe that the fact 8 > I; impliesa > py — 1. Therefore we can apply Lemma 5.1
to choose f(u) = —e% and use the assumption 0 < u < M a.e. in Q in the estimate (12)
and obtain

N
a [ swett@ytacs Y [ wmtiyipyira
@ i=1 V<

—12(N(g—
for some positive constant C = C,.(py, . . ., pPn, g, N, ) wherea, = % — %

Observe that
1 N(qg—1)(a—1)>?

eli_%&'g:ﬁ yy >0, VpBe((,h).

Hence wecan fix 8 € (I1,13) and choose € € (0, 1) such thate, > 0. Usinge* > xforx >0,
in the above estimate we obtain

N
fg(x)lbk(u)wqus f g(x) el'l*bk(u)wqd.x < CZ[ uPi—2B= |y Piyy 9 Pi dx,
@ @ =179

for some positive constant C = C(B,p1,...,pPN.q, N). By the monotone convergence
theorem we obtain

N
f g(x)u—Zﬂ—qwq dx < CZ[ upf_zﬁ—ﬂwdpiwq—p; dx.
@ i=1 Y2

28+q
Replacing ¥ by ¥~ 4 and using the Young’s inequality for € € (0, 1) with exponents y; =

2Btq s _ 2814 ; - : :
Hrep Vi = 5 in the above inequality we obtain

2B+q
[ ()"
Q u

N 2p+q—pi _
sCZf( ) il de
i=1 7

26+q N W
<e L g (—) dx+C) L g 7|l dx.
i=1

Therefore, using the fact that g > ¢, we have

" 28+4 N g
— de<C E i dx,

for some positive constant C = C(8, p1,. - -, PN, g, N). |

==

<

=
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5.2. Proof of the main results

Proof of Theorem 3.2: Letu € Wltﬁj (£2) be a stable solution of the Equation (2), such that
0 < u < 1a.e. in Q. Then by Corollary 5.2 we have

v 2B+8+q—1 N o
— de<C [P dx.
Lg(")(u) < ;Lw

Choosing ¥ = g in the above inequality we obtain

1\ 28+8+4-1 N )
f 8t (_) de<C) RV, 21)
Br(0) u

i=1
for some positive constant C independent of R. Observe that,

2h+8+4q9-1) -
d+pi—1

0

lim (N — pi#}) = N — &
B—h

which follows from the assumption § € I, since

N(g—Dpi—1)

> foralli=1,2,...,N.
pilN(g—1)+4) —N?(g—1)

As a consequence, we can choose B € (I1, ), such that N — p;#] < 0 for all i. Therefore,
letting R — 00 in (21), we obtain

1\ 28+5+q-1
f g2(x) (—) dx=0,
Q u

which is a contradiction. [ ]

Proof of Theorem 3.3: Letu € WIL’? (£2) be a stable solution of the Equation (2), such that
u > 1 a.e. in Q. Then by Corollary 5.2 we have

g\ 2y el N e
— dx<C :|Pi% dax.
Lg(x)(u) < ;bw

Choosing ¥ = g in the above inequality we obtain

1\ 2B+y+a-1 N N
g@)(—) dx<C) RNPEL, (22)
Lmn u é;

for some positive constant C independent of R. Observe that,

_Pf(232+y+q—1)

lim (N —pif/) =N <0
g, (N = Piti) §+pi—1
which follows from the assumption y €1, since y > N (g—1(pi—D for all

pi(N(g—1)+4)—N*(g—1)
i=1,2,...,N. As a consequence, we can choose § € (I, ), such that N — p;¢/ < 0 for
all 7.
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Therefore, letting R — 00 in (22), we obtain

1\ 2P+r+a-1
f g(x) (—) dx =0,
Q u

which is a contradiction. [ ]

Proof of Theorem 3.4: Letu € WIL’IC)" (£2) be a positive stable solution of the Equation (2);.
Then by Corollary 5.2 we have

v 2B+8+q—1 N o
_ de<C i|P% dx.
Lg(")(u) < ;Lw

Now proceeding similarly as in Theorem 3.2 we obtain

1\ 26+3+a-1
f g(x) (—) dx =0,
Q u

which is a contradiction. [ ]

Proof of Theorem 3.5: Letu € Wllog‘ (£2) be a stable solution to the problem (2), such that
0 < u < M a.e. in . Then by Corollary 5.3 we have

L4 2ﬁ+qu 3 2644 4x
— C i X
fgg(")(u) < ;Zlﬁfgwu

Choosing ¥ = g in the above inequality we obtain

1 28+q
f g(x) (—) dx < CRN"26—4, (23)
Br(0)

u

where C is a positive constant independent of R. Observe that, since M € ] we have 0 <
M < N—(N_f)( =D which implies N < 2I3 + g and hence

ﬂlin}(N—Zﬁ—q):N—Zh—q{O.
—*i3

As a consequence, we can choose 8 € (I, 3) such that N — 28 — g < 0.
Therefore, letting R — 00 in (23), we obtain

1 2B+q
f g(x) (—) dx =0,
Q u

which is a contradiction. Hence the Theorem follows. [ ]
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