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Abstract: In this study, we propose a real-time pose estimation solution for Unmanned Aerial
Vehicle in a seedling pine forest environment. Our method uses graph-based approach to fuse
data from an onboard IMU sensors, a GNSS receiver and a 3D LiDAR. Features are detected
from every LiDAR scan. A local map is built from the detected features and used to compute
the LiDAR odometry in real time for the incoming scans. In order to obtain a robust estimate of
the state of the vehicle, the noise covariance of the LiDAR odometry is updated at each iteration
using the fitness score of the LiDAR. The proposed solution provides promising trajectory and
velocity estimates even in GNSS denied scenario. Both the local and global consistencies of the
estimated trajectory are encouraging.
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1. INTRODUCTION

In Finland, forestry plays an important role in the coun-
try’s economy. Among the tree species in Finnish forest,
pine trees occupy the largest proportion of the forest area
(Valsta, 2017), making them one of the most important
species. However, moose (Alces alces), also called elk in
Europe, is a real threat to the seedling pine stands and
can cause extensive damage to the stands. According to
(Nevalainen et al., 2016), considering all kind of forest
stands, the majority (75%) of moose damage occurred in
pine-dominated stands. In order to prevent these dam-
ages, several techniques are used, among which is the
spraying of non-toxic moose repellent chemical on the top
of the young pine trees. This spraying is currently done
manually, and is time and resource consuming. Using au-
tonomous Unmanned Aerial Vehicles (UAVs) for spraying
the chemical can be an economical alternative. However,
this autonomous use of UAVs inside a seedling pine forest
environment is challenging because of the presence of many
obstacles (i.e. the canopy), and the need to precisely and
selectively spray the repellent chemical on the top of indi-
vidual young trees. It requires a full navigation framework
including a pose estimation, obstacles detection, and a
path planning solution. The aim of this study is to develop
a solution that addresses the problem of estimating the
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pose of the UAV in the young pine forest as a basis for the
development of autonomous UAVs for spraying non-toxic
chemicals in the seedling pine forest in subsequent studies.

When navigating in a young forest environment that is
surrounded in certain areas by large trees, the GNSS
signal may degrade when the UAV flies closer to the large
trees. In autonomous navigation scenarios, this sudden
GNSS signal deterioration can lead to a loss of control.
In this type of environment, it is also desirable to add
extra sensor with additional information to improve the
navigation performance. In this study, a LiDAR is used
to try to address both concerns: improving the navigation
performance when GNSS signal is available and coping
with GNSS signal deterioration or complete loss.

UAV navigation is in general a well studied field of re-
search. Data fusion techniques are used to fuse the LiDAR
sensor data with other sensor data. This include filtering
techniques with or without smoothing, and the Simultane-
ous Localization And Mapping (SLAM) solutions. Several
filtering solutions based on the Kalman filter have been
explored to fuse LiDAR odometry with other sensors. The
study by (Hening et al., 2017) develops a state estimation
solution for UAVs in a GNSS-degraded environment. The
study combines data from a 3D LiDAR, a GNSS receiver
and an IMU sensor. Feature points are extracted from
successive point clouds and they are matched using the
Iterative Closest Point (ICP) technique. An adaptive Ex-
tended Kalman Filter (EKF) is used to combine the posi-
tion and velocity information from three blocks: a mapping
block, a GNSS block, and an inertial navigation system
(INS) block. The ICP scan matching error and the GNSS
receiver horizontal and vertical dilution of precision are
used to update the measurement covariance matrix. This
idea of updating the measurement covariance matrices is
used in our study. The study by (Chiella et al., 2019)
combines data from a GNSS receiver, an Attitude and
Heading Reference System (AHRS), and a 2D LiDAR to
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When navigating in a young forest environment that is
surrounded in certain areas by large trees, the GNSS
signal may degrade when the UAV flies closer to the large
trees. In autonomous navigation scenarios, this sudden
GNSS signal deterioration can lead to a loss of control.
In this type of environment, it is also desirable to add
extra sensor with additional information to improve the
navigation performance. In this study, a LiDAR is used
to try to address both concerns: improving the navigation
performance when GNSS signal is available and coping
with GNSS signal deterioration or complete loss.

UAV navigation is in general a well studied field of re-
search. Data fusion techniques are used to fuse the LiDAR
sensor data with other sensor data. This include filtering
techniques with or without smoothing, and the Simultane-
ous Localization And Mapping (SLAM) solutions. Several
filtering solutions based on the Kalman filter have been
explored to fuse LiDAR odometry with other sensors. The
study by (Hening et al., 2017) develops a state estimation
solution for UAVs in a GNSS-degraded environment. The
study combines data from a 3D LiDAR, a GNSS receiver
and an IMU sensor. Feature points are extracted from
successive point clouds and they are matched using the
Iterative Closest Point (ICP) technique. An adaptive Ex-
tended Kalman Filter (EKF) is used to combine the posi-
tion and velocity information from three blocks: a mapping
block, a GNSS block, and an inertial navigation system
(INS) block. The ICP scan matching error and the GNSS
receiver horizontal and vertical dilution of precision are
used to update the measurement covariance matrix. This
idea of updating the measurement covariance matrices is
used in our study. The study by (Chiella et al., 2019)
combines data from a GNSS receiver, an Attitude and
Heading Reference System (AHRS), and a 2D LiDAR to
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estimate the position and velocity of a UAV in a sparse
forest environment. Tree trunks are used as features to
match the successive scans. An Unscented Kalman Filter
(UKF) is used to combine the relative measurements from
the LiDAR and the absolute measurements from the GNSS
receiver. The approach provides a low computational fil-
tering solution but it cannot deal with medium or long
term drift in case of total lack of GNSS signal. An early
study by (Cui et al., 2014), uses also tree trunks for scan
matching. A Kalman filter is used for motion estimation
and the GraphSLAM method is used to correct for long
term drift. However, the computational cost of graph-
based SLAM method is of concern, particularly for an
UAV system with small energy resources and limited com-
putational power. Recent advances in graph-based SLAM
theory make it suitable for real-time use without the need
for an extra filtering scheme. One such breakthrough is
the Incremental Smoothing And Mapping using the Bayes
tree (ISAM2) method (Kaess et al., 2012). The study by
Shan et al. (2020) uses the ISAM2 framework for pose
estimation and SLAM in indoor and outdoor scenarios.
For the matching of the LiDAR scans, the study uses
edge and corner features that are not necessarily well
defined in the environment of concern in our study. The
normal distribution transform (NDT) (Magnusson et al.,
2007; Biber and Strasser, 2003) is used for scan matching
in our study. Before the NDT step however, the point
cloud is downsampled using the tops of the young trees as
features. This guarantees that the most important shapes
in the environment are preserved while the point cloud is
downsampled. Our study uses the ISAM2 algorithm that
fuses the reading from an IMU, the LiDAR odometry,
and optionally GNSS data when it is available. The scan
matching is based on the concept of keyframes and local
map used in several previous studies. In our study, the
keyframes are used to build a local map. However, the
pose is estimated at each scan in real-time, not only at the
keyframe poses.

The contribution of this study is three-fold. Firstly, al-
though there exist previous studies for UAV state estima-
tion in forest environments, the number of these studies is
relatively smaller than studies for state estimation of UAV
in other environments such as indoors and underground
mining. Our study therefore contributes to the evaluation
of state estimation techniques of UAV in forest environ-
ments. Secondly, by relying on the young tree tops and
their surrounding points, the approach is able to down-
sample the point cloud without demanding computation
while preserving important shape features. Thirdly, in
our study, the NDT scan matching is used and the state
estimation algorithm is not based on the assumption of
the existence of tree trunks. The proposed method can
therefore be used in young forest where tree trunks cannot
be differentiated in a LiDAR point cloud data. In fact,
the propose solution can be used in any environment were
keypoints can be detected and the surrounding points of
the keypoints represent some shapes. With the choice of
the components of our solution, a real-time estimate is
achieved without compromising its accuracy.

The remainder of this paper is organized as follows: Section
2 describes the methods, in section 3 the experiment and

Fig. 1. Overall Pose Estimation Process. The mandatory
measurements are the data from the IMU the LiDAR.

the results are presented, and finally a conclusion is drawn
in Section 4.

2. METHODS

This section introduces the proposed approach which is
based on the notion of factor graph. A factor graph, is a
bipartite graph consisting of factors connected to variables.
The variables represent the unknown UAV state in this
study. The factors represent probabilistic constraints on
the variables, derived from measurements or prior knowl-
edge (Dellaert, 2012). The main factors used in this study
are the LiDAR odometry, and the IMU preintegration
measurements. The GNSS data is also used as a factor
when it is available. Additionally, a loop closure measure-
ment is used when available to correct large drift. The
LiDAR sensor provides a sparse point cloud data at a
frequency of about 10Hz. This data is processed in real-
time by first downsampling it around feature points. The
processed cloud is used to compute the odometry with
respect to a local map. The obtained odometry is fused
with printegrated IMU measurement in a factor graph.
Loop closure is monitored and added to the factor graph
to allow for drift correction. The estimated state of the
vehicle is composed of the attitude of the vehicle repre-
sented by a rotation matrix RBW ∈ SO(3), the position
vector pW , the velocity vector vW , and the bias of the
accelerometer and the gyroscope. The attitude represented
by the rotation matrix is the attitude of the body frame of
the vehicle with respect to the world frame which in our
case is a local North-East-Down (NED) centered at the
initial position of the UAV. The position and velocity are
expressed in the local world frame. The overall process of
estimating the state is shown in Fig. 1.

2.1 Point Cloud processing

When using a LiDAR sensor for pose estimation, the
sensor collects point cloud data at regular intervals of
time. These point clouds can be large and the real-time
processing is an issue. In order to reduce the number
of points in a single scan, features can be detected and
used for subsequent steps or the point cloud can be
down sampled using methods like voxel grid downsampling
(Shan et al., 2020; Cui et al., 2014; Chiella et al., 2019).
In the present study, when a scan is received, the tops
of the young trees are detected as features using a local
maximum filter in the vertical z direction and they are kept
as the downsampled point cloud. To this downsampled
point cloud are added the neighbouring points of the
detected young tree tops. The use of these neighbouring
points has two purposes. The first purpose is to use them
in order to remove detected local maximum points that
may not be tree tops. The second purpose is to enrich the
downsampled point cloud. Using the neighbouring points
and eigen analysis of the scatter matrix in Eqs. 1, the
local maximum points that may not be young tree tops are
removed by only keeping local maximum points that have
large variations in the principal directions. This approach
is done by keeping only points for which the smallest eigen
value of Σ(p) is larger than a chosen threshold. This is
inspired from the study by Zhong (2009) for the detection
of intrinsic shape signatures (ISS) keypoints in point cloud
data. But contrary to the study by Zhong (2009), we keep
points with a similar spread along the principal directions.

Σ(p) =
1

N

∑
q∈N (p)

(q − µp)(q − µp)
T (1)

In the Eqs. 1, p is a detected tree top; N (p) is the set
of neighbouring points of p; N is the number of points in
N (p); and µp is the mean of the points in N (p).

Following the preprocessing step, the resulting downsam-
pled point cloud, despite having fewer points, will still
keep important shapes information of the environment.
Another advantage is that these young tree tops and their
surrounding points can be used both as landmarks and as
potential obstacles in our subsequent research studies.

2.2 Scan Matching and LiDAR Odometry

A local map is used for computing the odometry of the
current LiDAR scan. The local map is updated by adding
and removing keyframes from it so that it is always
composed of a fixed number of keyframes. A current scan
is selected as a keyframe when the drone has traveled
a given distance or turned to some heading value and
when the scan matching of that scan with the local map
has a fitness score lower than a certain value. A traveled
distance is computed by integrating the distances between
consecutive scans on the trajectory. A scan selected as a
keyframe is added to the local map using a voxel filter.
In this study, unlike others studies, the keyframes are
only used for updating the local map and the pose of
the UAV is computed at every scan in real-time. This is
important because the autonomous flight in a young forest
environment needs accurate pose availability at medium

to high frequency for obstacle avoidance. This is also
important because a relatively cheap IMU is used and
cannot be relied upon for a long period prediction. Using
the local map, the odometry of the current LiDAR scan is
computed using the normal distribution transform (NDT)
method. The scan is downsampled during the processing
step so as to maintain only important shapes information.
This makes the use of NDT in a real-time fashion possible
and results in a good odometry estimation. The NDT scan
matching is initialized using the previous pose estimation
thereby improving its convergence. The NDT method is
used in this study in order to avoid a costly feature
matching process. To further boost the speed of the scan
matching process, parallel processing based on the work
by (Koide et al., 2019) is used.

2.3 IMU Pre-integration

The IMU sensor measures the linear acceleration and
the angular velocity of the vehicle in the body frame of
the sensor which is taken to be also the vehicle body
frame. The measurements are corrupted with additive
noise considered to be Gaussian and a slowly varying
bias. They are modeled following the Eqs. 2a, 2b. In these
equations, aBt and wB

t are respectively the acceleration and
angular velocity of the vehicle measured by the IMU in the
body frame; aWt is the true acceleration expressed in the
world frame; gW is the acceleration of gravity expressed
in the world frame; RBW is the rotation matrix from the
world frame to the body frame and is equal to the inverse
of the rotation matrix representing the attitude of the
vehicle in the world frame; wt is the true angular velocity
expressed in the body frame; bat and bgt are respectively the
accelerometer bias and the gyroscope bias; na

t and ng
t are

white noise affecting, respectively the measurements from
the accelerometer and the gyroscope.

aBt = RBW (aWt − gW ) + bat + na
t (2a)

ωB
t = ωt + bgt + ng

t (2b)

Between two scan readings, several dozens of IMU mea-
surements are acquired. These measurements between two
LiDAR scans can be integrated using the notion of prein-
tegration. We refer to the two consecutive scans as the
previous scan si and the current scan sj . In the preintegra-
tion theory, the integration of IMU measurement is done
in the local frame of the scan si. This is done by using the
relationship shown in Eqs. 3. Using these relationships,
local constraints between the two LiDAR scan poses is
derived. These constraints represented by Eqs. 4 are indeed
expressed in the local frame of the scan si (Forster et al.,
2016). The expressions in Eqs. 4 have complex dependen-
cies on the gyroscope and accelerometer noises. The study
in (Forster et al., 2016) developed a theory to deal with
the noise terms.

Rj = Ri

j−1∏
k=i

Exp((ωk − bgk − ngd
k )∆t)

vj = vi + g∆tij +

j−1∑
k=i

Rk(ak − bak − nad
k )∆t (3)

pj = pi +

j−1∑
k=i

[vk∆t+
1

2
g∆t2 +

1

2
Rk(ak − bak − nad

k )∆t2]
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2.1 Point Cloud processing

When using a LiDAR sensor for pose estimation, the
sensor collects point cloud data at regular intervals of
time. These point clouds can be large and the real-time
processing is an issue. In order to reduce the number
of points in a single scan, features can be detected and
used for subsequent steps or the point cloud can be
down sampled using methods like voxel grid downsampling
(Shan et al., 2020; Cui et al., 2014; Chiella et al., 2019).
In the present study, when a scan is received, the tops
of the young trees are detected as features using a local
maximum filter in the vertical z direction and they are kept
as the downsampled point cloud. To this downsampled
point cloud are added the neighbouring points of the
detected young tree tops. The use of these neighbouring
points has two purposes. The first purpose is to use them
in order to remove detected local maximum points that
may not be tree tops. The second purpose is to enrich the
downsampled point cloud. Using the neighbouring points
and eigen analysis of the scatter matrix in Eqs. 1, the
local maximum points that may not be young tree tops are
removed by only keeping local maximum points that have
large variations in the principal directions. This approach
is done by keeping only points for which the smallest eigen
value of Σ(p) is larger than a chosen threshold. This is
inspired from the study by Zhong (2009) for the detection
of intrinsic shape signatures (ISS) keypoints in point cloud
data. But contrary to the study by Zhong (2009), we keep
points with a similar spread along the principal directions.

Σ(p) =
1

N

∑
q∈N (p)

(q − µp)(q − µp)
T (1)

In the Eqs. 1, p is a detected tree top; N (p) is the set
of neighbouring points of p; N is the number of points in
N (p); and µp is the mean of the points in N (p).

Following the preprocessing step, the resulting downsam-
pled point cloud, despite having fewer points, will still
keep important shapes information of the environment.
Another advantage is that these young tree tops and their
surrounding points can be used both as landmarks and as
potential obstacles in our subsequent research studies.

2.2 Scan Matching and LiDAR Odometry

A local map is used for computing the odometry of the
current LiDAR scan. The local map is updated by adding
and removing keyframes from it so that it is always
composed of a fixed number of keyframes. A current scan
is selected as a keyframe when the drone has traveled
a given distance or turned to some heading value and
when the scan matching of that scan with the local map
has a fitness score lower than a certain value. A traveled
distance is computed by integrating the distances between
consecutive scans on the trajectory. A scan selected as a
keyframe is added to the local map using a voxel filter.
In this study, unlike others studies, the keyframes are
only used for updating the local map and the pose of
the UAV is computed at every scan in real-time. This is
important because the autonomous flight in a young forest
environment needs accurate pose availability at medium

to high frequency for obstacle avoidance. This is also
important because a relatively cheap IMU is used and
cannot be relied upon for a long period prediction. Using
the local map, the odometry of the current LiDAR scan is
computed using the normal distribution transform (NDT)
method. The scan is downsampled during the processing
step so as to maintain only important shapes information.
This makes the use of NDT in a real-time fashion possible
and results in a good odometry estimation. The NDT scan
matching is initialized using the previous pose estimation
thereby improving its convergence. The NDT method is
used in this study in order to avoid a costly feature
matching process. To further boost the speed of the scan
matching process, parallel processing based on the work
by (Koide et al., 2019) is used.

2.3 IMU Pre-integration

The IMU sensor measures the linear acceleration and
the angular velocity of the vehicle in the body frame of
the sensor which is taken to be also the vehicle body
frame. The measurements are corrupted with additive
noise considered to be Gaussian and a slowly varying
bias. They are modeled following the Eqs. 2a, 2b. In these
equations, aBt and wB

t are respectively the acceleration and
angular velocity of the vehicle measured by the IMU in the
body frame; aWt is the true acceleration expressed in the
world frame; gW is the acceleration of gravity expressed
in the world frame; RBW is the rotation matrix from the
world frame to the body frame and is equal to the inverse
of the rotation matrix representing the attitude of the
vehicle in the world frame; wt is the true angular velocity
expressed in the body frame; bat and bgt are respectively the
accelerometer bias and the gyroscope bias; na

t and ng
t are

white noise affecting, respectively the measurements from
the accelerometer and the gyroscope.

aBt = RBW (aWt − gW ) + bat + na
t (2a)

ωB
t = ωt + bgt + ng

t (2b)

Between two scan readings, several dozens of IMU mea-
surements are acquired. These measurements between two
LiDAR scans can be integrated using the notion of prein-
tegration. We refer to the two consecutive scans as the
previous scan si and the current scan sj . In the preintegra-
tion theory, the integration of IMU measurement is done
in the local frame of the scan si. This is done by using the
relationship shown in Eqs. 3. Using these relationships,
local constraints between the two LiDAR scan poses is
derived. These constraints represented by Eqs. 4 are indeed
expressed in the local frame of the scan si (Forster et al.,
2016). The expressions in Eqs. 4 have complex dependen-
cies on the gyroscope and accelerometer noises. The study
in (Forster et al., 2016) developed a theory to deal with
the noise terms.

Rj = Ri

j−1∏
k=i

Exp((ωk − bgk − ngd
k )∆t)

vj = vi + g∆tij +

j−1∑
k=i

Rk(ak − bak − nad
k )∆t (3)

pj = pi +

j−1∑
k=i

[vk∆t+
1

2
g∆t2 +

1

2
Rk(ak − bak − nad

k )∆t2]
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In Eqs. 3 and 4, Ri, vi, and pi are respectively the
rotation matrix representing the attitude of the vehicle,
the velocity, and the position at the time when the scan si
is measured. Rj , vj , and pj are the same quantities at the

time when the scan sj is measured. ∆tij =
∑j−1

k=i ∆t where
∆t is the time difference between two IMU measurements;

ngd
k and nad

k are the discrete version of the gyroscope
noise and the accelerometer noise, respectively. The noise
parameters (i.e. the variances) are computed using the
Allan Variance method.

∆Rij = RT
i Rj

∆vij = RT
i (vj − vi − g∆tij) (4)

∆pij = RT
i (pj − pi − vi∆tij −

1

2
g∆t2ij)

2.4 Factor graph and Optimization

In this study, the IMU preintegration measurements and
the LiDAR odometry are used as factors in the factor
graph. It is common to only add factors when a new
keyframe is detected to avoid a large factor graph. The
IMU sensor can then be used for high rate prediction.
This, however, requires an accurate IMU sensor especially
if the keyframes are distant in time from each other. In
this study, a factor is added to the factor graph whenever
a new LiDAR scan is available. This allows to have a
high rate estimate of the pose of the UAV. The ISAM2
algorithm is used for the graph optimization. It uses the
Bayes tree data structure to only update a small part of
the graph that is affected by new measurements. Because
only the state of the vehicle is considered as unknowns in
the factor graph without landmarks, the ISAM2 algorithm
only update the solutions to the last part of the factor
graph that is affected by the new measurements. To
update the local map however, we proceed to a full batch
optimization that is done at lower frequency. If several
loop closures are used, the computation cost can become
excessive because several states might be affected by the
loop closure measurements. In this study, when the current
state is close to a visited portion of the trajectory, a loop
closure is added only if that visited portion is at some
chosen number of keyframes away from the current state.
This avoids adding small loops or a large number of loop
closures. The loop closure is added to the factor graph as
LiDAR odometry measurement. Because the loop closure
does not need to be detected in real time, it is computed
using two successive scan matching methods. First an
NDT scan matching is used to provide a first estimate that
is used in the iterative closest point (ICP) algorithm for
refinement. This non real-time loop closure update is still
important for future states because it affects the local map
which is used to compute the lidar odometry measurement.
The scan matching measurement for the pose of a given
scan can result in low fitness score, however, the matching
might still be wrong. To detect those erroneous matching,
the resulting velocity estimate from the optimization is
compared to the velocity of the previous pose. If the
difference is higher than a given threshold, the estimate
is replaced by IMU preintegration prediction and the scan
matching measurement is removed from the graph.

Fig. 2. The unmanned aerial vehicle platform with the 3D
LiDAR and the external GNSS module

3. EXPERIMENT AND RESULTS

3.1 Experiment

The goal of the proposed method is to accurately deter-
mine the state of an Unmanned Aerial Vehicle (UAV) for a
future development of autonomous navigation solution in
seedling pine forest environment. In this study, the UAV
is flown in a young pine forest located at Lohja which is a
town and municipality in the southern region of Finland.
Given that the young forest is bordered by big trees and
few big trees can also be found at some places, the GNSS
signal can suffer from temporarily signal degradation or
signal loss that can lead to a crash of the vehicle. It is
therefore necessary to add a new measurement for the state
estimation of the UAV.
The DJI Matrice 100 UAV shown in Fig. 2. It is equipped
with the Velodyne VLP16 light ”PUCK” LiDAR, which
is a 3D LiDAR with 360◦ horizontal field of view and 30◦

(−15◦ to 15◦) vertical field of view. The GARMIN GPS
18x 5Hz is used as an external GNSS receiver instead of the
proprietary GNSS receiver from DJI. This choice is moti-
vated by the fact that in addition to the position and the
velocity information, the horizontal dilution of precision
(HDOP) and the vertical dilution of precision (VDOP)
can be read from this external GNSS receiver. These values
can significantly change in a forest environment. They are
used in this study to approximate the position covariance
of the GNSS receiver.
An external and relatively cheap Epson IMU is used to
provide angular rate and acceleration data at about 200Hz.
The latter could also be read from the flight controller unit
(FCU). But reading these data at sufficiently high rate
can overwhelm the FCU and have a negative impact on
its primary function, which is to stabilize and control the
motion of the vehicle.
A Raspberry Pi 4 Model B board is used as a companion
computer to log data from the FCU, and the different ex-
ternal sensors. The Robot Operating System (ROS) is used
for the communication between the different hardware,
sensors and the software subsystems during the data col-
lection. The software for the state estimation is developed
using C++ language and the graph-based optimization
algorithm is the ISAM2 algorithm. The GTSAM library is
used in this study (Dellaert, 2012). The developed software
is currently run on a laptop computer using only 3 CPU
cores.

Fig. 3. A sample map of the environment obtained during the pose estimation along the Trajectory 1

3.2 Results

The proposed solution is tested on several trajectories
each being a data recorded during a single flight of the
UAV. We have not compared the proposed solution to
the state of the art solutions because the available open
source implementations that have been tried out fail to
achieve coherent results and needed extensive parameters
adjustment which is out of the scope of this work. We
evaluate the proposed solution without the use of GNSS
sensor on the entire trajectory. This is important to show
how well the solution can cope with complete lost of GNSS
signal. Fig. 4 and Fig. 5 show sample estimated trajectories
by our solution (LiDAR+IMU) and a reference trajectory
generated using a low cost RTK system. Figs. 6 and 7
show the corresponding velocity estimates. The estimated
trajectory is the set of real-time estimated positions. The
estimated error expressed as root mean square errors
(RMSE) for the trajectories and the velocities are pre-
sented in table 1. The trajectory error is expressed using
the absolute position error (APE) and the relative position
error (RPE) which measure, respectively, the absolute and
relative consistency of the estimated trajectory. The APE
and RPE have been computed using the EVO toolbox
Grupp (2017). The solution was also tested by injecting
the GNSS data at the start of the trajectory and manually
interrupting the GNSS signal during some time window
to simulate the loss of GNSS signal. But the result did
not show any significant difference with the ones presented
above because the LiDAR odometry is already providing
a better estimate and is not suffering from large drift.
Therefore that result is not shown here. To appreciate the
consistency of the position estimate, a sample of the local
maps used during the state estimation are recorded and
plotted. Fig. 3 shows a sample map of the environment.
This map is only a concatenation of several local maps,
it can therefore be considered as the real-time estimate of
the map of the environment and not a full batch optimized
map.

4. CONCLUSION AND FUTURE WORK

In this study, a solution for an unmanned aerial vehicle
state estimation is proposed. This solution will be used in
later studies for developing autonomous navigation solu-

Table 1. RMSE errors of trajectories and ve-
locities

Trajectories Trajectory 1 Trajectory 2

position error (APE) 0.2471 0.3123

position error (RPE) 0.1521 0.2646

X-axis velocity (m/s) 0.0945 0.1310

Y-axis velocity (m/s) 0.0794 0.1180

Z-axis velocity (m/s) 0.0706 0.0556

Fig. 4. The estimated Trajectory 1

Fig. 5. The estimated Trajectory 2
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Fig. 3. A sample map of the environment obtained during the pose estimation along the Trajectory 1

3.2 Results

The proposed solution is tested on several trajectories
each being a data recorded during a single flight of the
UAV. We have not compared the proposed solution to
the state of the art solutions because the available open
source implementations that have been tried out fail to
achieve coherent results and needed extensive parameters
adjustment which is out of the scope of this work. We
evaluate the proposed solution without the use of GNSS
sensor on the entire trajectory. This is important to show
how well the solution can cope with complete lost of GNSS
signal. Fig. 4 and Fig. 5 show sample estimated trajectories
by our solution (LiDAR+IMU) and a reference trajectory
generated using a low cost RTK system. Figs. 6 and 7
show the corresponding velocity estimates. The estimated
trajectory is the set of real-time estimated positions. The
estimated error expressed as root mean square errors
(RMSE) for the trajectories and the velocities are pre-
sented in table 1. The trajectory error is expressed using
the absolute position error (APE) and the relative position
error (RPE) which measure, respectively, the absolute and
relative consistency of the estimated trajectory. The APE
and RPE have been computed using the EVO toolbox
Grupp (2017). The solution was also tested by injecting
the GNSS data at the start of the trajectory and manually
interrupting the GNSS signal during some time window
to simulate the loss of GNSS signal. But the result did
not show any significant difference with the ones presented
above because the LiDAR odometry is already providing
a better estimate and is not suffering from large drift.
Therefore that result is not shown here. To appreciate the
consistency of the position estimate, a sample of the local
maps used during the state estimation are recorded and
plotted. Fig. 3 shows a sample map of the environment.
This map is only a concatenation of several local maps,
it can therefore be considered as the real-time estimate of
the map of the environment and not a full batch optimized
map.

4. CONCLUSION AND FUTURE WORK

In this study, a solution for an unmanned aerial vehicle
state estimation is proposed. This solution will be used in
later studies for developing autonomous navigation solu-

Table 1. RMSE errors of trajectories and ve-
locities

Trajectories Trajectory 1 Trajectory 2

position error (APE) 0.2471 0.3123

position error (RPE) 0.1521 0.2646

X-axis velocity (m/s) 0.0945 0.1310

Y-axis velocity (m/s) 0.0794 0.1180

Z-axis velocity (m/s) 0.0706 0.0556

Fig. 4. The estimated Trajectory 1

Fig. 5. The estimated Trajectory 2
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Fig. 6. Estimated velocity in x, y , and z directions for
Trajectory 1. The reference velocity is the RTK GNSS
reported velocity.

Fig. 7. Estimated velocity in x, y , and z directions for
Trajectory 2. The reference velocity is the RTK GNSS
reported velocity.

tion for precise and selective spraying of non-toxic moose
repellent chemical in seedling pine forest environment.
The proposed solution uses the notion of factor graph to
fuse data from an IMU sensor, a sparse LiDAR sensor,
and optionally a GNSS sensor. In this environment, tree
trunks are not available to be used as features for the scan
matching. The NDT scan matching is therefore used on
point clouds which have been downsample using selected
features of the environment. The proposed solution can
effectively estimate the state of the vehicle including the
trajectory and the velocity. The estimated trajectory has
a good local consistency which is vital for control and ob-
stacle avoidance. The global consistency of the estimated
trajectory also shows an encouraging result which is as
good as a typical GNSS-based position estimate. It has
to be noted that the test flights that have been done
are relatively short due to operational constraints and
the hardware energy autonomy constraint. Longer flight
tests will be performed to fully appreciate the proposed
solution.
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