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A B S T R A C T

This paper presents the finite element level validation of the anisotropic Jiles–Atherton hysteresis model.
Numerical analysis of a round rotational single sheet tester is performed using the 2D finite element method.
Anisotropic extension of the Jiles–Atherton hysteresis model is coupled with the 2D finite element method.
The finite element simulations are performed for the cases when the magnetic field alternates and rotates in
the lamination plane. The simulated results for alternating and rotational flux density excitations agree with
the measured data. The measured data used in this paper corresponds to the M400-50A nonoriented silicon
steel.

1. Introduction

Nonoriented (NO) silicon steels are suitable for electromagnetic
applications where the core experience directionally varying magnetic
fields, for example, the stator yoke of a medium-sized induction mo-
tor [1]. The magnetic field can alternate and rotate in the stator
core, depending on the location. A phenomenological hysteresis model
should predict the magnetic fields for different types of excitations:
alternating, rotating, and elliptical. The model should also describe
magnetic responses under external stress and thermal loadings [2–4].
However, a physics-based hysteresis model of such caliber is unavail-
able [5].

The NO silicon steel possesses a significant level of magnetic
anisotropy [6–9]. Several models of magnetic anisotropy have been
proposed for NO silicon steel. In [10], a method based on magnetic
energy is proposed to account for magnetic anisotropy observed in
the NO silicon steel. The model expresses energy with a Gumbel-type
distribution, whose parameters are extracted utilizing the anhysteretic
data. The model is suitable for the finite element method (FEM).
However, the results they predict disagree with the measurement data.
Instead of using the magnetic energy, [11] employs bicubic splines to
represent the anhysteretic characteristics identified from the rotational
measurements. The method based on the surface bicubic spline is
easier to integrate with the FEM and it is more accurate than the
energy-density method. Contrarily, [12] expresses magnetic energy
using the Fourier series. The coefficients of the Fourier series-based
model are identified using anhysteretic data in several measurement
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directions. [13] shows that the Fourier series-based anisotropic model is
well adapted to the FEM by simulating the magnetic field in an interior
permanent magnet machine composed of NO silicon steel.

Alternatively, [14] has modified Mayergoyz’s approach to model
anisotropy observed in a NO silicon steel sheet. The modification adds
the Everett data from the alternating measurements in several direc-
tions. The anisotropic generalization of Mayergoyz’s model controls
the amplitude of the input projections, introducing anisotropy in the
predicted results. [15,16] extend vector version of the Jiles–Atherton
(JA) model to include magnetic anisotropy. Their extension considers
measurement data in only two directions—the rolling and transverse.
The anisotropic extension of the JA model estimates the field strength
loci based on the parameters from rolling direction (RD) and trans-
verse direction (TD) in the intermediate directions. Likewise, [17,18]
implement anisotropy in the energy-based (EB) hysteresis model to
predict variations in alternating and rotational field strength in a NO
silicon steel sheet. The anisotropic EB model utilizes parameters iden-
tified from the alternating measurements in the RD and TD. Moreover,
the pinning field probability density is represented by a univariate
Gaussian-type distribution, whose parameters are estimated by fitting
the model to the measurement data [17].

Likewise, [19] presents an anisotropic play-type model similar
to [17]’s. The model considers parameters from the alternating mea-
surements in all principal axes: the RD, TD, and the silicon steel
lamination’s thickness. The anisotropic play-type model shows a rea-
sonably good fit for the magnetic field alternating in the RD, TD,

https://doi.org/10.1016/j.jmmm.2022.169978
Received 24 May 2022; Received in revised form 4 July 2022; Accepted 16 September 2022

http://www.elsevier.com/locate/jmmm
http://www.elsevier.com/locate/jmmm
mailto:brijesh.upadhaya@gmail.com
https://doi.org/10.1016/j.jmmm.2022.169978
https://doi.org/10.1016/j.jmmm.2022.169978
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmmm.2022.169978&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Journal of Magnetism and Magnetic Materials 564 (2022) 169978

2

B. Upadhaya et al.

Table 1
Magnetic measurements for the parameter identification and model validation.

Measurement type Parameter identification Model validation

RD
√ √

ALT45 –
√

TD
√ √

ROT –
√

and 45◦ directions. Moreover, [20] proposes an anisotropic play-type
model. The model introduces anisotropy in the isotropic play-type
model with the parameters identified from several unidirectional al-
ternating measurements. The anisotropic play-type model yields a
reasonably good fit with the measured data for NO silicon steel.

A physics-based multi-scale model (MSM) can be employed to pre-
dict the anisotropic behavior in a NO silicon steel lamination [21].
However, the MSM uses texture data, requiring complex measurements.
Additionally, the MSM is a large minimization problem and computa-
tionally heavy. For the FEA, a simplified MSM is considered in [22].
The anhysteretic magnetization identified from the simplified MSM is
fed to the hysteresis models—such as JA, EB, and Hauser [23,24].
In [22], the simplified MSM-JA model is coupled with the FEM to study
the effect of stress-induced anisotropy in a switched reluctance motor.
Moreover, [25] couples the MSM with the EB model to account for the
anisotropy observed in grain-oriented silicon steel. Nevertheless, the
physics-based MSM-EB or MSM-JA model could be a good choice for
predicting magnetic behavior in the NO silicon steel [22,25].

Characterization of NO silicon steel is an essential part of the
electrical machine design process [26]. An Epstein frame is a standard-
ized device for measuring alternating BH characteristics. However, the
Epstein frame is limited to alternating fields. A rotational single sheet
tester is employed to measure rotational fields because it allows mea-
surements of vector components using the field sensing methods [27].
A round rotational single sheet tester (RRSST) is a popular choice as it
ensures better rotation of the flux density, utilizing a larger measuring
region. Additionally, the RRSST allows measurement of alternating and
rotational magnetic flux density—magnitudes as high as 2 T [28,29].

This paper presents the finite element analysis (FEA) of an RRSST
sample—a NO silicon steel disk of grade M400–50 A. The FEA considers
anisotropic and isotropic Jiles–Atherton (JA) hysteresis models [30].
The following four cases are considered for the FEA: flux density
alternating in the RD, alternating in the 45◦ direction (ALT45), al-
ternating in the TD, and rotating in the counter clock-wise direction
(ROT). The anisotropic JA model (AJAM) utilizes the anhysteretic
magnetization from alternating BH measurements in seven directions:
0◦, 15◦, 30◦, … , 90◦ [30]. Moreover, the JA model’s parameters vary as
a function of the magnitude and polar direction of the flux density [31].
The unidirectional alternating BH measurements are used to estimate
the JA model’s parameters. In contrast, rotational measurements are
used for validation (see Table 1).

2. Methodology

2.1. Anisotropic JA model

This paper considers AJAM explained in [30]—an improved ex-
tension of Bergqvist’s vector JA model [32]. The model equations are
re-summarized in the following:

Differential susceptibility
Bergqvist’s vector JA model defines differential susceptibility [15]:

𝜕𝑴
𝜕𝑯

= [𝐈 − (𝝌𝛼 + 𝑐𝝃𝛼)]−1 [𝝌 + 𝑐𝝃] , (1)

where 𝐈 is the identity matrix, 𝝃 and 𝝌 are the differential anhysteretic
and irreversible susceptibilities, 𝛼 ≥ 0 is a parameter that represents in-
terdomain coupling, and 𝑐 ∈ [0, 1] is another parameter that quantifies

the reversible processes associated with the bowing of domain walls
(𝑐 = 1 corresponds to a completely reversible process) [33,34]. The
differential susceptibility in (1) is expressed using an auxiliary vector
𝝌 f =

1
𝑘
(

𝑴an −𝑴
)

as follows:

𝝌 =

⎧

⎪

⎨

⎪

⎩

𝝌 f𝝌𝚃
f

‖𝝌 f‖
if (𝑴an −𝑴) ⋅ 𝜕𝑯eff > 0,

𝟎 otherwise,
(2)

where 𝑘 ≥ 0 is a parameter associated with the pinning of domain walls,
𝑴an represents the anhysteretic magnetization, and 𝑯eff = 𝑯 + 𝛼𝑴 is
the effective field strength. The condition in (2) reflects the assumption
that irreversible changes occur only when the field 𝑯eff is incremented
in the direction of

(

𝑴an −𝑴
)

.

Differential reluctivity
The FEM based on magnetic vector potential formulation uses dif-

ferential reluctivity [35]:

𝜕𝑯
𝜕𝑩

=
( 𝜕𝑩
𝜕𝑯

)−1
= 1

𝜇0

(

𝐈 + 𝜕𝑴
𝜕𝑯

)−1
, (3)

where 𝜇0 is the permeability of the free space, 𝜕𝑩
𝜕𝑯

represents the dif-

ferential permeability, and 𝜕𝑴
𝜕𝑯

is the differential susceptibility given
by (1).

Anhysteretic magnetization
The anhysteretic magnetization for the isotropic case is usually

expressed as [35]

𝑴an = 𝑀an
𝑯eff
𝐻eff

, (4)

where 𝐻eff = ‖𝑯eff‖ is the norm of effective field, and 𝑀an = 𝑓
(

𝐻eff
)

describes the anhysteretic curve identified from the unidirectional alter-
nating BH loop. The differential anhysteretic susceptibility is expressed
as

𝝃 =
𝑀an
𝐻eff

[

𝐈 −
𝑯eff𝑯𝚃

eff

𝐻2
eff

]

+
𝜕𝑀an
𝜕𝐻eff

𝑯eff𝑯𝚃
eff

𝐻2
eff

. (5)

In this paper, 𝑀an defined in (4) is identified by averaging the unidi-
rectional alternating BH characteristics measured in seven directions:
0◦, 15◦, 30◦, … , 90◦. Because the measurement is performed at an ex-
citation frequency of 50 Hz, the hysteretic field strength is extracted by
subtracting the eddy-current loss field from the measured field strength
𝑯meas:

𝑯 = 𝑯meas − 𝜎 𝑑
2

12
𝜕𝑩
𝜕𝑡

, (6)

where 𝜎 and 𝑑 represent the electrical conductivity and thickness of the
NO silicon steel sample. The derivative on the right-hand side of (6)
is evaluated using the central difference method. After that, the phase
shift between 𝑯 and 𝑩 is neglected, meaning 𝑯 and 𝑩 are projected
in the reference direction, which is the polar direction of vector 𝑩.
This process is performed for all the measurement directions. The field
strength is averaged because the measurement is B-controlled [31]:

𝐻avg,𝑖 =
1
7

7
∑

𝑗=1
𝐻𝜃𝑗 ,𝑖, (7)

where 𝜃𝑗 = (𝑗 − 1)15◦ is the polar direction of 𝑩, 𝑖 = 1, 2, 3,… , 𝑁
represents the data point index, and 𝑁 is the total number of data
points in one excitation cycle. Thus, 𝑀an is obtained by averaging the
ascending and descending branches of the major 𝐵(𝐻avg)-loop [36].

The anhysteretic magnetization follows a more generic expression
for the anisotropic case:

𝑴an = 𝑀an,x(𝐻eff , 𝜗)𝒆x +𝑀an,y(𝐻eff , 𝜗)𝒆y , (8)
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where 𝜗 is the polar angle of 𝑯eff . The components of the anhys-
teretic magnetization (8) could be modeled using the multiscale ap-
proach [21]. However, the multiscale approach is a large minimization
problem and computationally heavy. Analytical representation of the
anhysteretic characteristic is possible with the help of transcendental
functions [25]. Nevertheless, to ease the computational burden, this
paper applies bicubic splines [30]. Explicitly, in each rectangle k,

𝑀k
an,x(𝐻eff , 𝜗) =

[

1 𝐻eff 𝐻2
eff 𝐻3

eff
]

𝜷k
x
[

1 𝜗 𝜗2 𝜗3
]𝚃 , (9)

𝑀k
an,y(𝐻eff , 𝜗) =

[

1 𝐻eff 𝐻2
eff 𝐻3

eff
]

𝜷k
y
[

1 𝜗 𝜗2 𝜗3
]𝚃 , (10)

where 𝜷k
x and 𝜷k

y are 4 × 4 coefficient matrices whose elements are
identified from the anhysteretic M(H) characteristics (see [30, Fig. 2]).
The source code available in [37] is used to obtain the elements of 𝜷k

x
and 𝜷k

y . The elements of 𝝃 are evaluated from (9) and (10) using the
following polar-to-Cartesian transformation:

𝝃 =

⎡

⎢

⎢

⎢

⎢

⎣

𝜕𝑀an,x

𝜕𝐻eff ,x

𝜕𝑀an,x

𝜕𝐻eff ,y
𝜕𝑀an,y

𝜕𝐻eff ,x

𝜕𝑀an,y

𝜕𝐻eff ,y

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

𝜕𝑀an,x

𝜕𝐻eff

𝜕𝑀an,x

𝜕𝜗
𝜕𝑀an,y

𝜕𝐻eff

𝜕𝑀an,y

𝜕𝜗

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎣

cos 𝜗 sin 𝜗

− sin 𝜗
𝐻eff

cos 𝜗
𝐻eff

⎤

⎥

⎥

⎦

. (11)

Directional variation of JA parameters
The following equations describe the directional variations of the

JA model’s parameters [31]:

𝑋JA(𝐵, 𝜃) =
𝑃x(𝐵)𝑃y(𝐵)

√

(

𝑃x(𝐵) sin 𝜃
)2 +

(

𝑃y(𝐵) cos 𝜃
)2

, (12)

where 𝑋JA = {𝑘, 𝛼, 𝑐}, 𝑃x = {𝑘x, 𝛼x, 𝑐x}, 𝑃y = {𝑘y , 𝛼y , 𝑐y}, and 𝐵 and
𝜃 represent the norm and polar direction of 𝑩. The parameters are
identified from the unidirectional alternating BH measurements in only
two directions—the RD and TD. The parameters in the right hand side
of (12) are represented with a piece-wise linear polynomial along the
magnitude of the flux density (see [30, Fig. 5]).

2.2. Finite element modeling

This section considers a magnetostatic field problem in a domain
𝛺 ∈ R2. The domain is a collection of linear 𝛺L and nonlinear 𝛺N
subdomains: 𝛺 = 𝛺L +𝛺N. The spatial variation of the magnetic field
strength in 𝛺 is described by the following partial differential equation:

∇ ×𝑯 = 𝑱 s, (13)

where 𝑱 s = 𝐽 (𝑥, 𝑦)𝒆z is the source current density—usually imposed on
the subdomain 𝛺L. A hysteretic material law 𝑯 = ℋ (𝑩) links 𝑯 and 𝑩
in 𝛺N, whereas, in 𝛺L, a linear relationship 𝑯 = 𝜈0𝑩, where 𝜈0 = 1∕𝜇0,
exists between them.

For any continuous vector potential 𝑨 = 𝐴(𝑥, 𝑦)𝒆z, the flux density
𝑩 = ∇×𝑨, and 𝑨 satisfies the Coulomb gauge, ∇ ⋅𝑨 = 0. The Galerkin
method is employed to solve (13). The equation is multiplied by a
weight function: 𝝓 = 𝜙𝒆z, and integrated over the domain 𝛺, resulting
in [38]

(ℋ (∇ ×𝑨),∇ × 𝝓)𝛺N
+
(

𝜈0∇ ×𝑨,∇ × 𝝓
)

𝛺L
=
(

𝑱 s,𝝓
)

𝛺−⟨𝑯×𝒏,𝝓⟩𝛤 , (14)

where (𝒖, 𝒗)𝛺 and ⟨𝒖, 𝒗⟩𝛤 denote the integration ∫𝛺(𝒖 ⋅ 𝒗)d𝛺 and ∮𝛤 (𝒖 ⋅
𝒗)d𝛤 , and 𝒏 is the outward oriented unit vector normal to the boundary
𝛤 of 𝛺. For simplicity, the contour integral on the right hand side of
(14) is omitted. The boundary conditions will be discussed in a separate
section.

Solution of the nonlinear field equation by fixed point method
The following constitutive relation is used to solve (14) by the

fixed-point method [39,40]

ℋ (∇ ×𝑨) = 𝜈FP∇ ×𝑨 +𝑹, (15)

where 𝜈FP is a reluctivity like quantity, and 𝑹 is a magnetization like
quantity. Thus, using (3),

𝜈FP =
𝜕𝐻x
𝜕𝐵x

+
𝜕𝐻y

𝜕𝐵y
. (16)

Moreover, using (15) in (14) results in the linearized system:
(

𝜈FP∇ ×𝑨,∇ × 𝝓
)

𝛺N
+
(

𝜈0∇ ×𝑨,∇ × 𝝓
)

𝛺L
=
(

𝑱 s,𝝓
)

𝛺 − (𝑹,∇ × 𝝓)𝛺N
.

(17)

In the FEM, the approximation of the vector potential

𝑨 =
𝑁
∑

𝑖=1
𝑎𝑖𝜑𝑖(𝑥, 𝑦)𝒆z, (18)

where 𝑎𝑖 and 𝜑𝑖 are the nodal value and shape function associated
with node 𝑖 of the finite element (FE) mesh, and 𝑁 represents the total
number of nodes. Commonly, the shape functions connected to the free
nodes are used as the weight functions. This paper adopts the triangular
elements to discretize 𝛺, utilizing linear shape functions so that the
weight functions are linear basis functions [38].

Eq. (17) is expressed in the following form:
(

𝑲N +𝑲L
)

𝒂 = 𝑪𝐽 −𝑫𝑹, (19)

where 𝒂 = [𝑎1,… , 𝑎𝑁 ]𝚃 is the vector of nodal values,
[

𝑲N
]

𝑖,𝑗 =
(

𝜈FP∇𝜙𝑖,∇𝜙𝑗
)

and
[

𝑲L
]

𝑖,𝑗 =
(

𝜈0∇𝜙𝑖,∇𝜙𝑗
)

are the linear parts of the
stiffness matrix, [𝑪]𝑗 =

(

⋅, 𝜙𝑗
)

is a vector connecting the source current
density 𝑱 s, and [𝑫]𝑖,𝑗 =

(

[

𝜕y𝜙𝑖 − 𝜕x𝜙𝑗
]𝚃 , ⋅

)

matrix links the nonlinear
residual 𝑹 =

[

𝑅x 𝑅y
]𝚃.

More generally, (19) can be formally written as follows:

𝑺𝒂𝑛+1𝑘+1 = 𝒇 𝑛
𝑘+1, (20)

where 𝑺 = 𝑲N +𝑲L is the system matrix, which is usually sparse and
symmetric, and 𝒇 𝑛

𝑘+1 = 𝑪𝐽𝑘+1−𝑫𝑹𝑛
𝑘+1 is the load vector, subscripts 𝑘+1

and 𝑘 denote the current and previous time instant, and superscripts
𝑛+1 and 𝑛 denote the current and previous iterate. This paper uses the
sparse direct linear solver to solve the system of linear Eqs. (20) [41].
The nonlinear iterations in (20) are stopped if the 𝐿1 norm of the
change in solution ensures

|𝑎𝑛+1𝑘+1 − 𝑎𝑛𝑘+1| < 𝜖abs + 𝜖rel|𝑎
𝑛
𝑘+1| and 𝑛min < 𝑛 ≤ 𝑛max, (21)

where 𝜖abs and 𝜖rel represent the absolute and relative tolerances, and
𝑛min and 𝑛max denote the minimum and maximum nonlinear iterations.

Boundary condition
The following boundary condition is applied on the outer boundary

of the RRSST sample to set the magnetic flux density to alternate in any
arbitrary direction 𝜃:

𝐴b = �̂�b sin (𝜗 − 𝜃) sin(𝜔𝑡), (22)

where 𝐴b is the 𝑧-component of the vector potential on the outer
boundary 𝛤 , 𝐴b is the peak amplitude of the vector potential, 𝜗 is the
angular coordinate of the particular point on the boundary, 𝜔 = 2𝜋𝑓 is
the angular frequency, and 𝑓 is the frequency in cycles per second.

Moreover, the flux density rotates on the sample if the vector
potential satisfies the following condition [42]:

𝐴b = �̂�b sin (𝜗 − 𝜔𝑡) . (23)

The flux density’s amplitude �̂� is controlled by controlling the value of
𝐴b. Thus, using 𝐴b = 𝑟�̂�, where 𝑟 is the radius of the circular steel sheet,
in (22) and (23), respectively. Furthermore, considering the Dirichlet
boundary condition, (20) is expressed as follows:
[

𝑺hh 𝟎
𝟎 𝐈

]

[

𝒂𝑛+1h,𝑘+1
𝒂𝑛+1b,𝑘+1

]

= −
[

𝑺hh 𝑺hb
𝟎 𝟎

]

[

𝟎
𝒂𝑛+1b,𝑘+1

]

+

[

𝒇 𝑛
h,𝑘+1

𝒇 𝑛
b,𝑘+1

]

, (24)

where the additional subscripts h and b denote the free and fixed
boundary nodes.
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FE mesh of the RRSST
The layout of the RRSST is detailed in [30, Fig.4]. Fig. 1 is the

2D FE mesh of the circular steel sample. The mesh is generated using
the freely available meshing software Gmsh [43]. The mesh consists of
two material domains: air and silicon steel. The elements with yellow
edges represent the air domain, whereas those with red and blue edges
represent silicon steel. The elements with blue edges distinguish the
sensor region from the remaining core. The mesh consists of 29,682
elements, of which 144 are air elements, and the remaining 29,538
elements represent silicon steel core. There are 14,898 nodes, of which
112 belong to the outer boundary, and the remaining 14,786 are
internal free nodes.

Fig. 1. 2D FE mesh of the RRSST sample. The sensor region includes four holes that are
drilled to accommodate the B-coils. The radius of the circular steel sample 𝑟 = 39 mm,
and the hole 𝑟hole = 0.4 mm (see [30, Fig.4]). A zoomed section on the right hand side
depicts the triangular mesh inside the hole that is aligned in the RD.

Estimation of 𝑩 and 𝑯
The magnetic flux density in the sensor region (see Fig. 1) is

obtained by using the following expression:

𝑩 =
𝐴1 − 𝐴2

𝑙w
𝒆x +

𝐴3 − 𝐴4
𝑙w

𝒆y , (25)

where

�̄�𝑖 =
1
𝑆𝑖 ∫𝑆𝑖

𝐴d𝑆, 𝑖 = 1, 2, 3, 4,

denotes the average value of the 𝑧-component of the vector potential,
𝑆𝑖 is the cross-sectional area of the 𝑖th hole, and 𝑙w is center-to-center
distance between holes aligned in the RD or TD. Note that the holes
with index 𝑖 = 1 and 2 are aligned in the TD, and holes with index
𝑖 = 3 and 4 are aligned in the RD. Likewise, the components of the
magnetic field strength sensed by the H-coils, which is placed on the
surface of the sample, are considered to be the weighted average:

𝑯 =
(

1
𝑆 ∫𝑆

𝐻xd𝑆
)

𝒆x +
(

1
𝑆 ∫𝑆

𝐻yd𝑆
)

𝒆y , (26)

where 𝑆 is the total surface area of the sensor region excluding the
holes.

Moreover, after estimating 𝑩 and 𝑯 from (25) and (26), the hys-
teresis loss density is evaluated using the following integral [44]:

𝑤 = 1
𝑇 ∫

𝑇

0

(

𝑯 ⋅
𝜕𝑩
𝜕𝑡

)

d𝑡. (27)

The integral in the right hand side of (27) is numerically evaluated
using the trapezoidal rule.

Evaluation of JA parameters at Gauss integration points
The surface integral in the 2D FEM is obtained using the Gauss–

Legendre quadrature rule [38]. The surface integration is converted to
a weighted sum according to the quadrature rule. The parameters of
the JA model are evaluated from the flux densities at the two previous
steps at the integration point (IP):

𝑋JA,𝓁+1 = 𝑓
(

max{‖𝑩𝓁‖, ‖𝑩𝓁−1‖}, 𝜃𝑩𝓁

)

, (28)

where 𝑋JA = {𝑘, 𝑐, 𝛼}, and subscript 𝓁 denotes the time step. This paper
considers only one IP—the centroid of the reference triangle.

2.3. The R-squared measure of goodness of fit

The R-squared (𝑅2) is used as a quantitative measure of goodness of
fit between the predicted and measured magnetic data. The following
equation defines the 𝑅2:

𝑅2 = 1 −
∑𝑁

𝑖=1(𝑌meas,𝑖 − 𝑌simu,𝑖)2
∑𝑁

𝑖=1(𝑌meas,𝑖 − 𝑌meas)2
(29)

where 𝑌meas and 𝑌simu denote the measured and predicted values, 𝑌 is
the mean value, and 𝑁 denotes the total number of data points. For the
RRSST, the goodness of fit is evaluated by setting 𝑌 = {𝐵x,𝐻x, 𝐵y ,𝐻y}
in (29). For an exact match between the predicted and measured
results, 𝑅2 = 1. Thus, a positive value of 𝑅2 close to 1 could be
considered a good fit.

3. Results and discussion

This section presents the results of the 2D FEA of the RRSST sample.
Eqs. (22) and (23) are considered to establish either unidirectionally
alternating or rotating magnetic flux density in the circular steel sam-
ple. The magnitude of 𝑩 is controlled by setting �̂� = {0.5, 1, 1.5} 𝑇 and
𝑓 = 1 Hz in the equations describing the essential boundary conditions.
The FE simulations are performed for the first five periods of the supply
frequency. A single period of the supply frequency is discretized into
400 steps. The number of minimum allowed nonlinear iteration is set
to be 𝑛min = 2. The values of tolerances are fixed as 𝜖abs = 10−5 and
𝜖rel = 10−7. Equations (25) and (26) are used to estimate 𝑩 and 𝑯
in the sensor region of the RRSST sample. The last or fifth period
of the magnetic field solution is considered to obtain the hysteresis
loss density. The results of the FE simulations are in Figs. 2–10. The
following subsections discuss the results.

3.1. 𝑩 Alternating in the RD

Fig. 2 shows the result when the magnetic flux density alternates
parallel to the RD. The isotropic JA model (IJAM) considers BH charac-
teristics averaged over seven directions, meaning the prediction would
be closer to the magnetic characteristics in the 45◦ direction. Because
the field strength is higher for the isotropic case, the losses would also
be higher for the isotropic case than anisotropic. Fig. 3 compares the
measured and simulated alternating BH characteristics in the RD. The
results of the AJAM agree with the measured data. However, some
differences are seen in the results of the IJAM. Clearly, the IJAM
underestimates the BH characteristics when the flux density alternates
in the RD.

3.2. 𝑩 Alternating in the 45◦ direction

Fig. 4 shows the result when the magnetic flux density alternates
in the 45◦ direction. The differences between the results are difficult to
see from the field distribution. The hysteresis loss distribution shows
noticeable differences. The losses are higher for the AJAM than for the
IJAM. Fig. 5 compares the measured and simulated BH loci. The BH
characteristics predicted by the AJAM agree better with the measure-
ment data than the IJAM. However, notable differences are seen at a
high magnitude of the flux density.
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Fig. 2. Distribution of the magnetic field strength and flux density at a time instant 𝑡 = 4.25 s, and time-averaged hysteresis losses in the RRSST sample. The magnetic flux density
alternates in the RD. (a), (c) and (e) FEM coupled with the IJAM. (b), (d) and (f) FEM coupled with the AJAM.

Fig. 3. Measured and FE simulated BH loops captured in the sensor region of the RRSST sample. The magnetic flux density alternates in the RD. (a) FEM coupled with the IJAM.
(b) FEM coupled with the AJAM.
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Fig. 4. Distribution of the magnetic field strength and flux density at a time instant 𝑡 = 4.25 s, and time-averaged hysteresis losses in the RRSST sample. The magnetic flux density
alternates in the 45◦ direction. (a), (c) and (e) FEM coupled with the IJAM. (b), (d) and (f) FEM coupled with the AJAM.

3.3. 𝑩 Alternating in the TD

Fig. 6 shows the result when the magnetic flux density alternates in
the TD. Because the TD is a hard direction of magnetization, the mag-
netic field strength is higher for the AJAM than IJAM. Consequently,
the losses are higher for the anisotropic case. Fig. 7 compares the
measured and simulated alternating BH characteristics. The AJAM’s
results are in good agreement with the measured data. In contrast,
the IJAM’s results differ significantly from the measured data. Thus,
the IJAM underestimates the BH characteristics if the flux density
alternates in the TD.

3.4. 𝑩 Rotating in the counter-clockwise direction

Fig. 8 shows the result when the magnetic flux density rotates in the
counter clock-wise direction. The field quantities rotates at each step,

so, it may not be intuitive to compare the results from two different
models at a single time instant. Nevertheless, the hysteresis losses are
evaluated from a full cycle of the input excitation, so, comparing the
isotropic and anisotropic models is more intuitive. The distribution of
the hysteresis loss density is more pronounced for the AJAM than IJAM
(see Figs. 8(a) and 8(b)). The presence of easy and hard magnetization
directions leads to different amounts of losses in different directions
around the perimeter of the holes. The rest of the sample experiences
uniform loss density distribution.

Fig. 9 compares the 𝐻x(𝐻y), 𝐵x(𝐵y), 𝐵x(𝐻x), and 𝐵y(𝐻y) charac-
teristics. The results predicted by the AJAM agree with the measured
data. However, notable differences are seen between the measured
and simulated data at a high magnitude level. Conversely, the IJAM’s
prediction differs significantly from the measured data. Figs. 9(e)–9(h)
compare the measured 𝐵x(𝐻x) and 𝐵y(𝐻y) characteristics. The results
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Fig. 5. Measured and FE simulated 𝐵x(𝐻x) and 𝐵y(𝐻y) loci obtained from the sensor region of the RRSST sample. The magnetic flux density alternates in the 45◦ direction. (a)
and (c) FEM coupled with the IJAM. (b) and (d) FEM coupled with the AJAM.

of the AJAM agree with the measured data until 1 T. However, the
differences are significant at 1.5 T. Contrarily, the IJAM’s results differs
considerably from the measured data.

3.5. Comparison of R-squared coefficient

Tables 2 and 3 show the 𝑅2 values for the FEA results of the IJAM
and AJAM. Note that the 𝑅2 values are tabulated for the components
of 𝑯 . For the components of 𝑩, 𝑅2 = 0.9999 in all cases, so it is not
tabulated. The 𝑅2 values for the AJAM are higher than those for the
IJAM, meaning the predictions are better for the AJAM. The 𝑅2 values
for IJAM decrease with an increase in excitation magnitude, signifying
the predictions worsen at high flux density excitations.

Table 2
𝑅2 values for IJAM’s predictions.

RRSST
excitation

𝐵 = 0.5 T 𝐵 = 1.0 T 𝐵 = 1.5 T

𝐻x 𝐻y 𝐻x 𝐻y 𝐻x 𝐻y

RD 0.9861 – 0.9854 – 0.9678 –
ALT45 0.9820 0.9909 0.9879 0.9929 0.9557 0.9967
TD – 0.9924 – 0.9883 – 0.9532
ROT 0.9881 0.9861 0.9767 0.9878 0.8693 0.9714

Table 3
𝑅2 values for AJAM’s predictions.

RRSST
excitation

𝐵 = 0.5 T 𝐵 = 1.0 T 𝐵 = 1.5 T

𝐻x 𝐻y 𝐻x 𝐻y 𝐻x 𝐻y

RD 0.9979 – 0.9999 – 0.9995 –
ALT45 0.9959 0.9986 0.9983 0.9993 0.9949 0.9963
TD – 0.9996 – 0.9998 – 0.9990
ROT 0.9940 0.9966 0.9964 0.9997 0.9835 0.9847

3.6. Comparison of hysteresis losses

Fig. 10 compares the hysteresis losses for four different types of
input excitations. The IJAM should yield identical magnetic characteris-
tics for alternating input excitations, which means the losses should also
be the same. Thus, according to the result presented in Fig. 10(a), input
excitations along RD, ALT45, and TD yield similar losses. In contrast,
for the anisotropic model, alternating losses depend on the direction
of the input excitation. As shown in Fig. 10(b), losses produced by the
field alternating in the RD is the lowest, followed by ALT45 and TD.
If we now compare rotational losses, we see that the differences are
negligible until 1 T, and at 1.5 T, the AJAM yields higher losses in the
RRSST sample.
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Fig. 6. Distribution of the magnetic field strength and flux density at time instant 𝑡 = 4.25 s, and time-averaged hysteresis losses in the RRSST sample. The magnetic flux density
alternates in the TD. (a), (c) and (e) FEM coupled with the IJAM. (b), (d) and (f) FEM coupled with the AJAM.

3.7. Simulation time and iterations

The FE simulations are performed using Intel® Core™ M-5Y51
@1.10 GHz RAM 8 GB with GNU/Linux environment. An in-house
program written in the C programming language is used for the
simulations. The information related to the simulation time and average
number of nonlinear iterations are in Tables 4 and 5. The FE simulation
that considers the IJAM spends about one second per step on average,
whereas, the simulation times are on average 10% higher for the AJAM.
Nevertheless, the average numbers of nonlinear iterations are the same.

Table 4
FE simulation time and nonlinear iterations for the IJAM.

RRSST
excitation

CPU time and average number of iterations per step

𝐵 = 0.5 T 𝐵 = 1.0 T 𝐵 = 1.5 T

RD 1.02 s (3) 0.98 s (3) 0.99 s (3)
ALT45 0.99 s (3) 1.00 s (3) 0.99 s (3)
TD 0.99 s (3) 0.98 s (3) 1.03 s (3)
ROT 0.99 s (3) 0.99 s (3) 0.99 s (3)
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Fig. 7. Measured and FE simulated BH loops captured within the sensor region of the RRSST. The magnetic flux density alternates in the TD. (a) FEM coupled with the IJAM.
(b) FEM coupled with the AJAM.

Fig. 8. Distribution of the time-averaged hysteresis losses in the RRSST sample. The magnetic flux density is rotating counter clock-wise in the RRSST sample. (a) represents FEM
coupled with the IJAM. (b) represents FEM coupled with the AJAM.

Table 5
FE simulation time and nonlinear iterations for the AJAM.

RRSST
excitation

CPU time and average number of iterations per step

𝐵 = 0.5 T 𝐵 = 1.0 T 𝐵 = 1.5 T

RD 1.11 s (3) 1.12 s (3) 1.13 s (3)
ALT45 1.12 s (3) 1.13 s (3) 1.13 s (3)
TD 1.11 s (3) 1.13 s (3) 1.10 s (3)
ROT 1.11 s (3) 1.13 s (3) 1.13 s (3)

4. Conclusion

The anisotropic and isotropic JA models were included in the FEM.
The FEA of the RRSST sample—circular steel sheet of grade M400-
50A—was considered. The anisotropic JA model predicted the mea-
sured data better than the isotropic model. Moreover, the analysis
proved that the anisotropic model is suitable for the FEA. Based on the
computation time results, it seemed not to be very much more expen-
sive than the isotropic model. The JA model’s parameters depended on
the flux density. An elliptical variation was assumed for the JA model’s
parameters.

Thus, it can be concluded that the anisotropic model is needed to
model NO silicon steel laminations accurately. Moreover, using the
proper anhysteretic magnetization and parameters improves the JA
model’s accuracy. The parameters of the improved JA model should

be identified from several sets of measurement data and in different
directions.

The parameters identified from the alternating measurements pre-
dict alternating fields that closely match the measured results. Addi-
tionally, they give reasonably good results for the rotational excitation
at 0.5 𝑇 and 1 T. However, at 1.5 T, the predicted results differ
significantly because the parameters are optimized for the alternating
measurements. This may be considered as the limitation of the AJAM.
Nevertheless, for an application such as an induction motor, the mag-
nitude of the rotating magnetic field in the stator yoke is about 1 T,
meaning the AJAM could be used to predict the field quantities.
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Fig. 9. Measured and FE simulated rotational field loci in the sensor region of the RRSST sample. (a), (c), (e), and (g) FEM coupled with the IJAM. (b), (d), (f), and (h) FEM
coupled with the AJAM. (a) and (b) 𝐻x(𝐻y) loci. (c) and (d) 𝐵x(𝐵y) loci. Likewise, (e) and (g) 𝐵x(𝐻x) loci. (f) and (h) 𝐵y(𝐻y) loci.
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Fig. 10. FE simulated hysteresis losses in the RRSST sample for the cases when the magnetic flux density alternates in the RD, 45◦, TD, and rotates in the counter clock-wise
direction. (a) FEM coupled with the IJAM. (b) FEM coupled with the AJAM.
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