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We study the dynamics of multimode polariton lasing in organic microcavities by using a second-order
cumulant equation approach. By inspecting the time evolution of the photon mode occupations, we show that if
multiple lasing peaks are observed in time-integrated mode occupations, the reason can be either bimodal lasing
or temporal switching between several modes. The former takes place within a narrow range of parameters
while the latter occurs more widely. We find that the origin of the temporal switching is different in the weak-
and strong-coupling regimes. At weak coupling the different gradients of mode occupation vs pump power is the
determining factor, while for strong coupling it is changes in the eigenmodes and gain spectrum upon pumping.
This difference is revealed by investigating the photoluminescence and momentum-resolved gain spectra. Our
results underscore the importance of understanding the time evolution of the populations when characterizing the
lasing behavior of a multimode polariton system, and show how these features differ between weak and strong
coupling.

DOI: 10.1103/PhysRevB.106.195403

I. INTRODUCTION

In a system where lasing occurs, switching between lasing
modes can occur, as a function of parameters (e.g., exci-
tation power) or as a function of time. Mode switching is
known to occur in semiconductor lasers that support several
densely spaced longitudinal modes. Multiple lasing peaks in
the time-integrated luminescence spectrum, as well as tempo-
ral switching between the modes, have been observed in many
different contexts [1–5]. The origin and nature of such mode
switching differs between systems. For example, the mode
switching in edge-emitting semiconductor lasers and vertical
cavity surface emitting lasers (VCSELs) has been attributed to
spatial hole burning [6–9] and to four-wave mixing [10]. Un-
derstanding the nature of mode switching in a given system,
and how to control it, is an important step toward enabling
applications.

Exciton-polaritons, polaritons for brevity, are the hybrid
of a photon and an exciton under strong light-matter cou-
pling. Strong coupling can be engineered by creating optical
microcavities filled with an active layer of emitter material.
The active layer can take several forms, including inorganic
semiconductors, two-dimensional materials such as transition
metal dichalcogenides, or, the focus of this paper, organic
molecules. Polariton lasing (or polariton condensation) has
been studied extensively during the past two decades [11–13].

While the majority of the experimental and theoretical
works have focused on single-mode polariton lasing, mul-
timode operation has been reported as well. Switching of
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macroscopic polariton population between different spatial
modes or momentum states has been observed as a function
of pump power [14–18]. The switching between higher- and
lower-energy polariton modes has been attributed to polariton-
polariton scattering, which is stimulated by Bose enhance-
ment at higher pump powers, driving the relaxation of po-
laritons to the lowest-energy mode [17–20]. Typically, mode
switching has been observed only for specific detuning condi-
tions. In coupled wells or lattices of coupled polariton conden-
sates, competition between different modes has been studied
experimentally [21–26] and numerically by using the gen-
eralized Gross-Pitaevskii equations [27,28]. Recently, it was
noted that simultaneous polariton lasing can occur in a vertical
lasing mode and a horizontal guided mode in planar microcav-
ities, and that such phenomena could have taken place in sev-
eral previous experiments where polariton lasing in the verti-
cal lasing mode has been reported with ZnO-based microcav-
ities [29]. Mode competition dynamics has also recently been
explored in InGaAs-based cavities [30]. In closely related ex-
periments on photon Bose-Einstein condensates (BECs), with
weak light-matter coupling in dye-filled microcavities, mul-
timode condensation has been observed experimentally and
studied by second-order cumulant equations [31–34]. Simi-
larly, for strongly coupled plasmonic BECs, multiple peaks
near the ground state have been observed [35].

In our previous work [36], we introduced a model for
multimode polariton lasing in organic microcavities and com-
puted steady-state lasing phase diagrams as a function of
pump strength and detuning of the photon modes from the
exciton. We showed that at certain pump strengths multiple
lasing peaks may be observed in the steady-state photon mode
occupations. Our second-order cumulant model goes beyond
mean-field descriptions, capturing the effects of nonlasing
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modes and fluctuations on the system’s behavior. Retaining
such fluctuations is important when considering switching:
the (initially small) populations of nonlasing modes act as the
seed for these modes to become macroscopically populated
at later times. In contrast, for mean-field approaches, explicit
seed or noise terms would be required.

In this paper, we investigate the dynamics of mode switch-
ing in multimode polariton lasing, and analyze the gain
spectrum in more depth than in [36], including momentum-
resolved gain spectra. While the model we consider is specific
to organic molecules, the concepts we discuss have relevance
more widely. We find that in the case where several lasing
peaks are observed in the time-integrated mode occupations,
the modes are not necessarily lasing simultaneously, but the
lasing mode may switch (deterministically) as a function of
time. Furthermore, even when only a single lasing peak is
observed, switching between different modes can occur before
the system reaches a steady state. We study mode switching in
both weak- and strong-coupling regimes.

Mode switching occurs in general because the mode which
lases first does not fully cross saturate the gain for other
modes. This raises a question of what determines which other
modes become competitive, and ultimately take over. At weak
coupling, the choice of which mode is selected can be ex-
plained by a standard argument [37] considering the different
thresholds and gradients of photon population vs pump of
each mode: When several modes are above the threshold, the
mode with highest gain will eventually suppress the others. At
strong coupling, the situation becomes more complicated be-
cause of energy shifts. The polariton energies show a blueshift
as a function of pump strength, due to effective interactions
that arise from saturation of the gain medium. Importantly, we
also show that the peak gain shifts towards higher energies as
the pump strength increases. This shift can be attributed to dy-
namics of the vibrational degrees of freedom of the molecules.
The mode switching at strong coupling occurs as a result of
competition between both shifts in the gain and the polariton
energies. Our model considers spatially homogeneous sys-
tems, thus our results suggest that mode switching does not
necessarily require redistribution of real-space intensity.

The rest of the paper is organized as follows. In Sec. II,
we present the system and the model. In Sec. III, we study
the temporal characteristics of multimode lasing. In Sec. IV,
we present the gain and photoluminescence spectra as a
function of pump strength. In Sec. V we consider pulsed ex-
citation, which is relevant for typical experiments on organic
exciton-polariton systems. Finally, in Sec. VI we discuss the
interpretation and implications of the results. The Appendixes
provide technical details on the cumulant equations and re-
sults for time-integrated populations.

II. SYSTEM AND MODEL

A. Density matrix equation of motion

We consider a planar microcavity that hosts multiple pho-
ton modes and an active layer of emitters. We model the
emitters as Nm vibrationally dressed two-level systems placed
homogeneously in the cavity plane. The system is thus de-
scribed by the Tavis-Cummings-Holstein Hamiltonian in the

rotating-wave approximation (RWA) [36,38,39]:

H =
∑

k

ωka†
kak +

∑
n,k

(gn,kakσ
+
n + g∗

n,ka†
kσ

−
n )

+
∑

n

[ε

2
σ z

n + ωv

(
b†

nbn +
√

S(b†
n + bn)σ z

n

)]
. (1)

Here ε is the transition energy of the molecule and Pauli
matrices σ z,+,−

n correspond to the electronic states of molecule
n. The operator b†

n creates a vibrational excitation of energy ωv

on molecule n while a†
k creates a photon with energy ωk in the

cavity mode with wave vector k.
The photon energies are given by ωk = ω0 +

Eρ (K2
x + K2

y )/Nm, where Kx,y are integers labeling a discrete
set of momentum vectors in the two-dimensional plane of
the cavity. The energy scale Eρ = π2ρ2Dh̄2/2m is defined in
terms of the molecular density ρ2D and effective photon mass
m. The total number of photon modes is truncated to Nph.
The light-matter coupling is given by the coupling constant
gn,k = e−ik·rn�R/

√
Nm, where rn is the position of the nth

molecule. These plane-wave cavity modes correspond to
considering periodic boundary conditions. Coupling of the
electronic levels to vibrational modes results in broadening
of emission and absorption spectra and in the occurrence of
a Stokes shift, which is parametrized by the Huang-Rhys
factor S [40]. In later discussions it will be useful to use
the notation (n − m) to denote transitions between the nth
vibrational ground state and the mth vibrational excited state
[see Figs. 1(c) and 1(d)]. The total number of vibrational
states on each molecule will be truncated to Nv.

The incoherent processes that occur can be described by
the Lindblad formalism. The equation of motion for the den-
sity matrix of the system reads as

∂tρ = −i[H, ρ] +
∑

k

κL[ak] +
∑

n

(

↑L[σ+

n ] + 
↓L[σ−
n ]

+
zL
[
σ z

n

] + γ↑L
[
b†

n +
√

Sσ z
n

] + γ↓L
[
bn +

√
Sσ z

n

])
,

(2)

with L[X ] = XρX † − 1
2 (X †Xρ + ρX †X ). The equations ac-

count for cavity loss at rate κ , dephasing of the excitons 
z,
and incoherent pumping and decay of excitons with rates 
↑
and 
↓, respectively.1 The last two terms describe thermal
relaxation and excitation with rates γ↓ = γv (nb + 1) and γ↑ =
γvnb where nb = [exp(ωv/kBTv ) − 1]−1 is the Bose-Einstein
distribution at temperature Tv . The values of all parameters
used for the simulations below are given in Table I.

B. Second-order cumulant equations

The size of Hilbert space for Nm molecules, each with
2Nv internal states, is too large to directly simulate except for
small Nm. To make the simulation computationally tractable
for realistic system sizes, we proceed from Eq. (2) by using the
second-order cumulant expansion. This provides a (closed) set

1We note that compared to our previous work [36] we have
corrected the sign of the

√
Sσ z

n term in Eq. (2). This does not sig-
nificantly change the results.
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FIG. 1. Schematics of the system and model. (a) A planar micro-
cavity with multiple photon modes and a layer of emitter material.
The cavity modes have in-plane momentum k and they decay by
rate κ . The photons in the cavity modes can strongly couple to
the excitons, hybridizing to form exciton-polaritons. (b) Discretized
dispersion relation of the uncoupled cavity modes. (c) Two-level
system with both ground and excited states dressed by Nv vibrational
states. The bare transition energy between the two electronic states is
denoted by ε, the vibrational frequency by ωv , and the Huang-Rhys
factor by S. The rates of the drive and dissipation processes involved
are the external pumping 
↑, spontaneous decay 
↓, dephasing

z, and thermal excitation and dissipation of the vibrational modes
γ↑,↓. (d) Absorption and emission spectra of the uncoupled emitters.
The yellow shaded area corresponds to the energy range which the
uncoupled photon modes cover, starting from ω0 (0.65 eV). The
zero-phonon line (0-0) and the emission shoulders related to the two
first vibrational transitions (1-0), (2-0) are labeled.

of equations of motion for first- and second-order correlations
between molecule and photon operators [36,41,42].

TABLE I. Simulation parameters.

Parameter Value Notes

Nm 108

Nv 4
Nph 9
ε 1 eV
ω0 0.65 eV −2ωv < ω0 − ε < −ωv

Eρ 5 × 105 eV
�R 0.1 eV and 0.4 eV
ωv 0.2 eV
S 0.10
κ 10−4 eV ∼(40 ps)−1


↓ 10−4 eV ∼(40 ps)−1


z 0.03 eV ∼(1 ps)−1

γv 0.02 eV
kBTv 0.025 eV Room temperature

In order to make the cumulant expansion, it is helpful
to first relabel the molecular degrees of freedom. The two
electronic states (σ ) and the Nv vibrational states (b) are
combined into 2Nv-level operators, which can be represented
by generalized Gell-Mann matrices λ (see Appendix A for
details). The Hamiltonian then becomes

H =
∑

k

ωka†
kak +

∑
n

[
Ai +

∑
k

(Bia
†
ke−ik·rn + H.c.)

]
λ

(n)
i ,

(3)

where the vectors Ai and Bi include the terms in Eq. (1).
Tensor sums that run over Gell-Mann operator indices i are
implicit. In the new basis, the master equation in Eq. (2) takes
the form

∂tρ = −i[H, ρ] +
∑

k

κL[ak] +
∑
μ,n

L
[
γ

μ
i λ

(n)
i

]
, (4)

where μ labels the drive and dissipation processes related to
molecules: (1) pump, (2) decay, (3) dephasing, and vibrational
(4) excitation and (5) decay.

We next write equations of motion for first- and second-
order correlations of the operators λ

(n)
i , ak, a†

k. To produce a
closed set of equations of motion, all third- or higher-order
correlations are split into products of first- and second-order
correlations, by setting third-order cumulants (e.g., 〈ABC〉c)
to zero. This allows to decompose the third-order terms
as 〈ABC〉 = 〈A〉〈BC〉 + 〈B〉〈AC〉 + 〈C〉〈AB〉 [43]. To further
simplify the derivation, we make use of the conservation of
number of excitations implied by the RWA and divide the
operators λi into three groups that either increase (+), de-
crease (−), or conserve (z) the electronic excitations. With
this classification, expectation values of operators that do not
conserve the number of excitations can be taken zero, such as
the first-order terms 〈ak〉, 〈a†

k〉, 〈λi−〉, 〈λi+〉.
Assuming a spatially homogeneous distribution (or ran-

dom distribution with a large number) of emitters in the
microcavity, we may approximate summation over sites by
using

∑
n ei(k−k′ )·rn = Nmδk,k′ , allowing the use of momen-

tum conservation. For the number-conserving Gell-Mann
operators we then obtain a site-independent form �i =
〈λ(n)

iz
〉. For the two other groups of Gell-Mann opera-

tors, λ
(n)
i+ and λ

(n)
i− , the first-order expectations are zero

as they do not conserve the number of excitations. We
can write the Fourier components of the second-order cor-
relations as dk

i j = ∑
n,m 
=n eik·(rn−rm )〈λ(n)

i+ λ
(m)
i− 〉/N2

m and ck
i =∑

n eik·rn〈akλ
(n)
i+ 〉/Nm. Photon mode occupations are denoted

by nk = 〈a†
kak〉. The equations of motion for the nonvanishing

correlations are thus

∂t n
k = −κnk − 2NmImBic

k
i ,

∂t�i = ξi j� j + φi − 8 Reβi j

∑
k

ck
j ,

∂t c
k
i =

[
Xi j −

(
iωk + κ

2

)
δi j

]
ck

j + 2β∗
i j� jnk − iB jd

k
i j

− i

Nm

(
ζi j� j + Bi

2Nv

)
,

∂t d
k
i j = X ∗

ipdk
p j + Xj pdk

ip + 2�p
(
βipc̃ j

k∗ + β∗
j pc̃i

k), (5)
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where c̃i
k = ck

i − ∑
q cq

i /Nm, and the coefficients are given in
Appendix A. Equations (5) describe the time evolution of the
strongly coupled system with multiple photon modes, captur-
ing the effect of fluctuations. Solving these equations yields
the time evolution of the photon mode populations, discussed
in Sec. III.

C. Photoluminescence and gain spectra

When coupling between the cavity modes and the emit-
ters is strong, polariton lasing replaces photon lasing. In this
limit, understanding the nature of mode competition becomes
more challenging since both the gain profile and the normal-
mode energies must be found self-consistently, and change
with pump strength. In this section we present the numerical
approach we will use to extract both quantities, as used in
Sec. IV.

The energies of the polariton modes can be found by com-
puting the photoluminescence spectrum, which is given by

Sk(ν) =
∫ ∞

−∞
dt〈a†

k(t )ak(0)〉eiνt . (6)

Here, we utilize the quantum regression theorem to calcu-
late the two-time correlators [44]. Solving Sk(ν) requires
the steady-state density matrix ρss which is used to con-
struct ρ̃k(0) = akρss. Time evolving the effective density
matrix ρ̃k(t ) = etLρ̃k(0) and evaluating Tr[a†

kρ̃k(t )] gives the
coupled differential equations for the two-time correlators
[45]:

∂t 〈a†
k(t )ak(0)〉 =

(
iωk − κ

2

)
〈a†

k(t )ak(0)〉 + iNmB∗
i ck

i (t ),

∂t c
k
i (t ) = ξi jc

k
j (t ) + 2 fi j pB j�p〈a†

k(t )ak(0)〉, (7)

where ck
i (t ) = 1

Nm

∑
n eik·rn Tr[λ(n)

i+ ρ̃k(t )] and

〈a†
k(t )ak(0)〉 = Tr

[
a†

ketLakρss
]
.

In the steady state, �p becomes constant. The linear equa-
tions can be written in a matrix form as ∂t Ck = MCk, where
the vector Ck = [〈a†

k(t )ak(0)〉, {ck
i (t )}i] and the matrix M are

obtained from Eqs. (7). The Fourier transform can be written
as

Sk(ν) =
∫ ∞

−∞
eiνt+Mt C(0)dt

= (iν + M)−1C(0) =
∑

i

αi

μi + iν
|ri〉, (8)

where μi is the eigenvalue of M that corresponds to the right
|ri〉 and left 〈li| eigenvectors. The coefficient αi is then given
by αi = 〈li|C(0)〉/〈li|ri〉.

The “gain” (i.e., emission minus absorption) can be studied
by considering two-time correlations of the molecules:

G(ν) =
∫ ∞

−∞
dt e−iνt 〈[σ+(n)(t ), σ−(n)(0)]〉

= V +
i V −

j

∫ ∞

−∞
dt e−iνt

〈[
λ

(n)
i (t ), λ(n)

j (0)
]〉
, (9)

where V ±
i = 1

2 Tr(σ±λi). In the weak-coupling picture, this
has a simple interpretation as the frequency-resolved gain the

photon modes see; at strong coupling the picture is more
complicated, but this nonetheless allows one to probe the
molecular dynamics separately from the photons.

By also considering the time-dependent correlations be-
tween different molecules, one can further compute the
momentum-resolved gain spectrum:

Gk(ν) = V +
i V −

j

∫ ∞

−∞
dt e−iνt (10)

×
∑
n,m

eik·(rn−rm )
〈[
λ

(n)
i (t ), λ(m)

j (0)
]〉
.

This quantity identifies the different gain seen by each cavity
mode, and so helps explain when mode switching occurs.
Note that we can recover the form of G(ν) in Eq. (9) by
summing Gk(ν) over all k.

III. MULTIMODE LASING DYNAMICS WITH
CONTINUOUS PUMP

A. Weak-coupling regime

Using the methods described in the previous section, we
now explore the dynamics of mode switching, starting with
the weak-coupling regime, for which we set �R = 0.1 eV.
As shown in Figs. 2(a) and 2(b) (similar results also seen in
our previous work [36]), for the parameters we use the lasing
mode switches between k = 5 and 0 as a function of pump
strength. Upon increasing the pump strength, the mode k = 5,
which is closest to resonance with the (1 − 0) transition, starts
lasing first. When the pump is further increased, the k = 0
starts to lase, and the lasing at k = 5 is suppressed. As noted in
Ref. [36], the selection of which mode wins mode competition
in the weak-coupling regime can be understood by consid-
ering the different thresholds and gradients of input-output
curves (photon population vs pump power) of these modes.
The modes near the vibrational shoulder (k = 4, 5, 6) have the
lowest threshold pump power, but the mode near k = 0 has the
highest gradient. If one extrapolates the input-output curves of
the different lasing modes beyond the range of values of power
where they are lasing, these extrapolated curves will cross at a
pump power. (The fact they cross is inevitable when the mode
with lower threshold has a lower gradient.) As was shown in
Ref. [36] the point where these extrapolated curves cross is
the point where switching occurs. As such, one may associate
this switching with the differences in thresholds and gradients
of the input-output curves.

The time evolution of the system, as shown in Figs. 2(c)–
2(k), reveals that mode switching occurs not only as a function
of pump strength, but also in time. Here, the term “switch-
ing” corresponds to the time instant when the population of
one lasing mode surpasses the population of another mode.
Figures 2(c), 2(f), and 2(i) show for illustrative purpose the
data shown in Figs. 2(d), 2(g), and 2(j), which presents the
population of selected k modes. Figures 2(e), 2(h), and 2(k)
show the population inversion as a function of time.

At a low pump strength, in Figs. 2(c) and 2(d), lasing starts
and remains at k = 5 until steady state is reached. At higher
pump strengths, as shown in Figs. 2(f) and 2(g) and 2(i) and
2(j), switching to k = 0 mode occurs. At a high pump strength
[Figs. 2(i) and 2(j)], lasing at k = 0 completely suppresses the

195403-4
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FIG. 2. Mode competition for weak coupling, �R = 0.1 eV. (a) Pump dependence curves and (b) steady-state occupations at different k
modes. The mode occupations in (b) are shown for selected pumps. The time-integrated threshold curves are shown in Appendix B. On the
right: (top and middle rows) time evolution of photon population at different modes and (bottom row) population inversion of the two-level
system as a function of pump strength. The pump strengths are (c)–(e) 
↑/
↓ = 0.30, (f)–(h) 0.60, and (i)–(k) 0.70. All other parameters are
provided in Table I.

lasing at k = 5 after the switch. Only in a very narrow range
of pump strengths, as illustrated in Figs. 2(f) and 2(g), does
the system show bimodal lasing. In that case, the k = 0 mode
slowly grows until it marginally prevails, and both modes
sustain a macroscopic population at steady state. The dashed
lines in Figs. 2(d), 2(g), and 2(j) show the photon population
summed over all k modes. It is interesting to note that the
sum over all k modes shows only a single threshold; whenever
switching takes place the photon population is redistributed
between different modes. One may note also that the popula-
tion inversion [as shown in Figs. 2(e), 2(h), and 2(k)] appears
to reach a stationary value before switching occurs. After the
switch, the inversion does, however, show a small kink. In
Fig. 3, we show the rate at which the metastable k = 5 state
is replaced by k = 0. We see that the rate vanishes as one
approaches the transition point, i.e., the pump strength where
bimodal lasing is observed [∼0.6
↓, Figs. 2(f)–2(h)].

B. Strong-coupling regime

At strong coupling (�R = 0.4 eV) we observe shifting of
the lasing mode towards higher k on increasing the pump
strength. As shown by the threshold curves and spectra in
Figs. 4(a) and 4(b), lasing is first triggered in the k = 5 mode
but switches to k = 7 at high pump strengths. In a narrow
regime of pump strengths, the k = 6 mode has the highest
occupation.

The time evolution of the mode occupations for strong cou-
pling is presented in Figs. 4(c)–4(k). At a low pump strength,
in Figs. 4(c) and 4(d), lasing starts at k = 5 and switches to
a lower k = 4 mode. At higher pump strengths, in Figs. 4(f)
and 4(g) and 4(i) and 4(j), the lasing mode switches to higher

k modes. One notable distinction from weak coupling is seen
in the time evolution of the population inversion. As seen in
Figs. 4(h) and 4(k), the population inversion continues to grow
until the (final) mode switching occurs.

Both in the strong- and weak-coupling regimes, we have
referred to the lasing modes with the absolute value of the
momentum vector k = |k|. Within our model, as we have no
source of disorder, all modes with a given |k| are degenerate.
In real experiments, the disorder that will be present is likely
to break the perfect degeneracy, leading to a particular angular
pattern being selected for the lasing mode.

FIG. 3. Metastable decay rate of the k = 5 mode as a function of
pump strength, in the vicinity of the transition point. The decay rate
is the inverse of the time at which the lasing mode switch occurs,
i.e., when the population of mode k = 0 exceeds that of mode k = 5.
Parameters as in Fig. 2.
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FIG. 4. Mode competition for strong coupling, �R = 0.4 eV. (a) Pump dependence curves and (b) steady-state occupations at different
k modes. The mode occupations in (b) are shown for selected pumps. The time-integrated threshold curves are shown in Appendix B. (Top
and middle rows) Time evolution of photon population at different modes and (bottom row) population inversion of the two-level system as a
function of pump strength. The pump strengths are (c)–(e) 
↑/
↓ = 0.60, (f)–(h) 1.30, and (i)–(k) 1.50. All other parameters are provided in
Table I.

IV. GAIN SPECTRUM

To better understand why mode switching occurs in
response to pumping, we next discuss how gain and photo-
luminescence spectra change as a function of pump power.
To avoid the subtleties associated with time-dependent spectra
[46], we only consider the steady-state spectra.

A. Weak-coupling regime

To introduce the properties of the gain spectrum, we start
by considering the total (momentum-integrated) spectrum
G(ν) of the molecules defined in Eq. (9). Figure 5 shows G(ν)
for weak coupling, at a narrow range of pump strengths (see
legend) near the initial lasing threshold (∼0.21 
↑/
↓). Since
G(ν) can be either positive (net gain from the molecules) or
negative (net absorption), we show both G(ν) and −G(ν) on
logarithmic scales. Below threshold (dashed lines) G(ν) is
negative at all frequencies. As the pump strength increases,
a region of positive gain develops. Positive gain from the
molecules does not immediately lead to lasing, as it is not
sufficient to overcome the cavity losses. When the gain at the
frequency of the k = 5 cavity mode (around 0.75 eV) becomes
sufficiently high to exceed cavity loss, lasing occurs. Figure 6
then shows how the gain spectrum continues to develop, con-
sidering a wider range of frequencies (covering all relevant
cavity modes) and a wider range of pump strengths. From this
figure, one sees that between pump strengths 0.60 and 0.70

↑/
↓ the peak of the gain switches to a lower-energy mode
at 0.63–0.64 eV.

We can further study how the gain affects different cavity
modes by considering Gk(ν). The momentum-resolved gain

FIG. 5. Momentum-integrated gain spectra G(ν ) near the lasing
threshold for weak coupling, �R = 0.1 eV. The top panel shows
G(ν ), while the bottom panel shows −G(ν ), both on a logarithmic
scale. The pump strengths are color coded as in the legend and the
inset which shows the corresponding part of the threshold curve.
Solid lines in the panels (and filled circles in the inset) are results
above the lasing threshold, while dashed lines are below threshold.
Threshold, which requires gain to exceed the cavity losses occurs
around 0.21 
↑/
↓, is marked by the vertical line in the inset. All
other parameters as in Table I.
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FIG. 6. Momentum-integrated gain spectra G(ν ) as a function
of pump strength for the weak-coupling case �R = 0.1 eV. This
figure shows an expanded range of energies and pump strengths
compared to Fig. 5.

spectra are shown in Figs. 7(a)–7(c) for the three selected
pumps that were studied in Sec. III (Fig. 2). Here only the
positive gain values are plotted. The results confirm that the
peak of the gain shifts from the mode k = 5 to 0 as the pump
is increased, and there is a narrow region of pump strengths
where the gain is similar for the two modes. We calculated
also the photoluminescence spectrum Sk(ν) to see how the
mode energies change upon increasing the pump strength. As
shown in Figs. 7(d)–7(f), under weak coupling the modes are
only slightly shifted from the bare photon dispersion, and so
in this case the mode locations remain practically unchanged
as the pump is increased.

B. Strong-coupling regime

In the strongly coupled system one should now consider
lasing arising from scattering into the polariton modes. As
discussed elsewhere [39,47], one can still consider a gain
spectrum for feeding into the polariton mode. This gain spec-
trum corresponds to the reservoir of dark excitonic states.
At strong coupling, the gain spectrum shows more complex
changes as a function of pump strength. Figure 8 shows the
evolution of total gain G(ν) with pump strength. At pump
strengths far below threshold the gain is always negative,
while above threshold one sees various regions with net gain
(i.e., gain exceeding cavity loss), with peaks that indicate
lasing. As pumping is further increased, the net gain moves

FIG. 7. (a)–(c) Momentum-resolved gain spectra Gk(ν ) and (d)–(f) photoluminescence spectra Sk(ν ) for selected pump strengths for the
weak-coupling case �R = 0.1 eV. In (a)–(c) the numbers next to the peaks label the k of the mode(s) that are lasing in the steady state. In
(d)–(f) the white crosses mark the uncoupled cavity modes. The pump strengths are (a), (d) 0.30 
↑/
↓, (b), (e) 0.60 
↑/
↓, and (c), (f)
0.70 
↑/
↓; all other parameters as in Table I.
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FIG. 8. Total gain spectra G(ν ) as a function of pump strength for
strong coupling, �R = 0.4 eV. As in Figs. 5 and 6, the two panels
show G(ν ) and −G(ν ) on a logarithmic scale. The pump strengths
are color coded according to the legend, and all other parameters are
as in Table I.

toward higher energies. The shift can be explained by con-
sidering two effects that arise due to strong coupling and
pumping.

First, gain is increased at higher energies as a result of
the vibrational sidebands becoming successively inverted with
stronger pumping. To understand this we must consider both
the relative populations of the ground and excited electronic
manifolds, and the populations of the vibrational sublevels
labeled by n as illustrated in Fig. 9. Considering the ground-
state electronic manifold, we may state the following about the
populations of the sublevels. Unless pumping becomes very
strong, the vibrational sublevels will be populated thermally
(according to a Boltzmann distribution), so the n = 0 sublevel
is most populated and the higher n are less populated. Turning
now to the population of the electronic excited states, we may
note that the population of the excited state manifold is zero
at weak pumping and grows with pumping.

Therefore, with increasing pumping the population of the
excited-state manifold will start to exceed the populations of
the ground-state-manifold sublevels, such that the first side-
band to get inverted corresponds to transitions from the 0th
state of the excited manifold to the highest n state of the
ground-state manifold [the (n − 0) transition] (see Fig. 9).
That first inverted transition is also the transition involving
the smallest energy difference, thus it leads to gain at lower
energies. As the pumping increases further, sidebands with
successively smaller n additionally become inverted, thus one
starts to get gain at higher energies. At the same time the
excited-state sublevels with m > 0 can also become inverted.
Both these processes mean (n − m) transitions with larger
energy difference are inverted, shifting the gain toward higher
energy [39].

FIG. 9. Schematic cartoon of successive inversion of sublevel
transitions when vibrational sublevels are thermally populated. Blue
and red solid lines represent the m and n levels for transitions n − m
from excited-state manifold (m) to the ground-state manifold (n) of
an organic emitter. As pump strength is increased, the first transi-
tion to undergo population inversion is the 4 − 0 transition, which
corresponds to transitions from the zeroth state of the excited-state
manifold to the fourth state of the ground-state manifold.

The second effect to be considered is that not only the gain,
but also the energies of the strongly coupled normal modes
evolve with pump strength. As shown by the momentum-
resolved results in Figs. 10(a)–10(c), for instance, when the
pump strength is increased from 1.30 to 1.50 
↑/
↓, the gain
spectrum moves from 0.78–0.82 eV to 0.84–0.86 eV. The
photoluminescence spectra in Figs. 10(d)–10(f) show that the
dips associated with the polaritonic mode frequencies move
to higher energy as the whole dispersion blueshifts upon in-
creasing pump. The blueshift originates from saturation of
the two-level systems [36], reducing the effective coupling
strength, ultimately recovering the uncoupled photon mode
dispersion at very strong pumping.

Summarizing, the shifting of the lasing mode toward
higher energies upon increasing pumping in the strong-
coupling case is caused by combined effects of the gain
moving toward higher energies, as well as the blueshifting of
the polariton mode frequencies.

V. MULTIMODE LASING DYNAMICS
WITH PULSED PUMP

Next we consider the case of pulsed excitation, which is
relevant for typical experiments on organic exciton-polariton
systems. We excite the system with a 4-ps pulse that has a
Gaussian time dependence, and study the dynamics of mode
switching as a function of pump strength (amplitude). All
other parameters are as in Sec. III.

A. Weak-coupling regime

In the weak-coupling regime, at low pump strength
[Figs. 11(c) and 11(d)], lasing occurs at k = 5 until decay
causes lasing to cease. At higher pump strengths, as shown
in Figs. 11(f) and 11(g) and 11(i) and 11(j), the lasing mode
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FIG. 10. (a)–(c) Momentum-resolved gain and (d)–(f) photoluminescence spectra for selected pump strengths for the strong-coupling case
�R = 0.4 eV. (a)–(c) The numbers next to the gain peaks label the k of the mode(s) that are lasing in the steady state. (d)–(f) The white crosses
mark the uncoupled cavity modes. The color scale is logarithmic. The pump strengths are (a), (d) 0.60 
↑/
↓, (b), (e) 1.30 
↑/
↓, and (c), (f)
1.50 
↑/
↓.

FIG. 11. Mode competition with pulsed excitation for weak coupling, �R = 0.1 eV. (a) Time-integrated pump dependence curves and
(b) occupations at different k modes for selected pumps. On the right (c)–(k): (top and middle rows) time evolution of photon population at
different modes and (bottom row) population inversion of the two-level system at various pump strengths. The excitation pulse has a Gaussian
time dependence centered at around 16 ps with full width at half-maximum of around 4 ps. The pulse profile is shown in (e), (h), and (k) by
the red dashed line (in arbitrary units). The peak pump strengths are (c)–(e) 
↑/
↓ = 5.00, (f)–(h) 20.0, and (i)–(k) 30.0. All other parameters
are provided in Table I. Note that here the time axis is in linear scale.
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FIG. 12. Mode competition with pulsed excitation for strong coupling, �R = 0.4 eV. (a) Time-integrated pump dependence curves and
(b) occupations at different k modes for selected pump powers. On the right (c)–(k): (top and middle rows) time evolution of photon population
at different modes and (bottom row) population inversion of the two-level system at various pump strengths. The excitation pulse has a Gaussian
time dependence centered at around 16 ps with full width at half-maximum of around 4 ps. The pulse profile is shown in (e), (h), (k) by the
red dashed line (in arbitrary units). The peak pump strengths are (c)–(e) 
↑/
↓ = 5.00, (f)–(h) 20.0, and (i)–(k) 30.0. All other parameters are
provided in Table I. Note that here the time axis is in linear scale.

switches from k = 5 to 0 similar to the continuous pump case
discussed in Sec. III. However, here the lasing mode switches
from k = 0 back to k = 5 as the population decays. Through-
out the studied pump range, the higher k = 6 mode gains large
population at the onset of lasing. This is also visible in the
time-integrated threshold curve and populations in Figs. 11(a)
and 11(b): occupation of the k = 6 mode follows quite closely
that of the k = 5 mode. As shown by Figs. 11(h) and 11(k), at
higher pump strengths the two-level systems have very high
inversion before the onset of lasing, which is likely connected
to excess gain, enough to trigger lasing in several modes.

As noted above, considering time-dependent gain spectra
present some issues with interpretation [46]. The steady-state
spectra presented in Sec. IV can, however, provide some in-
tuition on how the gain and photoluminescence might shift
under time-dependent population inversion. For example, at
weak coupling, the peak of the gain switched from k = 5 to
0 mode when the (continuous) pump strength was increased
from 0.30 to 0.70. Here in the pulsed case, the lasing peak
switches in a qualitatively similar way (both as a function of
pump strength as well as in time).

B. Strong-coupling regime

At strong coupling, for pulsed excitation we observe again
rich switching dynamics. At low pump strength, as shown in
Figs. 12(c) and 12(d), lasing starts at k = 4 mode and switches
to a higher k = 5 mode before the population decays. At
higher pump strengths, lasing starts in the high k = 7 mode
and undergoes switching via k = 5 to 4 and back to k = 5.
The duration of the k = 7 lasing coincides with the time that
〈σz〉, shown in Figs. 12(h) and 12(k), remains clamped close to

0 by polariton lasing. This duration grows upon increasing the
pump strength. The switching sequence to the lower k modes,
5-4-5, occurs during the decay of 〈σz〉 in a timescale that we
observe to be roughly independent of the pump strength (we
confirmed this up to pump amplitude 
↑/
↓ = 150). This
timescale is around 40 ps which corresponds to the decay
times of spontaneous emission and cavity modes (Table I).

Similar to the weak-coupling case, for a short time at
the onset of lasing, multiple modes are highly occupied,
which contributes to the time-integrated populations shown in
Figs. 12(a) and 12(b).

VI. DISCUSSION

By simulating the time evolution of the photon population,
we have explored the dynamics of mode switching, behav-
ior which could not be seen if only the steady-state result
is studied. For example, in Figs. 2(c) and 2(f), the steady-
state result would show single-mode (k = 0) lasing whereas
the time evolution reveals that a higher-energy mode (k =
5) is lasing at earlier times. Furthermore, when comparing
simulations to experiments dealing with fast dynamics, the
experimental measurement is often restricted to observing the
time-integrated spectrum, which may lead to incorrect inter-
pretations of the properties of the system (see Appendix B).
Especially in experiments with fast pulsed excitation, it is
common to record time-integrated spectra. Here we have
shown that for pulsed excitation the lasing mode can tempo-
rally switch such that the time-integrated spectra will exhibit
several lasing peaks (or a broadened peak with substructure,
depending on the mode spacing and resolution of the mea-
surement apparatus). Resolving the time evolution is therefore
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important in describing the behavior of such systems both in
simulations and in experiments.

From the gain calculations we can generally conclude that
lasing occurs at a mode (or modes) where there is a sharp
positive peak in the gain spectrum. The results suggest that if
several modes have positive gain, the mode with the highest
positive gain peak will win out the lasing mode competi-
tion. In the weak-coupling case the highest peak in the gain
spectrum simply switches from a higher k = 5 mode into the
k = 0 mode, given by the different thresholds and gradients of
each mode. In the strongly coupled system, the observed shift
of the lasing mode towards higher k modes originates from
the shifting of both the gain and the polariton modes toward
higher energies as pump is increased.

We believe that observing mode competition effects such
as those shown here is realistic in current experiments. In this
paper we used a loss rate of 0.1 meV for both the cavity modes
and the excitons. This corresponds to lifetimes of ∼40 ps
(see Table I for all simulation parameters). Under continuous
pumping, the lasing starts at around t = 100 ps (t = 10 ps) in
the weak- (strong-) coupling case. As shown in Fig. 3, the time
that it takes for the mode switching to occur depends strongly
on the pump strength. Nevertheless, we can take examples
from our data. In the weak- (strong-) coupling case with
continuous pumping, at pump strength 
↑/
↓ = 0.70 (1.30),
the switching occurs at around t = 1000 ps (t = 100 ps), i.e.,
after 10 times the time required for lasing to start, or 25 times
(2.5 times) the cavity mode lifetime. Another example can be
drawn from the pulsed excitation scheme, where the lasing
mode is shown to undergo several switching events within
80–120 ps, or 2–3 times the cavity lifetime, from the arrival of
the excitation pulse. The temporal switching of lasing modes
could be resolved by, e.g., a streak camera.

We note that the cavity lifetime used in the simulations is
rather long for an organic polariton system. Cavity lifetimes
of the order 10–100 ps are typical for inorganic polariton
systems, whereas in organic systems, the lifetimes are typi-
cally in the picosecond scale [13]. The choice of simulation
parameters in this study is based on our earlier works [36,39],
and we stress here that the results are similar for shorter
lifetimes.

Multimode polariton lasing could potentially be of use for
technological applications. Mode switching phenomena could
be used in optical information processing in a similar fashion
as polariton switches [48,49] and transistors [50,51] (based on
on and off switching of the output intensity of a single-mode
condensate) have been proposed. Furthermore, when a system
is at a point where multiple modes are lasing in the steady
state, even a small disturbance in the operating conditions
may push the system from one configuration to another, which
could be utilized in sensing applications.

The research data underpinning this publication can be
accessed at [52].
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APPENDIX A: DETAILS OF GENERALIZED
GELL-MANN MATRICES

In this Appendix we provide mathematical details of
the generalized Gell-Mann matrix representation of the
molecules. Gell-Mann matrices which have previously been
used, e.g., in describing the strong interaction in particle
physics [53,54]. Their commutation and product rules are
given by

λi = λ
†
i , Trλi = 0, Tr[λiλ j] = δi j,

[λi, λ j] = 2i fi jkλk, λiλ j = ζi jkλk + 2

Nλ

δi j,

where we may write ζi jk = i fi jk + ti jk and Nλ is the dimension
of the matrices. The tensors fi jk and ti jk are the symmetric and
antisymmetric structure constants, respectively. Gell-Mann
matrices allow for expanding any linear Nλ × Nλ operator in
this basis as

A = 1

Nλ

Tr[A]1Nλ
+ 1

2
Tr[Aλi]λi. (A1)

Using the above results, we may identify the coefficients in
the second-order cumulant equations [Eq. (5)] as follows:

φi = 2i
Nv

fipr
∑

μ γ μ
p γ μ∗

r ,

βi j = 1
2 Bp( fix p j − i fiy p j ),

FIG. 13. Time-integrated results with continuous excitation for
weak and strong coupling. (a), (c) Pump dependence curves and
(b), (d) occupations at different k modes. The mode occupations in
(b) and (d) are shown for selected pump powers. The weak-coupling
case (�R = 0.1 eV) is shown on the top row and the strong-coupling
case (�R = 0.4 eV) on the bottom row.
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Xi j = ξix jx + iξiy jx ,

ξi j = 2 fip jAp + i( fipsζrs j + frisζsp j )
∑

μ γ μ
p γ μ∗

r .

APPENDIX B: TIME-INTEGRATED THRESHOLD CURVES

In this Appendix we present threshold curves and popu-
lation distributions obtained by time integrating the photon

mode populations until steady state has been reached. The
results shown in Fig. 13 represent a common case in ex-
perimental measurements of a system with fast dynamics,
where, instead of having access to the temporal evolution of
the photon populations, mode populations are collected by
integrating over a finite time. Our results show that observing
multiple peaks in the time-integrated mode populations can
refer to temporal switching between modes.
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