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In most social and information systems the activity of agents generates rapidly evolving time-varying
networks. The temporal variation in networks’ connectivity patterns and the ongoing dynamic processes are
usually coupled in ways that still challenge our mathematical or computational modelling. Here we analyse a
mobile call dataset and find a simple statistical law that characterize the temporal evolution of users’
egocentric networks. We encode this observation in a reinforcement process defining a time-varying
network model that exhibits the emergence of strong and weak ties. We study the effect of time-varying and
heterogeneous interactions on the classic rumour spreading model in both synthetic, and real-world
networks. We observe that strong ties severely inhibit information diffusion by confining the spreading
process among agents with recurrent communication patterns. This provides the counterintuitive evidence
that strong ties may have a negative role in the spreading of information across networks.

I
n the last ten years the access to high resolution datasets from mobile devices, communication, and pervasive
technologies has propelled a wealth of developments in the analysis of large-scale networks1–4. A specific effort
has been devoted to characterize how network’s structure influences the behaviour of dynamical processes

evolving on top of them, an extremely important question for the understanding and modelling of the spreading
of ideas, diseases, informations, and many others dynamical phenomena5–9. However, the large majority of
approaches put forth so far uses a time-aggregated representation of network’s interactions, neglecting the
time-varying nature of real systems connectivity patterns. This approximation is extremely convenient for the
sake of mathematical and computational analysis, but it is prone to introduce strong biases in the description of
the dynamical processes occurring on the network2,10–28. Indeed, the concurrency, and time ordering of interac-
tions are crucial in a correct description of network’s processes11,23,29–32.

The characterization and modelling of time-varying networks are still open and active areas of research33,34. In
this context, relational event-based network analysis enable to model network dependent, time-stamped event
data3 as well as human, and organizational interactions35,36. Appropriate dyadic level statistics govern the rate at
which actors send out communications to their neighbours encoding traditional network structures as well as
actor level attributes or even the history of actor level events for the sender. A simplification of this framework has
been recently proposed by the activity-driven generative algorithm for time-varying networks23. This approach is
based on the activity potential, a time invariant function characterizing agents’ interactions. This class of models
generates activity-driven networks that provides a simplified picture of highly dynamical networks23–26. The
activity-driven framework has considered only memoryless generative processes so far. At each time step, nodes
select their partners with a uniform probability. The model thus neglects the heterogeneous nature of individuals’
social interactions. Indeed, in real social systems, agents have strong ties defined as connections that are fre-
quently repeated, and weak ties signalling occasional interactions. The heterogeneity of social ties is a key
ingredient of social networks and plays a crucial role on diffusion processes37. However, a full understanding
of the mechanism driving their formation and their effects on dynamical phenomena, explicitly considering the
network’s time-varying nature, is still missing.

In this paper we propose an extension of the activity-driven framework to model and capture the emergence of
heterogeneous ties in social networks. We perform a thorough analysis of a large-scale mobile phone-call (MPC)
dataset containing time-stamped communication events of more than six million individuals (for detailed
description see Methods). In this system, the interaction dynamics of a node (ego) can be explained by intro-
ducing simple memory effects encoded in a non-Markovian reinforcement process. The introduction of this
mechanism in the activity-driven model allows capturing the evolution of the egocentric network of each actor in
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the system. Within this new framework we study a family of informa-
tion propagation processes, namely the rumour spreading model38,39.
We tackle the case in which the dynamics of contacts and the spread-
ing process are acting on the same time-scale. Interestingly, both in
synthetic and real time-varying networks we find that memory ham-
pers the rumour spreading process. Strong ties have an important
role in the early cessation of the rumor diffusion by favouring inter-
actions among agents already aware of the gossip. The celebrated
Granovetter conjecture that spreading is mostly supported by weak
ties40, goes along with a negative effect of strong ties. In other words,
while favouring locally the rumor spreading, strong ties have an
active role in confining the process for a time sufficient to its
cessation.

Results
We focus on a prototypical large scale communication network
where mobile phone users are nodes and the calls among them links.

The common analysis framework for such systems neglects the
temporal nature of the connections in favour of time-aggregated
representations. In these representations, the degree k of a node
indicates the total number of contacted individuals, while the weight
of a link w (the strength of the tie) the total number of calls between
the pair of connected nodes. The distributions of these quantities are
shown in Fig. 1.a, and b. Interestingly, they are characterized by
heavy-tailed distributions. Although, the study of the time-aggre-
gated network provides basic information about its structure, it can-
not inform us on the processes driving its dynamics. This intuition is
clearly exemplified in Fig. 2.a and b. These figures show two snap-
shots of the network at different times covering few hours of calls in a
town. The two plots capture dynamical interaction patterns not vis-
ible from the aggregated network representation (Fig. 2.c).

Here we aim to study and identify the mechanisms driving the
evolution, and dynamics of the egocentric networks (egonets) of the
global network. Egonets were thoroughly investigated earlier in psy-
chology and sociology41–43. Some other characteristics have been
recently mapped out with the availability of large-scale data44–48.
We tackle this problem from a different angle focusing on the activity
rate, a, that allows describing the network evolution beyond simple
static measures. It is defined as the probability of any given node to be
involved in an interaction at each unit time. The activity distribution
is also heavy-tailed (see Fig. 1.c), but contrary to degree and weight, is
a time invariant property of individuals23. It does not change by using
different time aggregation scales23,25. This quantity is the basic ingre-
dient of the activity-driven modelling framework23. Here we extend
this approach by identifying, and modelling another crucial com-
ponent: the memory of each agent. We encode this ingredient in a
simple non-Markovian reinforcing mechanism that allows to repro-
duce with great accuracy the empirical data.

Egocentric network dynamics. In general, social networks are
characterized by two types of links. The first class describes strong
ties that identify time repeated and frequent interactions among
specific couples of agents. The second class characterizes weak ties
among agents that are activated only occasionally. It is natural to
assume that strong ties are the first to appear in the system, while
weak ties are incrementally added to the egonet of each agent1. This
intuition has been recently confirmed49 in a large-scale dataset and
indicates a particular egocentric network evolution. In order to
quantify it, we measure the probability, p(n), that the next
communication event of an agent having n social ties will occur via
the establishment of a new (n 1 1)th link. We calculate these
probabilities in the MPC dataset averaging them for users with the
same degree k at the end of the observation time. We therefore

Figure 1 | Distributions of the characteristic measures of the aggregated
MPC network, and activity-driven networks. In panels (a), and (d) we plot

the degree distributions. In panels (b), and (e) we plot the weight

distributions. Finally, in panels (c), and (f) we plot the activity

distributions. In each figure grey symbols are assigning the original

distributions while coloured symbols are denoting the same distributions

after logarithmic binning. Measured quantities in MPC sequences were

recorded for 182 days (see Methods). In panels (d), (e), and (f) solid lines

are assigned to the distributions induced by the reinforced process, while

dashed lines denote results of the original memoryless process. Model

calculations were performed with parameters N 5 106, 5 1024 and

T 5 104.

Figure 2 | Dynamics of the MPC network. Panels (a), and (b) show calls within 3 hours between people in the same town in two different time windows.

Panel (c) presents the total weighted social network structure, which was recorded by aggregating interactions during 6 months. Node size and colors

describe the activity of users, while link width and color represent weight.
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measure the quantity pk(n) for the egonets with the same degree k
and n # k. The empirical pk(n) functions for different degree groups
are shown in Fig. 3 inset (coloured symbols). Interestingly, the
probabilities are decreasing with n for each degree class denoting a
slow down in the egocentric network evolution. The larger the
egocentric network, the smaller the probability that the next
communication will be with someone who was not contacted
before. Agents have memory. They remember their social ties and
tend to repeat interactions on these already established connections.

The empirical growth of the egonet can be captured by a simple
mechanism. We find that the probability that a node, characterized
by a social circle of size n, will establish a new tie is well fitted by the
expression:

p nð Þ~1{
n

nzc
~

c
nzc

: ð1Þ

Analogously, the probability of having an interaction with someone
who is already in the egocentric network is n/(n 1 c). Here c is an
offset constant depending on the degree class considered. By fitting
the function in Eq. 1 on the empirical data (solid lines in Fig. 3 inset)
we can determine the corresponding constant c for each degree group
(see Supplementary Materials (SM) for the obtained values). Using
the measured c values we can rescale the empirical pk(n) functions
as

pk n=cð Þ~1= n=cz1ð Þ, ð2Þ

and collapse the data points of different degree groups on a single
curve (see Fig. 3 main panel). This remarkable result suggests that the
same mechanism is driving the evolution of the egonets of all indi-
viduals independently of their final number of connections.

Activity-driven network model with memory. The basic activity-
driven network model23 considers N nodes, each one assigned with
an activity probability per unit time ai 5 gxi. Here xi denotes the
activity potential drawn from a desired F(xi) distribution (xi[ ,1½ �,
fixes the minimal value of activity in the system) and g is a rescaling
factor that fixes the average number of active nodes per unit time to
gÆxæN. The generative network process is defined according to the
following rules: i) At each discrete time step t the network Gt starts
with N disconnected vertices; ii) With probability aiDt each vertex i
becomes active and generates m links that are connected to m other
randomly selected vertices; iii) At the next time step t 1 Dt, all the
edges in the network Gt are deleted. In this formulation inactive

nodes can receive connections. Different rules can be easily
implemented to model different scenarios50. Without loss of
generality we fix the parameters g 5 1, 5 1023, and Dt 5 1.
Furthermore, in order to suit the MPC dataset we set m 5 1, i.e.
each call take place between two people. We consider heavy-tailed
distributions of activity i.e. F(x) / x2n, that reproduce the behaviour
observed in real data for a number of real-world networks23,25,51,52.
Inspired by measurements in the MPC dataset we set the exponent to
n 5 2.8 (see Fig. 1.c and f).

In the basic activity-driven model the network dynamics is mem-
oryless (ML). At each time step all connections previously estab-
lished are removed, and the new one are created with no memory
of the past. Here we extend the modelling framework introducing a
simple reinforcement process in which nodes keep remembering
who they have connected46,53,54. Inspired by the observations in the
MPC dataset, we impose a reinforcement mechanism in which an
active node with n previously established social ties will contact
randomly a new node with probability p(n) 5 c/(n 1 c).
Otherwise, with probability 1 2 p(n) 5 n/(n 1 c) it will interact with
a node already contacted, thus reinforcing earlier established social
ties. In this case, the selection is done randomly among the n neigh-
bours. This model, that in the following we will denote as RP (rein-
forcement process), is non-Markovian. Memory is explicitly
introduced in the egonetwork dynamics as each node keeps remem-
bering the list of already established ties. We fix c 5 1 for all the nodes
and we leave the generalization of the model where this value is
correlated with node properties for future studies (indeed we show
in the SM how the emerging network properties are changing for
different values of c).

A side by side comparison of the time-aggregated representations
of networks generated by the ML and RP models (using the same
parameters) is shown in Fig. 4-a and b. The ML dynamics (Fig. 4.a)
induces an aggregated network with a degree distribution P(k) / k2c

where c 5 n and a weight distribution decaying exponentially23,55.
This is also confirmed by large scale simulation results reported in
Fig. 1.d and e (dashed lines). In case of the RP dynamics (Fig. 4.b), the
memory process induces a considerably different structure. These
effects are quantified in Fig. 1.d, e, and f (solid lines). We observe a
degree distribution that is heavy-tailed but more skewed in the RP
model than the ML. This distribution is qualitatively matching the
corresponding empirical measure in Fig. 1.a. Furthermore, the RP
model generates heterogeneous weight distributions (see Fig. 1.e
solid line) capturing extremely well real data. This is not the case
in the ML model where the absence of memory induces exponential
weight distributions far from reality (see Fig. 1.e dashed line). The RP
dynamics not only induces realistic heterogeneities in the network
structure, but also controls the evolution of the macroscopic network
components. Indeed, due to the reinforcement mechanism, the lar-
gest connected component (LCC) in RP networks grows consid-
erably slower than in the case of ML models (for illustration see
Fig. 5.a). This is an important feature because dynamical process
evolving on time-varying networks will progress with a time-scale
that cannot be smaller than the LCC growth time-scale. As con-
sequence, dynamical phenomena taking place on time-varying net-
works with memory will evolve at a slower rate than in memoryless
time-varying networks. In the case of epidemic spreading for
example, the memory in individuals’ connections patterns shifts
the epidemic threshold to larger values, and more in general reduces
the final number of infected nodes (see SM for details).

Rumour spreading processes on activity-driven networks. In order
to study the effects of the emergence of strong ties on dynamical
processes taking place in the network, we consider the classic
rumor spreading process38. In this scheme, each node can be in
three possible states; ignorant (I), spreader (S) or stifler (R). We
denote the densities of individuals in each state at time t as i(t) 5

Figure 3 | The pk(n) probability functions calculated for different degree
groups in the MPC network. In the inset, symbols show the averaged pk(n)

for groups of nodes with degrees between the corresponding kmin���k
2
min{1

values. Continuous lines are the fitted functions of Eq.1 with c parameter

values showed in the legend. The main panel depicts the same functions

after rescaling them using Eq.2. The continuous line describes the

analytical curve of Eq.2.
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I(t)/N, s(t) 5 S(t)/N, and r(t) 5 R(t)/N accordingly. At T 5 0
everyone is ignorant except the selected single or multiple seeds
who are set to be spreaders. At the time of an interaction the states

of connected nodes can change by the following rules: (a) IzS ?
l

2S

or (b) SzR ?
a

2R or (c) SzS ?
a

2R. Here l and a are the transition
rates into the states of spreader or stifler accordingly. In all
measurement (if it is not noted otherwise) we set l 5 1 and use a
as a parameter. We assume that only their ratio matters for the
spreading behaviour (supporting results are summarized in SM).
Using these rules the spreaders communicate with probability l
the rumor to connected agents that become spreaders on their
turn. If the spreaders however find that a contacted agent is
already aware of the rumours, with probability a loose interest in
the rumours and stop spreading it thus becoming a stifler. In the long
run the system always reaches an equilibrium state where all
spreaders have turned into stiflers, hti(t) 5 0, and htr(t) 5 0.
Different parameters provide different penetration of the rumor in
the network. Interesting quantities to study are the velocity of
spreading of the rumor and the total number of agents aware of
the gossip at the end of the process (stiflers).

Here we are interested in studying the differences on the final
contagion densities in networks with or without memory (Fig. 5.b
main panel), all other parameters of the rumor spreading model
being equal. We set l 5 1.0 and a 5 0.6 and in the case of ML
networks at the end of the rumor spreading ,85% of the network

is aware of the rumor. Instead, in the RP case the final contagion
proportion is only slightly more than 60% of the total nodes. This
hampering of the contagion process is also shown in Fig. 4.a and b for
the same set of parameters. The differences are evident not only in
the diffusion patterns, but also in the level of contagion. In the RP
network, the rumor has spread only locally and reached 6 nodes
other than the seed, while during the same time in the ML network
the information reached 92 nodes out of 300.

To investigate in more details rumor spreading processes on dif-
ferent activity-driven models, we perform further simulations using
different initial conditions and varying the rumours model para-
meters. In particular, we initiate the spreading from (i) the most active
seed, (ii) one randomly selected seed or (iii) ten random seeds. We
then simulate each process for T 5 5 3 104 time steps, and measure
the average final proportion of nodes aware of the rumor Æreqæ. In each
case, we perform 103 (or 104 for smaller systems) simulations in
identically parametrized ML and RP networks, where the process lasts
at least 103 steps. To highlight differences arising between the rumor
propagation processes evolving on the two network dynamics, we

kept l 5 1 and calculate the rRP
eq að Þ

D E.
rML

eq að Þ
D E

ratios as function

of a. Results in Fig. 6 indicate marginal size effects but strong depend-
ence on the initial conditions. All corresponding ratios are decreasing
with a, highlighting increasing differences between the fraction of
population reached by the rumor in the two network dynamics.
The largest differences are observed for a single initial seed, especially
in the case of the most active nodes. These numerical findings can be
understood by considering that the rumor spreading and the rein-
forcement process are occurring on comparable time scales. The
reinforcement mechanism induces recurrent interactions that
enhance the cessation of rumor spreading by ‘‘pair annihilation’’ of
nodes connected by strong ties. This effect is controlled by a and can
induce up to ,45% relative difference in the population reached by
the rumor in the case of the RP model.

In order to understand the biases induced in the dynamical prop-
erties of rumor spreading processes by the time aggregated repres-
entation of the networks, we consider topologies generated by a
time-aggregated view of ML and RP models (see Fig. 5.b inset)
and compare the results with their time-varying counterparts (see
Fig. 5.b main panel). The results obtained show striking differences
between the velocity of spreading. Indeed, the time for the rumor to
reach a consistent fraction of nodes varies four orders of magnitudes
in the two cases, with a very slow spreading dynamics in time-
varying networks. Interestingly, this behaviour is general to all
spreading processes. The observed results indicate a clear difference
between the dynamical properties of processes taking place on time
aggregated or time resolved networks. Our findings confirm that,

Figure 4 | Rumour spreading processes in (a) ML and (b) RP activity-driven networks. Node colors describe their states as ignorant (blue), spreader

(red) and stifler (yellow). Node sizes, color, and width of edges represent the corresponding degrees and weights. The parameters of the simulations are

the same for the two processes: N 5 300, T 5 900, l 5 1.0, and a 5 0.6. The processes were initiated from a single seed with maximum strength.

Figure 5 | In panel (a) we show the sizes of the largest connected
components (LCC) as a function of time for time aggregated ML and RP
networks. Simulations were run with the same parameters considering N

5 105 nodes. In panel (b) we show the stifler r(t) density in rumor

spreading simulations in ML (main panel, blue dashed line) and RP (main

panel, purple solid line) networks with N 5 105 nodes. We set l 5 1.0 and a

5 0.6 and run the simulations for T 5 105 time steps. The rumor spreading

processes were simulated with the same parameters on aggregated ML

(inset, yellow dashed line) and RP (inset, brown solid line) networks

integrated for T time steps.
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when the time-scale of the processes is comparable with the evolu-
tion of the network, static representations of the system might
introduce strong biases on the correct characterization of the
phenomenon.

Rumour spreading processes on real time-varying networks. To
verify the picture emerging from synthetic time-varying networks,
we study the properties of rumor spreading processes in a real world
time-varying system. In particular, we consider the MPC dataset and
simulate the rumor spreading by using the actual sequence of calls
(for more details see Methods)16. At the same time to directly contrast
the role of memory and repeated interactions we defined a random
null model defined by keeping the caller of each event as it appears in
the MPC dataset, but selecting a callee randomly. In this way, we
obtain a sequence recovering the original activities and shuffled
egocentric networks. Furthermore, inter-event correlations are
removed. The corresponding simulation results in Fig. 7.a shows a
clear difference in the speed of spreading and final density of stifler
nodes. While in the null model everyone becomes stifler at the end of
the simulation, by using the original interaction sequences less than
40% of the network is aware of the rumor. This effect is even more
clear in Fig. 7.b where their relative difference is rapidly increasing
and becomes several orders of magnitude larger for larger a values.
Different initial conditions are playing similar roles as we observed in
synthetic networks. The effect of memory and repetitive interactions
are the strongest if we initiate the rumor from the most active
individual. We observed similar but weaker effects selecting a
single or multiple random seeds.

We also measure the surviving probability Ps(t) defined as the
probability that a rumor spreading process survives (still contains
nodes actively spreading the rumor) up to time t56,57. We show Ps(t)
for different a in Fig. 7.c. The initial scaling of Ps(t) shows that
generally the rumor can spread only locally due to repeated interac-
tions occurring on strong links between the seed and its neighbour-
hood. A very different behaviour emerges if we remove the effect of
memory and repeated interactions considering the same quantities
measured on the null model (see Fig. 7.d). Here, as the initial effect of
repeated interactions vanishes and all realizations survive until the
rumor covers the whole network. Note that similar results were
obtained for activity-driven model processes presented in the SM.
This highlights the significant role of recurrent interactions via
strong ties. They play as bottleneck for the information propagation
controlling the global outbreak of rumor spreading phenomena.

Discussion
We have presented the study of a large scale dataset of social inter-
actions via mobile phone calls. We provided a simple empirical char-
acterization of the effects of memory in its microscopic dynamical
evolution. Considering the empirical evidences, we defined a novel
generative model for time-varying networks with memory. The
model mirrors many of the structural properties observed in the real
network, like degree and weight heterogeneities, and shows the spon-
taneous emergence of non-trivial connectivity patterns characterized
by strong and weak ties. We characterize the effects of non-
Markovian and heterogeneous connectivity patterns on rumor
spreading processes. Interestingly, we find that strong ties are
responsible for constraining the rumor diffusion within localized
groups of individuals. This evidence points out that strong ties
may have an active role in weakening the spreading of information
by constraining the dynamical process in clumps of strongly con-
nected social groups. The presented results underline the subtleties
inherent to the analysis of dynamical processes in time-varying net-
works. No one-fits-all picture exists, and a classification of dynamical
process behaviour calls for a thorough analysis of each particular
processes and networks considered. Furthermore, several extensions
of the utilized framework of activity-driven networks are possible.
Examples are node-node correlations, heterogeneous dynamics, and
bursty behaviour of nodes. The present study thus offers potential
avenues for the study of dynamical processes in time-varying net-
works in complex settings where the memory of agents plays a deter-
minant role in the evolution of the connectivity patterns of the
system.

Methods
Dataset. The utilized dataset consists of 633, 986, 311 time stamped mobile-phone
call (MPC) events recorded during 182 days with 1 second resolution between 6, 243,
322 individuals connected via 16, 783, 865 edges. The dataset was recorded by a single
operator with 20% market share in an undisclosed European country (ethic statement
was issued by the Northeastern University Institutional Review Board). To consider
only true social interactions, and avoid commercial communications we used
interactions between users who had at least one pair of mutual interactions.

Figure 6 | The rRP
eq

.
rML

eq ratios of average stifler densities at equilibrium.
The simulations for sizes 105 and 104 were run with various initial

conditions (see legend). The averages were calculated at T 5 5 3 104

considering only realizations that reached equilibrium after 103 time steps.

Figure 7 | In panel (a) we show the stifler r(t) density in data-driven
rumor spreading simulations run on top of the MPC dataset (purple solid
line) and the MPC null model (blue dashed line) with a 5 0.1. Panel (b)

depicts the rMPC
�

rrand
MPC ratios of average stifler densities at equilibrium.

Simulations of panels (a) and (b) were run with various initial conditions

(see legend) and averaged over 103 realizations. In panels (c) and (d) we

plot the surviving probability, Ps(t), of rumor spreading processes initiated

from a single random seed in the real MPC sequence and the MPC null

model respectively. Probability values of panels (c) and (d) were averaged

over 104 realizations.
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Data-driven model. In data-driven simulations we initiated the rumor spreading
from a randomly selected call event of a randomly selected user in the MPC network.
We then run the process for the length of the recorded period. When a realization
arrived to the last event of the sequence, we used a periodic temporal boundary
condition as we continued the process with the first event of the sequence16. However,
as the simulations were executed no longer than the recorded time period, no event
was used twice during one simulation run.
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time window size and placement on the structure of an aggregated
communication network. EPJ Data Science 1, 4 (2012). URL http://www.
epjdatascience.com/content/1/1/4.

50. Hoppe, K. & Rodgers, G. J. Mutual selection in time-varying networks. Phys. Rev.
E 88, 042804 (2013).

51. Cattuto, C. et al. Dynamics of Person-to-Person Interactions from Distributed
RFID Sensor Networks. PLoS ONE 5, e11596 (2010). URL http://dx.doi.org/10.
1371/journal.pone.0011596.

52. Chmiel, A., Kowalska, K. & Holyst, J. A. Scaling of human behavior during portal
browsing. Physical Review E 80, 066122 (2009). URL http://dx.doi.org/10.1103/
PhysRevE.80.066122.
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