
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by you for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

Evangelista Belo, João Marcelo; Lystbæk, Mathias N.; Feit, Anna Maria; Pfeuffer, Ken; Kán,
Peter; Oulasvirta, Antti; Grønbæk, Kaj
AUIT - the Adaptive User Interfaces Toolkit for Designing XR Applications

Published in:
UIST 2022 - Proceedings of the 35th Annual ACM Symposium on User Interface Software and Technology

DOI:
10.1145/3526113.3545651

Published: 29/10/2022

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY

Please cite the original version:
Evangelista Belo, J. M., Lystbæk, M. N., Feit, A. M., Pfeuffer, K., Kán, P., Oulasvirta, A., & Grønbæk, K. (2022).
AUIT - the Adaptive User Interfaces Toolkit for Designing XR Applications. In UIST 2022 - Proceedings of the
35th Annual ACM Symposium on User Interface Software and Technology Article 48 (UIST 2022 - Proceedings
of the 35th Annual ACM Symposium on User Interface Software and Technology). ACM.
https://doi.org/10.1145/3526113.3545651

https://doi.org/10.1145/3526113.3545651
https://doi.org/10.1145/3526113.3545651

AUIT – the Adaptive User Interfaces Toolkit for Designing XR
Applications

João Belo Mathias N. Lystbæk Anna Maria Feit
joaobelo@cs.au.dk Aarhus University Saarland University, Saarland
Aarhus University Denmark Informatics Campus

Denmark Germany

Ken Pfeufer Peter Kán Antti Oulasvirta
Aarhus University Vienna University of Technology Aalto University

Denmark Austria Finland

Kaj Grønbæk
Aarhus University

Denmark

Figure 1: AUIT supports creators defning adaptation policies for UI elements that combine multiple objectives for XR inter-
faces. In this example, a video call UI is gradually extended with adaptation objectives to render it visible and within reach.
Complexity rises with more potentially competing objectives and context changes. AUIT simplifes the design of adaptations
by fnding the best compromise via a multi-objective solver.

ABSTRACT
Adaptive user interfaces can improve experiences in Extended Re-
ality (XR) applications by adapting interface elements according
to the user’s context. Although extensive work explores diferent
adaptation policies, XR creators often struggle with their imple-

mentation, which involves laborious manual scripting. The few
available tools are underdeveloped for realistic XR settings where it
is often necessary to consider conficting aspects that afect an adap-
tation. We fll this gap by presenting AUIT, a toolkit that facilitates
the design of optimization-based adaptation policies. AUIT allows
creators to fexibly combine policies that address common objec-
tives in XR applications, such as element reachability, visibility, and
consistency. Instead of using rules or scripts, specifying adaptation
policies via adaptation objectives simplifes the design process and

This work is licensed under a Creative Commons Attribution International
4.0 License.

UIST ’22, October 29-November 2, 2022, Bend, OR, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9320-1/22/10.
https://doi.org/10.1145/3526113.3545651

enables creative exploration of adaptations. After creators decide
which adaptation objectives to use, a multi-objective solver fnds
appropriate adaptations in real-time. A study showed that AUIT
allowed creators of XR applications to quickly and easily create
high-quality adaptations.

CCS CONCEPTS
• Human-centered computing → Systems and tools for in-
teraction design; Gestural input; Mixed / augmented reality;
Virtual reality; User interface toolkits.

KEYWORDS
extended reality, multi-objective optimization, adaptive user inter-
faces, toolkit, context-awareness

ACM Reference Format:
João Belo, Mathias N. Lystbæk, Anna Maria Feit, Ken Pfeufer, Peter Kán,
Antti Oulasvirta, and Kaj Grønbæk. 2022. AUIT – the Adaptive User In-
terfaces Toolkit for Designing XR Applications. In The 35th Annual ACM
Symposium on User Interface Software and Technology (UIST ’22), October
29-November 2, 2022, Bend, OR, USA. ACM, New York, NY, USA, 16 pages.
https://doi.org/10.1145/3526113.3545651

https://orcid.org/0000-0002-3403-2970
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3526113.3545651
https://doi.org/10.1145/3526113.3545651
mailto:joaobelo@cs.au.dk

UIST ’22, October 29-November 2, 2022, Bend, OR, USA Belo et al.

1 INTRODUCTION
Extended Reality (XR) is a medium that has gotten more widespread
over the past years and will likely continue growing in the years to
come [10]. Hardware improvements push the boundaries of what
these applications can achieve, and sectors such as entertainment
and manufacturing contribute towards this computing platform
increasing popularity. However, easy-to-use XR applications are
still challenging to develop. In contrast to traditional desktop or
mobile applications, they are not confned to a 2D screen, but merge
with the user’s real-world environment to diferent extents. A key
challenge of XR applications is how well they adapt to changes in
the user’s situation and surroundings [37].

The design of an adaptive UI for XR applications involves a high
degree of complexity. As the user moves in the environment, con-
sidering context changes like his position or surrounding objects
is crucial for creating an adaptation policy that provides a usable
UI. Figure 1 illustrates one example scenario where a user has a
foating video call interface close to him. The user might be un-
able to reach the virtual buttons, and positions outside his feld of
view or colliding with physical objects are inappropriate. Thus, the
environment’s geometry and the user’s position constantly afect
the visibility and reachability of the UI element - two fundamental
usability factors of XR applications.

To address both requires considering multiple adaptation objec-
tives [17]. However, these are typically not independent and might
compete with each other. For example, moving the video call to
prevent occlusion might position it outside the reach of a user. Such
interactions grow as the number of UI elements and the complex-

ity of the environment increase. They are hard for developers to
foresee and resolve, increasing the difculty of creating adaptive
XR interfaces.

Over the last years, HCI researchers have proposed various meth-

ods to adapt interface elements in XR applications. They were
concerned with the visibility and integration of virtual elements
into the physical environment [9, 23, 37, 52] and their reachability
or ergonomics [16, 30]. When considering criteria to adapt, these
typically address independent aspects of the interface, such as posi-
tion and content [37]. However, these methods tend to be custom
tailored to specifc applications and are difcult for creators to
implement in practice. Existing tools for developing XR applica-
tions [45] only ofer naive adaptation policies that are inefective
when multiple usability aspects come together.

To close this gap, we propose AUIT, the Adaptive User Interfaces
Toolkit for supporting the design of XR applications. AUIT sim-

plifes the adaptation of virtual elements to users’ contexts and
enables the combination of multiple adaptation objectives. It also
ofers a general framework that unifes prior research to make it
available to practitioners. We achieve this goal by identifying fve
design concepts that adaptive user interfaces must implement:

Adaptation objectives Describe adaptation behaviors to address,
such as visibility and reachability of UI elements.

Solvers Algorithms to compute adaptation candidates for UIs, re-
solving conficts between objectives.

Context widgets Process raw sensor data into higher abstraction
levels to inform adaptations.

Adaptation triggers The logic for when to invoke solvers and
when to apply the adaptation proposals to the UI.

Property transitions How properties of virtual content transi-
tion to a new state when adaptations are triggered.

AUIT implements seven adaptation objectives that creators can
fexibly assign to UI elements to address two fundamental usability
issues of XR interfaces: visibility and reachability. AUIT automates
confict resolution by continuously optimizing the interface and
determining the best trade-of between the chosen adaptation ob-
jectives using a multi-objective solver. Creators can choose between
diferent adaptation triggers for initiating the adaptation, either at
fxed time intervals or when the solver fnds substantial UI improve-

ments. They can also select property transitions to decide how the
UI transitions to its new state. AUIT is implemented as a Unity
extension that creators can easily import to develop adaptive UIs
without drastic changes in their current workfow.

We evaluate AUIT’s usefulness through a user study with eight
experts who actively create XR applications as part of their jobs. We
found that the design concepts in AUIT were easy to understand for
participants, allowing for a clear separation of concerns in adaptive
UIs. The process was fast, and participants designed adaptive user
interfaces for two diferent scenarios in less than 25 minutes. They
appreciated how easy it was to combine adaptation objectives and
the quality of the results, while feeling efcient considering the
time spent and the adaptations obtained. Participants also discussed
the importance of adaptive UIs and pointed out that their current
practice was limited by manual scripting, highlighting the need for
tools to facilitate their development.

To summarize, this paper proposes AUIT, a toolkit based on a
conceptual framework to support the creation of user interfaces
that adapt to the user’s context. It allows for 1) combining diferent
adaptation objectives, 2) resolving conficts between objectives us-
ing multi-objective optimization, and 3) customizing how and when
XR content adapts. We demonstrate the utility of the toolkit through
a study where experts successfully create high-quality adaptations
for two applications using AUIT. We make the toolkit available
through a Unity package that can be extended and customized by
creators to ft their needs. AUIT makes existing research on adap-
tation methods for 3D interfaces available to creators, and ofers
a unifying framework for future work. Source code is available at
https://github.com/joaobelo92/auit.

2 RELATED WORK
Over the last decades, researchers have proposed diferent meth-

ods to adapt interfaces to improve usability. We start with a brief
overview of adaptation and optimization techniques for 2D user
interfaces. Then, we move on to research focusing on XR, start-
ing with view management techniques, followed by adaptation
techniques focusing on other usability goals. Finally, we give an
overview of related frameworks and toolkits.

2.1 Adaptation and Optimization of 2D
Interfaces

The increasing availability of mobile devices has motivated signif-
cant work on adaptive UIs. Researchers have proposed model-based

https://github.com/joaobelo92/auit

AUIT – the Adaptive User Interfaces Toolkit UIST ’22, October 29-November 2, 2022, Bend, OR, USA

approaches allowing developers to adapt applications across de-
vices based on rules and logic (e.g., MARIA/TERESA [47, 56]) and
methods that dynamically generate interfaces for multiple devices
[50]. Gajos and Weld introduced SUPPLE, an approach that uses
optimization to design UIs [21]. Similarly to SUPPLE, we use cost
functions in our optimization procedure to represent objectives
that guide adaptations in XR.

To support designers of 2D applications, researchers have ex-
plored genetic algorithms [60], other combinatorial optimization
approaches [54], and data-driven optimization [22] based on user
preferences to compute an optimal UI. The UI can also use optimiza-

tion in real-time to dynamically adapt to users’ preferences, context,
or a device’s capabilities (e.g. [8, 11, 18, 25, 55]). Such adaptations of
user interfaces are relevant on mobile devices [5, 51] that typically
have small screen sizes [20]. Recently, Todi et al. [65] presented a
method for adaptive user interfaces based on reinforcement learn-
ing. There is extensive research on adaptive 2D UIs, and we refer
to Miraz et al. [46] for a broader discussion of related work in this
area.

2.2 View Management Techniques
View management techniques address how to maintain virtual ob-
jects in the user’s view plane. These techniques focus on visibility
aspects, such as avoiding occlusion and maintaining spatial rela-
tionships of virtual objects. Pioneering work focused on algorithms
that use the upright rectangular extents of content in the view plane
to avoid occlusion, adapting object properties such as their position,
size, and transparency [3]. Grasset et al. focused on optimizing lay-
outs of elements during run-time in the 2D view plane [26], while
Tatzgern et al. explored this issue in 3D space [63]. Spatio-temporal
coherence is another relevant factor to consider in XR experiences.
Using spatial information from previous frames can help reduce
visual discontinuities. Experiments suggest that users prefer limited
update rates over continuous update rates for adaptations [40].

Other work investigated adaptive UIs to manage information
density in AR and avoid information overload, which might afect
task performance depending on the user’s cognitive load. Therefore,
researchers have developed adaptive level-of-detail (LOD) meth-

ods for AR interfaces. Tatzgern et al. [64] proposed an adaptive
information density display for AR using hierarchical clustering.
Their approach automatically groups UI elements to reduce in-
formation overload and provides the user the control to unfold
the level of detail. Several works use special sensors, such as eye-
tracking technology, to adapt how and which content to present to
the user [37, 38, 57].

View management techniques are closely related to UI adapta-
tions. AUIT aims to make this line of work available to practitioners
through a tool to adapt UIs that they can extend to support other
sources of context (e.g., eye-gaze) and objectives (e.g., less-cluttered
UI).

2.3 Adaptive User Interfaces in XR
UIs in XR pose additional challenges compared to traditional UIs
because of the higher-dimensional design space, context changes,

and broader range of interaction metaphors. Adaptive UIs are par-
ticularly important in XR scenarios using wearable [34], ubiqui-
tous [29, 61], and mobile [31] computing platforms. Oliveira and
Araujo [53] developed a context-aware AR system that adapts its
interface based on changing contexts. Their system uses adapta-
tion rules which select an appropriate UI pattern according to the
current context. To improve the usability of XR applications, cre-
ators must consider factors such as real-world geometry [23, 52],
cognitive load [37], or ergonomics [16]. Gal et al. [23] presented
a method to automatically generate object layouts in AR applica-
tions, where the virtual elements in the AR application adapt to
real-world geometry.

Ens et al. proposed a body-centric layout management technique
that keeps layouts consistent across multiple environments while
adapting to local geometric and visual features [15]. The work from
Xiao et al. [69] explores various interaction techniques that use
spatial awareness and optimization to adapt to diferent work sur-
faces. Later on, Lindlbauer et al. proposed an optimization-based
approach to automatically control when and where mixed reality
(MR) applications are shown and how much information they dis-
play, depending on the user’s cognitive load [37]. Lu and Xu [39]
studied diferent levels of automation and control of adaptive UI
in AR. Their results suggest that users prefer and perform better
when adaptations are semi-automated.

All these works show how diferent adaptation factors can im-

prove usability in XR applications. AUIT provides a novel platform
for creators to experiment with several adaptation goals and can
be extended to support many more.

2.4 Frameworks and Toolkits
As XR technology is becoming widely available, researchers called
for better support for developers across various stages of the design
process of creating XR experiences [2]. As such, there has been a
surge in research for tools that can ease the design and development
of augmented [36, 48, 62] and virtual reality applications [27, 49].
We extend existing work with a toolkit to create adaptive UIs.

There is limited work on frameworks to facilitate the creation of
adaptive UIs. Bonanni et al. [4] presented a framework for adaptive
UI design focused on an AR kitchen scenario to support cooking, a
scenario we build upon in our user study. Krings et al. implemented
context-aware UI adaptations with a rule-based framework in which
any change in context can trigger adaptation actions [33].

There are also other frameworks with some support for creating
UI adaptations. For example, MRTK [45] has solvers [43] that use
algorithms to calculate the position and orientation of UI elements.
Existing solvers in MRTK focus on fundamental usability issues,
such as visibility and reachability, as we do in the initial iteration
of our toolkit. Although MRTK allows creators to chain multiple
solvers with diferent adaptation objectives, it runs these sequen-
tially without support for multi-objective optimization. Moreover,
each solver in MRTK is tied to specifc transitions (e.g., smooth
movement over time, triggered every frame), limiting the design
space of adaptations for XR.

Unity Mars [67] is another authoring tool that provides prox-
ies to represent real-world objects, allowing creators to design UI
adaptations based on rules relative to these proxies.

UIST ’22, October 29-November 2, 2022, Bend, OR, USA Belo et al.

These frameworks focus on rule-based adaptations or algorithms
to address specifc adaptation objectives and lack the fexibility to
combine multiple adaptation goals. We propose a framework that
can integrate existing research and is easy to extend and generalize
various scenarios encountered in the XR landscape. We use this
framework as the foundation for AUIT, giving fexibility to cre-
ators by allowing them to combine diferent adaptation objectives,
fnd adaptations using multi-objective optimization, and customize
when and how UI elements transition from one state to another.
AUIT separates adaptation concerns [13] into components, provid-
ing a modular approach where it is straightforward to customize
diferent aspects of an adaptation.

3 AUIT: DESIGN CONCEPTS
To facilitate the design of adaptive UIs, we propose a clear separa-
tion of concerns [13] of the diferent design concepts present in an
adaptation. Throughout this paper, we refer to the creator as the
individual responsible for the application’s development or design
and the user as the end-user that will use the application. Consider
the video call scenario presented in Figure 1. A creator develops an
application that consists of a single UI element with a live video call
and some controls to interact with it. The creator wants the video
to be visible to the user and follow him as he moves around without
interfering with his tasks and the environment. Such a scenario can
quickly become complex, with various considerations about what
kind of adaptive behavior is required, what contextual information
it depends on, the conditions that cause an adaptation, and how to
execute the UI adaptation. Such questions are not specifc to this
example, and are relevant to consider for many types of UI adap-
tations in XR. Therefore, we formulate these concerns as design
goals for UI adaptations, followed by a framework to address them.

3.1 Design Goals
D1: Support a range of adaptation behaviors. XR applications

are not limited to the dimensions of a screen, in contrast to the
GUIs present in traditional applications. In this setting, the design
space tends to be broad and challenging to predict at design time.
The design space also changes at runtime due to context changes
such as the user’s position or moving real-world objects. Consider
the scenario in Figure 1 - the creator designs an adaptive UI that
is 1) in reach, 2) in the user’s feld of view, and 3) not occluded
by other objects. However, diferent scenarios have diferent re-
quirements, and no specifc combination of adaptation behaviors
addresses the needs of the wide variety of applications possible in
XR. Lindlbauer et al. [37] explored multiple adaptation objectives,
but their approach focus on specifc scenarios and fxed adaptation
objectives, limiting generalization to other settings. Flexibility to
combine diferent adaptation objectives across various UI elements
allows creators to develop a wider variety of designs.

D2: Allow combining multiple adaptation objectives in one adap-
tation. Multiple adaptation objectives can confict with each other.
For example, in the scenario from Figure 1, the adaptation objective
to position objects in a specifc zone of the user’s feld of view
(FoV) can confict with the objective to avoid collisions. Although
related work has explored methods to fnd suitable solutions when
considering multiple adaptation objectives through multi-objective

optimization [23, 37], the support for combining adaptation objec-
tives is still limited in existing tools. Therefore, the framework must
be capable of fnding a compromise between multiple objectives
at runtime without constraining which objectives are possible to
select.

D3: Support for context collection and interpretation. The lack
of standard methods to acquire and handle context is one of the
barriers identifed by Dey et al. [12] for using context in applica-
tions. In the scenario from Figure 1, context plays a crucial role in
providing appropriate UI adaptations - it is necessary to know the
user’s position, where he is looking, and the environment geome-

try. In the past, applications would retrieve the user’s context with
custom implementations that processed sensor data into applica-
tions. Nowadays, this issue is not as prominent for XR applications.
Game engines and software development kits already support some
contextual information at a high abstraction level. Nonetheless,
methods to interpret context at higher levels of abstraction that are
generalizable across diferent applications are still a requirement to
facilitate the creation of adaptive UIs in XR.

D4: Methods to customize when and why an adaptation occurs.
Depending on the application, creators might require diferent
strategies for triggering UI adaptations. For example, in the video
call scenario encountered in Figure 1, a naive approach that adapts
the UI at a constant update rate might be sufcient, but the cre-
ator could be interested in a diferent strategy such as adapting
the UI only when the quality of the layout goes below a certain
threshold. Lindlbauer et al. [37] propose temporal smoothing to
improve transitions through adaptations, while Krings et al. [33]
decide when to adapt the UI based on rules. The framework must
allow creators to customize why and when UI adaptations occur to
increase fexibility.

D5: Support for a variety of property transitions. When consider-
ing the position of a UI element in an XR application, there are many
possible ways it can adapt from one state to another. For example,
in Figure 1, a creator can choose to update the position of the video
call by moving it over time in 3D or instantly. These are just a few
of the many possible transitions a creator could use for adapting
the position of an object, one of the properties to adapt in XR. Con-
sider now other properties of UI elements, like size, rotation, or
modality. In such a vast design space, a framework to facilitate the
creation of adaptive user interfaces must allow creators to choose
from multiple property transitions.

3.2 Design Concepts for Adaptation Policies
We propose fve design concepts for the development of adaptation
policies to address the design goals we just presented. We provide
an overview in Figure 2. Creating an adaptation policy that con-
siders multiple adaptation objectives for an XR application should
incorporate these to some extent:

Adaptation objectives (D1) are goals that guide the UI adapta-
tion. For greater fexibility, an objective should only have one goal,
allowing creators to combine objectives with diferent goals in
one UI adaptation. For example, a creator might want a button to
be reachable to the user while avoiding collisions with the real-
world environment. By abstracting these goals into two separate

AUIT – the Adaptive User Interfaces Toolkit UIST ’22, October 29-November 2, 2022, Bend, OR, USA

objectives, creators can use them modularly for other adaptations
throughout the application. Although an adaptation objective must
have a single goal, it is worth noting that it can refer to a set of
UI elements. For example, an objective to avoid clutter can have
multiple UI elements as a target, but it is still a single goal.

Solvers (D2) are approaches that try to fnd the optimal solution
to a stated optimization problem [54]. In our framework, solvers
generate adaptation proposals to optimize the UI according to the
adaptation objectives selected by creators.

Context widgets (D3) encapsulate how context is retrieved and
make that data accessible to applications. Dey et al. [12] proposed
such a component, and we refer to their work for a more in-depth
overview. In short, context widgets process raw data and make it
available at higher levels of abstraction, allowing creators to reuse
and customize the usage of context data throughout the applica-
tion. For XR applications, development tools such as MRTK [45]
have some context widgets available. An example is the spatial
awareness system in MRTK [44], a feature to provide real-world en-
vironmental awareness through a collection of meshes representing
the environment geometry, which demonstrates how raw sensor
data from the device is converted into a higher level of abstraction
(in a mesh format), facilitating its integration in XR applications.

Adaptation Triggers (D4) are responsible for the logic to invoke
solvers and if the solver proposals are applied. For example, creators
can save computational resources by invoking the solver only when
the layout quality goes below a certain threshold. Then, adaptations
might be applied if the improvements from a new proposal are
sufcient to justify the adaptation. The framework should allow
creators to customize adaptation triggers and use or implement
diferent strategies.

Property Transitions (D5) address how virtual content adapts to
its new state when adaptations occur. Once an adaptation trigger
executes an adaptation, property transitions defne how the relevant
properties of the UI element adapt from the previous to the new
state. For example, there are diferent ways a UI element can move
from position x to position y, such as moving over time from one
position to another or fading out from the previous to the new
position.

4 AUIT: TOOLKIT IMPLEMENTATION
We implement the framework introduced in the prior section through
AUIT, a toolkit to facilitate the creation of adaptive user interfaces
for XR applications. To optimize XR interfaces considering a combi-

nation of adaptation objectives, we formulate a cost minimization
problem and solve it using multi-objective optimization. Adaptation
objectives are formulated mathematically through a cost function
representing how much the current layout fulflls that objective.

From an optimization perspective, we are dealing with a multi-

objective optimization problem to optimize multiple objective func-
tions simultaneously. In this case, objectives can contradict each
other such that improving the solution towards one will worsen any
of the others. Non-trivial problems have a set of optimal solutions
that form the Pareto optimal frontier [41] instead of a single global
optimal solution. To simplify picking a desirable solution in our
toolkit, we opt for a weighted sum method [41], where creators

Figure 2: Overview of the design concepts for adaptive UIs.
MAUI proposes 5 concepts to design adaptation policies for
XR applications.

articulate their preferences about the relative importance of difer-
ent objectives using weights. We describe how we implement each
design concept we proposed in Section 3 as a component of our
toolkit:

4.1 Adaptation Objectives
Adaptation objectives are the criteria the UI adapts to and represent
atomic adaptation behaviors that accomplish usability goals, such
as visibility and reachability of the UI.

We defne each adaptation objective through a cost function. To
facilitate the customization of weights by creators, each adaptation
objective we implement has a normalized cost function that outputs
a cost from 0 to 1, reaching the highest value when the current
layout infringes the adaptation objective beyond a customizable
threshold. For example, consider an adaptation objective to keep
virtual content from colliding with objects in the physical world. In
this context, such an objective would return a value of 0 when ap-
plied to a hologram occupying a position that results in no collisions.
This value would increase when the hologram starts colliding with
environment geometry, reaching the value of 1 when the whole
area of its virtual content is colliding. We implement heuristics
for each adaptation objective so the solver can fnd improvements
more efciently. In addition, the solver can still search for new
solutions following a random approach to avoid getting stuck in
local minima.

We include seven adaptation objectives in AUIT that we illus-
trate in Figure 3, that identifes the high-level usability goals each

UIST ’22, October 29-November 2, 2022, Bend, OR, USA Belo et al.

Figure 3: Adaptation objectives that are currently supported
in AUIT. Creators can customize and combine them to de-
sign adaptation policies.

adaptation objective contributes to, from visibility, reachability, and
learnability. Here, we briefy describe the adaptation objectives
AUIT supports and refer the reader to the appendix for a more
detailed description of cost functions and optimization heuristics.

4.1.1 Field of View Objective (Figure 3a). Ensures the UI element
is within a specifc region of the user’s feld of view. Creators can
select a pre-defned peripheral view interval or create a custom one
by defning its inner and outer boundaries.

Optimization heuristic: attempt to move the UI element towards
the FoV interval selected by the creator.

4.1.2 Look Towards Objective (Figure 3b). Rotates the UI element
towards a selected context source. It defaults to the user’s position.
This objective can contribute to visibility, as content such as text
and images will become easier to see when rotated towards the
user.

Optimization heuristic: rotate the UI towards the optimal rotation.

4.1.3 Constant View Size Objective (Figure 3c). Scales the UI ele-
ment depending on its distance from a target. This objective aims
to maintain a constant view size to a context source, typically the
user. We determine the optimal size of the UI using a confgurable
linear function dependent on the distance from the UI to the con-
text source. This is relevant to improve visibility of the UI without
updating its position.

Optimization heuristic: scale the UI towards the optimal scale
according to its distance from the context source.

4.1.4 Avoid Occlusion Objective (Figure 3d). Avoids positions where
the environment geometry or other virtual elements in the scene
would occlude the object (typically to the user). Avoiding occlusions
also prevents collisions with other virtual or physical objects. To
check for occlusion, we dynamically add a confgurable set of points
in a grid composition to the UI element. Then, we draw rays [59]
from the context source to each point and increase the cost for each
ray hitting other content.

Optimization heuristic: move the UI in the direction of the surface
normal hit by one of the obstructed rays.

4.1.5 Anchor to Target Objective (Figure 3e). Aims to position a UI
element at an ofset from a selected context source. It selects the
rotation and position of the user’s head by default and the creator
must provide the ofset. Relevant when a UI element should follow
the user or a virtual object.

Optimization heuristic: move the UI in the direction of the anchor
point by a random distance.

4.1.6 Distance Interval Objective (Figure 3f). Keeps UI elements
positioned within a customizable distance interval in the shape of
a vertical hollow cylinder from a selected context source - typically
the user’s position. The creator can set the inner and outer boundary
of the cylinder area. This objective is relevant in cases where UI
elements must be reachable to support hand input or at a distance
that allows the user to see their content.

Optimization heuristic: move the UI towards the hollow cylinder
by a random distance.

4.1.7 Spatio-Temporal Coherence Objective (Figure 3g). Prioritizes
adaptations where the UI element adapts to positions where it has
been before, avoiding updates unless there are substantial improve-

ments. Relevant to improve usability by leveraging the user’s spatial
memory [40].

Optimization heuristic: pick the closest previously visited posi-
tion or other visited position at random.

4.2 Solvers
Solvers are the algorithms responsible for computing adaptation
proposals. As mentioned earlier, we formulate a cost minimiza-

tion problem and allow creators to articulate their preferences in
terms of the relative importance of each adaptation objective using
weights. An XR application typically contains v virtual elements.
Each virtual object can have multiple adaptation objectives a - each
having a correspondent weight w and cost function c - we can
articulate the problem with a weighted sum:

v aÕÕ
U = wi j ci j (®x) (1)

i=1 j=1

where x® is the decision vector that consists of UI confguration
parameters for all the UI elements to optimize and the minimum
of U is Pareto optimal [41]. One of the goals of our framework is
to generalize to a wide range of objectives, so we are particularly
interested in methods capable of solving non-linear optimization
problems. For that reason, the solver we implement uses simulated

AUIT – the Adaptive User Interfaces Toolkit UIST ’22, October 29-November 2, 2022, Bend, OR, USA

annealing [32, 68], which gradually converges to a near-optimal
solution [1]. To fnd appropriate solutions more efciently, our
solver uses heuristics implemented for each objective and some
randomness to avoid local optima. The solver uses early stopping to
stop searching for proposals when it fnds a suitable candidate and
Unity coroutines [66] to distribute the computational load across
multiple frames.

4.3 Context Widgets
Context widgets are the components responsible for processing
raw sensor data into higher levels of abstraction. An advantage
of building our toolkit for Unity is that several context widgets
are available out of the box. It is trivial to retrieve fundamental
context data for XR applications such as the position and gaze of the
user from the Unity Camera component, which follows the user’s
head movement and rotation when using an HMD. Other relevant
context information, such as the user’s environment geometry or
hand tracking, can be available depending on the development
platform. For example, when developing for the Hololens, its SDK
provides hand tracking and the environment geometry in Unity [44].
Because the adaptation objectives that are part of our frst iteration
of the toolkit consider fundamental usability goals, the context
widgets already available in Unity are sufcient. For more fexibility,
the creator can change the context source of adaptation objectives
in the Unity inspector. For example, an adaptation objective that
uses a position in 3D can be customized to use the user’s pose or
another virtual object in the scene.

4.4 Adaptation Triggers
Adaptation triggers are the component responsible for the logic
to invoke the solver and apply the resulting adaptation proposal.
AUIT supports two adaptation triggers to handle 1) when and how
frequently to invoke the solver and 2) when to apply the adaptation
proposed by the solver:

4.4.1 Interval optimization trigger. A basic adaptation strategy is to
use a solver to generate UI proposals and apply them at a fxed rate,
which creators can customize. This strategy involves a trade-of
between update rate vs. usability. If the update rate is too high, it
can result in too many adaptations that are a nuisance to the user. If
the update rate is too low, the UI might violate adaptation objectives
for too long until it adapts. Moreover, higher update rates result in
a higher computational load as the solver runs more often.

4.4.2 Significant improvement trigger. This adaptation trigger only
adapts the UI if it will result in an improvement. It invokes the
solver once the quality of the UI (determined by the correspondent
cost functions) is below a confgurable threshold. Adaptations are
applied if they improve on the previous interface by a ratio cus-
tomizable by creators. This approach saves computational power
because the solver only executes when the quality of the UI declines.

4.5 Property Transitions
Property transitions adapt the UI from one state to another. Once an
adaptation trigger starts an adaptation for a UI element, its property
transitions are applied. Depending on the property to adapt, AUIT
invokes the correspondent property transition - diferent properties

Figure 4: The processing fow of AUIT for the example adap-
tation in Figure 1. The cost from each objective is calculated
using context. When invoked, the solver computes a new
adaptation proposal considering all adaptation objectives –
if this signifcantly improves the adaptation state, the UI
uses a smooth movement transition to accomplish the UI
adaptation. A solver can fnd proposals for multiple UI ele-
ments in the same optimization loop.

such as position and rotation require their respective property
transitions. AUIT supports the following:

4.5.1 Instantaneous Movement. UI element moves instantaneous
from the current position to the new one.

4.5.2 Smooth Movement. movement animation from the current
to the new position over time using linear interpolation.

4.5.3 Smooth Rotation. rotation animation from the current to the
new rotation over time using linear interpolation.

4.5.4 Smooth Scaling. scaling animation from the current to the
new scale over time using linear interpolation.

4.6 Architecture
Now we describe the software architecture to put all the compo-

nents in AUIT together (see Figure 5).
Adaptation objectives access their context widgets directly to

compute cost functions. The toolkit allows creators to change the
context widget that is used by an adaptation objective through the
Unity inspector, as long as it is compatible (e.g., anchor to target
objective can use the user’s position or the position of another
virtual object as its context source). Adaptation objectives are then
associated with UI elements. It is possible to associate the same
adaptation objective to diferent UI elements, and each instance
supports diferent confgurations. Creators must assign property

UIST ’22, October 29-November 2, 2022, Bend, OR, USA Belo et al.

Figure 5: AUIT software architecture

(a) In-Editor Work (b) In-scene Menus

Figure 6: Users primarily use AUIT through the editor, but
it is possible to tweak weights in an immersive setting for
online confguration of adaptations.

transitions for each property the UI elements adapt to (e.g., adapta-
tions that involve the position and rotation of the UI will require
corresponding property transitions).

To manage adaptation triggers and solvers, we created an auxil-
iary class named Adaptation Manager. Adaptation managers gather
all the objectives in the UI elements to optimize, invoke the solver
using the logic in the adaptation trigger to compute adaptation
proposals, and apply adaptations using the property transitions.
Note that adaptation managers can optimize multiple UI elements
in the same optimization loop by enabling a fag indicating the
solver is global and indicating which UI elements it optimizes.

The adaptation objectives, triggers, and transitions derive from
a corresponding abstract class. These abstract classes serve as a
starting point for creators that want to extend the toolkit with new
implementations of the components present in AUIT. Implementing
additional components for AUIT, such as new adaptation objectives
or property transitions, can be done by following three steps:

(1) Create a new script component in Unity
(2) Inherit from the abstract class that implements the compo-

nent of interest
(3) Implement the correspondent class abstract methods (e.g.,

for Adaptation Objectives, implement the Cost Function and
Heuristic methods)

4.7 Technical Performance
Although not the focus of this work, it is important to assess how
well it performs on common XR devices. Hence, we benchmark
how the toolkit runs on a standalone device tailored for MR experi-
ences. We test the Microsoft HoloLens 2 [42], a popular MR device
nowadays. Note that the HoloLens 2 uses a mobile Qualcomm
Snapdragon 850 with limited performance compared to laptop or
desktop processors. Our benchmarking shows that AUIT can run
consistently at 60fps in a scene with three UI elements (each with
four adaptation objectives) without noticeable frame rate drops.

4.8 Using and Extending AUIT in a Project
Creators can add AUIT to an existing Unity project by importing
the Unity package we make available. To design adaptations, a cre-
ator associates toolkit components to UI elements in the scene - by
dragging and dropping or typing their names in the Unity inspec-
tor. Creators can customize AUIT components through the Unity
inspector without requiring coding. Once adaptation objectives and
property transitions are added, alongside a solver and respective
adaptation trigger, AUIT is ready to adapt the UI. Creators can
immediately visualize the adaptations they create by entering play
mode in Unity. It is possible to adjust the weights of adaptation
objectives in real-time (see Fig. 6) through the Unity inspector or
in an immersive setting, allowing adaptive UIs to be experienced
immediately through an XR device or simulation. To optimize mul-

tiple UI elements in the same optimization loop, creators must add
these to an adaptation manager component and enable the option
to use a global solver.

5 TOOLKIT EVALUATION
To evaluate the utility of AUIT, we conducted a study where creators
of XR applications design adaptive UIs for two scenarios using AUIT.
Assessing toolkit usage has been identifed as a valuable step to
evaluate what toolkits can do, whom they can support, and which
tasks their users can perform [35]. The study aims to explore three
research questions: (1) the conceptual clarity of toolkit components,
(2) toolkit usability, and (3) the quality of adaptations.

5.1 Study design
First, the experimenter introduces participants to the design con-
cepts present in AUIT. Then, they use AUIT to create adaptive
user interfaces for two XR scenarios. To facilitate the introduction
to the wide variety of features and customization the toolkit sup-
ports, the experimenter assists the creator throughout the study
by answering questions about specifcs of parameters and other
technical details they fnd unclear. For that reason, we consider our
study a combination of a usability study and a walkthrough demon-

stration, according to the toolkit evaluation methods identifed by
Ledo et al. [35]. Initially we planned to use MRTK’s solvers [43] as
a baseline. However, in a pilot study, we noticed how sequential
optimization was insufcient to successfully fulfll the goals of our
scenarios in a satisfactory manner. Such a baseline would require
coding and result in an unfair comparison. For these reasons, we
only evaluated AUIT.

The two scenarios present in our study are a video call (Figure
7a) and an interactive recipe (Figure 7b). To increase control and

AUIT – the Adaptive User Interfaces Toolkit UIST ’22, October 29-November 2, 2022, Bend, OR, USA

(a) Scenario 1: Video Call (b) Scenario 2: Interactive Recipe

Figure 7: The UI panels from the two scenarios.

streamline the study, participants start each design task from a
scene containing the corresponding UI elements in Figure 7.

To allow quick prototyping, we use a simulation of an MR ap-
plication in Unity based on VirtualHome [58], to model activities
occurring in a kitchen. Participants could quickly see the adapta-
tions they create by starting the simulation, which shows what an
end-user would see from a frst-person point of view when using
the application. The user randomly performs diferent tasks in the
kitchen, such as opening the fridge to gather ingredients, moving
to the stove or counter to prepare food, or having a break doing
something else. We asked participants to consider the kitchen in
our simulation as the real-world in an MR application, while the UIs
from the scenarios would be the holograms the user sees through
the HMD.

5.2 Participants
We recruited 8 experts for the study who develop XR applications
and have experience with Unity (1 female, age: M = 32.5, SD =
3.38). Although there is no meaningful cut-of point for which
the sample size is enough [7], note that the goal of our study was
to gather qualitative feedback - it is not our intention to draw
statistically signifcant conclusions. Four participants shared an
academic background and conducted research in XR, while the
remaining four reported jobs in the industry where they actively
develop XR applications. On average, participants had several years
of experience developing XR applications (M = 4.5, SD = 2.56). On
a scale from 1 (low) to 5 (high), participants reported familiarity
with Adaptive User Interfaces (M = 3.25, SD = 0.71) and some
regularity in developing them (M = 2.5, SD = 1.51).

5.3 Procedure
After an introduction to the study and signing the consent form,
participants went through the following phases:

5.3.1 Adaptive user interfaces and existing tools. We start the study
with a discussion about adaptive user interfaces for XR experi-
ences. Participants reported their opinion on their importance, and
those who develop adaptations revealed their current methods and
practices to implement them.

5.3.2 Introduction to AUIT. After introducing the concept of adap-
tive UIs and the aim of the study, the experimenter explained the
toolkit components to the participant. Then, six adaptation objec-
tives are showcased through videos, followed by a discussion about

breakdowns that might occur when using naive strategies to com-

bine multiple adaptation objectives. Participants reported how they
currently handle adaptations with conficting objectives or how
they would do it if faced with such a problem.

5.3.3 Creating adaptive user interfaces using AUIT. Next, we start
the main task, where participants use AUIT to create adaptive UIs
for two scenarios:

Video call A video call application in XR, with a UI element (Fig-
ure 7a) that contains the video feed and basic call controls
that support hand input. The end-user is performing tasks
in the kitchen while on a video call. The goal is to create an
adaptation policy where the video call is visible, in the user’s
reach, and the virtual element is not occluded.

Interactive Recipe A cooking application to provide recipe in-
structions, interactive videos, and access to the list of in-
gredients. In this scenario, the application contains two UI
elements: 1) the instruction panel and 2) a panel with controls
that support hand input (Figure 7b). The user interacts with
the system through the control panel, where it is possible to
change instructions, control the video, and spawn co-located
timers in the kitchen. The goal is to create an adaptation
policy where both UIs are visible and do not overlap with
each other. In this scenario, only the control panel needs to
be reachable.

The order of the tasks represents a learning curve, with a simple
video call task frst (one UI), followed by the interactive recipe
scenario (two UIs). Participants are encouraged to meet other us-
ability criteria they deem relevant. After each task we elicit user
feedback by asking them to fll out a questionnaire and open-ended
questions.

5.3.4 Feedback and discussion. Finally, we conduct an open-ended
interview with the participants on aspects of AUIT, such as whether
and how they would use it in their work and potential trade-ofs of
doing so.

5.4 Results
We started the study with a discussion about adaptive UIs for XR.
All the participants considered adaptations to be crucial to provide
a good user experience in XR applications: "It’s really important
because you want the user to [be able to] interact with the system
when he moves around" (P4); "for XR [experiences] to not be frus-
trating [...] the interface [should] adapt to the environment" (P1).
Creators also mentioned difculties caused by the lack of resources
and tools: "Resources to develop AUIs are limited" (P5); "I don’t
think [our company] has prioritized creating [AUIs], I think partly
due to the [low] availability of tools to make it happen" (P8). Par-
ticipants that actively develop adaptive user interfaces described
their current practices are mostly based on custom rule-based im-

plementations: "we develop our adaptations [...] we try to create our
behaviors" (P4); "[we had to] customize MRTK behavior because
often it doesn’t behave the way we want [...] we faced [usability]
issues and have solved them by implementing our own [rule-based]
logic" (P6).

UIST ’22, October 29-November 2, 2022, Bend, OR, USA Belo et al.

Table 1: The top row shows some of the potential usability
breakdowns that can occur when using naive adaptation ap-
proaches in scenario 1; The bottom row shows adaptations
created by a study participant during scenario 1 where AUIT
overcomes some of these issues.

All participants successfully designed adaptations that met the
requirements of both scenarios. In Scenario 1: Video Call, the partic-
ipants spent between 6 and 18.3 minutes (M = 11.92, SD = 4.57),
whereas in Scenario 2: Interactive Recipe they took between 4.82
and 23.87 minutes (M = 10.87, SD = 6.26).

5.4.1 Conceptual clarity of design concepts. After the presentation
of the toolkit, participants showed understanding of the diferent
design concepts throughout the study, suggesting it provides a
clear separation of concerns for the problem: "the adaptation speed
is still slow, [but] that is outside of the scope of the adaptation
objective." (P4); "In VR I would use the player’s transform as the
context [source] for the distance [interval] objective" (P5); "another
[adaptation] objective that could be added [... is to] take the [user’s
FOV], make it into a grid, and then specify which cells you want
[virtual objects] to be at" (P6). Moreover, a participant suggested
the design concepts in AUIT make development easier: "[the toolkit
components] are very much in line with the Unity philosophy of
structuring behavior, which would make it easy to implement [XR
adaptations]" (P8).

5.4.2 Toolkit usability. After each scenario, participants flled in
a questionnaire with questions concerning the difculty in using
the toolkit to create adaptations for the video call (S1) and inter-
active recipe (S2) scenarios. On a scale from 1 (very easy) to 5
(very hard) participants reported that combining objectives was
easy, but the difculty slightly increases with more UI elements
(S1: M = 1.25, SD = 0.43; S2: M = 2.25, SD = 0.66). Meanwhile,
confguring components in the toolkit was reported as easy in both
scenarios (S1: M = 2.13, SD = 0.59; S2: M = 1.88, SD = 0.59). In
regards to fnding appropriate weights for each objective, partici-
pants rated the difculty of this task as medium for both scenarios
(S1: M = 2.5, SD = 0.86; S2: M = 2.75, SD = 0.18). Note that partic-
ipants used around 4 adaptation objectives in S1 (M = 4.13, SD =
0.59) and 8 in S2 (M = 7.5, SD = 1.32).

To develop adaptations using AUIT, creators followed a simi-

lar workfow throughout the study. They would add or remove

Table 2: Adaptations by participants for scenario 2 (top row
- P3); (bottom row - P8). Both solutions fulfll visibility re-
quirements while considering world geometry using difer-
ent combinations of adaptation objectives, highlighting the
toolkit’s fexibility. While P3 attempted to group both UI el-
ements, P8 focused on maintaining these in the same zones
of the user’s FoV over time.

components to the UI, such as adaptation objectives, tweak param-

eters, and run the simulation to visualize the resulting adaptations.
Then, they would repeat this process until they were satisfed with
the result, appreciating that they could see the adaptations cre-
ated. A participant suggested the possibility to add commonly used
combinations of toolkit components through a pre-confgured and
reusable asset to make the current workfow faster - "there are some
objectives that often will go together [...] I like the [fexibility] to
freely defne what you want your behavior to be like [...] but it
[requires some setup]" (P4).

Throughout the study, participants would occasionally ask for
details about some of the parameters in components of the toolkit
- "[Without documentation], it’s hard to understand what some
of these [parameters] do" (P5), highlighting the importance of re-
sources to support the development and help developers get started
with the toolkit. Nonetheless, they immediately understood many
existing features due to familiarity with Unity and computer graph-
ics concepts. As AUIT evolves, it is crucial to provide good tutorials
and up-to-date documentation. In a few instances, experimenters
helped participants debug specifc behaviors in adaptations. Go-
ing forward, it is important to expand on the existing debugging
capabilities of the toolkit, which are limited to console logging.

5.4.3 Qality of adaptations. When asked if they succeeded in
creating the adaptations they had initially envisioned, participants
reported on a scale from 1 (no, not at all) to 5 (yes, absolutely) that
AUIT enabled them to do so in both scenarios (S1: M = 4.38, SD =
0.48; S2: M = 3.75, SD = 0.82). This feedback is interesting, con-
sidering that participants solved both tasks using diferent com-

binations of adaptation objectives, diferent settings for property
transitions, and diferent parameters for the adaptation trigger. Even
though all participants met basic usability requirements, such as
visibility and reachability, some went a step further and considered
factors such as consistency (about the position of the UI in relation

AUIT – the Adaptive User Interfaces Toolkit UIST ’22, October 29-November 2, 2022, Bend, OR, USA

to the user) and grouping of related virtual elements (in scenario 2)
- see Tables 1 and 2.

On a scale from 1 (very poor) to 5 (very high), participants rated
the adaptations they created to be of high quality (S1: M = 4, SD =
0.5; S2: M = 4.13, SD = 0.60). When considering the time spent
and the results obtained, creators reported using a scale from 1
(very inefcient) to 5 (very efcient), that they felt highly efcient
(S1: M = 4.38, SD = 0.48; S2: M = 4.25, SD = 0.66). Participants
also mentioned how the toolkit could be valuable in their current
work, pointing out how it could make development faster: "This is a
challenge that we have every time we create a HoloLens application.
Our workfow is pretty much the same [all the time]. We use MRTK
and then code until it behaves like we want to, which can take a lot
of time" (P6). A participant with less coding expertise appreciated
that it was easy to get started with AUIT: "I think it’s a huge beneft,
particularly from my standpoint where I don’t do a lot of coding.
Instead of creating a lot of scripts myself, this is a toolkit that would
allow me to prototype things very quickly, test things out, and
demonstrate [them to my team]" (P7).

6 DISCUSSION
We present AUIT, a toolkit to facilitate the design of adaptive UIs
for XR applications. AUIT allows creators to combine adaptation
objectives and fnd appropriate solutions using multi-objective op-
timization. Our approach lowers the barrier for creators to develop
and experiment with adaptation policies while making the develop-
ment process efcient through a clear separation of concerns. AUIT
is a unifying toolkit that can bring together diferent adaptation
methods, such as the variety of objectives we already support and
other concepts explored in related work.

In our expert evaluation, participants pointed out that adaptive
UIs are particularly important for providing good user experiences
in XR applications. Moreover, they reported that existing tools lack
appropriate support for designing adaptive UIs, requiring repeti-
tive and time-consuming programming tasks. Their input suggests
the toolkit components are understandable, and its separation of
concerns can facilitate the development of adaptations.

Our study demonstrated how AUIT simplifes combining adap-
tation objectives and customizing adaptations, allowing creators
to fnish tasks involving complex behaviors in a short time while
reporting feeling efcient doing so. All the participants successfully
performed the proposed tasks, and their workfow showcases how
AUIT can enable creative exploration of several aspects of adaptive
UIs. Participants also reported that the toolkit allowed them to cre-
ate the adaptations they had envisioned and rated their creations to
be of high quality, suggesting how AUIT can support the creation
of adaptive UIs.

AUIT is a plugin for Unity, so it can be used alongside other
tools such as MRTK, giving creators more options without requir-
ing drastic changes to existing workfows. Furthermore, it allows
for quick prototyping of adaptive UIs - most game engines allow
creators to visualize changes throughout development (e.g., play
mode in Unity) - AUIT allows similar prototyping, letting users
update several aspects of an adaptation without requiring scripting.
Ideally, approaches such as our toolkit will be better integrated into
XR development tools, reducing the challenges for creators to get

started with the development of adaptations. Moreover, adding new
components to AUIT to consider other adaptation aspects opens
new opportunities to explore the immense design space of adaptive
UIs.

6.1 Limitations and Future Work
AUIT presents a frst step towards a general toolkit for the design
of adaptive UIs for XR applications. In this frst version we have
focused on two fundamental usability issues of XR applications:
visibility and reachability of individual UI elements. However, the
fve design concepts described in this paper allow to extend AUIT
in the future, for example to address other usability issues, enable
joint optimization of multiple UI elements or allow creators to
interactively add constraints to the optimization. Now we discuss
these opportunities for future work in more detail and underline
limitations of our research.

Adaptation objectives. We implemented seven adaptation objec-
tives related to fundamental usability issues in XR applications, but
many others can contribute to better usability. Creators can build
on existing research to implement new adaptation objectives as
part of AUIT, such as ergonomics [16] or surface magnetism [70].
AUIT is currently limited to optimizing properties such as position,
rotation, and scale, which are critical to ensure the visibility of UI
elements. However, there are other properties of interest to adapt
in XR settings, such as the level of detail or the decision to show or
hide a UI element. Integrating those into AUIT is possible, but not
straightforward, and requires more research to extend our solvers
and support the consideration of other factors, such as the utility
of a UI confguration and how it afects the user’s cognitive load in
our cost formulation. In this initial version of AUIT, we limit the
optimization of multiple virtual elements to objectives that only
consider properties of a single UI element at a time. An interest-
ing direction is to extend AUIT to support global objectives that
consider multiple UI elements, for example to avoid clutter in the
user’s FoV.

Solvers and alternative optimization methods. In the current im-

plementation of our toolkit, we use a weighted sum method to
combine multiple objectives into one cost function. This cost func-
tion is a linear combination of the objective’s cost functions that
allows a designer to set the weights according to the importance
of individual adaptation objectives. This method works well if the
particular costs of objectives have a similar scale, the reason why
we designed normalized cost functions. However, an initial selec-
tion of weights does not guarantee the desired solution, requiring
creators to adjust these during the design process. An additional
disadvantage of using a weighted sum method is that it cannot fnd
certain Pareto optimal solutions in the case of a non-convex objec-
tive space [41], a problem that other methods such as evolutionary
algorithms could overcome [71].

Context widgets. We use context widgets that are already part of
most XR development tools. Adding methods to retrieve context
in high abstraction levels can enable the design of new adaptation
objectives. Some options with potential are enhanced scene un-
derstanding [24, 28], measuring cognitive load [14], or full-body
tracking.

UIST ’22, October 29-November 2, 2022, Bend, OR, USA Belo et al.

Adaptation triggers. Although UI adaptations have the poten-
tial to improve usability [37], they can also be counterproduc-
tive [19, 65]. For example, adaptations can afect the user’s attention
or memory of the UI layout. One of the adaptation triggers imple-

mented as part of our toolkit considers that adaptations come at
a cost and only adapt when there are considerable improvements.
However, other approaches could assess the utility of an adaptation
to the user or add support for adding rules before or after running
the optimization procedure.

Property transitions. Property transitions can avoid detrimental
efects when adaptations occur and are currently under-explored
in AUIT. Some examples of property transitions that could enhance
usability are the replication of UI elements temporarily - to avoid
changes in the layout - or anchor UI elements to body parts, such as
the hands - a technique commonly used in applications supporting
hand input.

Evaluation. Although our study suggests how AUIT can be rele-
vant for creators, it has a small sample size of 8 experts. Replicating
the study with more participants using a standardized test for usabil-
ity, such as the System Usability Scale [6], could provide relevant
quantitative results.

Other scenarios. Although we cover video calls and interactive
cooking scenarios in our work, AUIT can generalize to other set-
tings. An example would be sketching in 3D, whether in VR for
creating 3D models, or AR for drawing in 3D. Here, a UI could adapt
the position of a color palette to be easily reachable by the non-
dominant hand. Another example is manufacturing, where workers
often need to assemble separate parts into larger machinery. As
the hands are busy, an AR interface can provide clear instructions
to the user. The UI could adapt to be close to relevant parts of the
user’s assembling steps while avoid occlusion. Furthermore, it is
interesting to consider AR in everyday life as a personal computing
device. Users might frequently transition between diferent loca-
tions, rooms, and activities, bringing in a new level of complexity -
tools such as AUIT can support the development of adaptive AR
content to ft the user’s context.

7 CONCLUSION
We presented AUIT, a toolkit to facilitate the design of adaptive
UIs. AUIT implements fve design concepts to support the develop-
ment of such adaptations. The toolkit allows creators to combine
multiple adaptation objectives as part of their development process
and easily customize each aspect of an adaptive user interface. Our
study with experts suggests that the design concepts we propose
give creators a valuable separation of concerns for creating adapta-
tions. Furthermore, AUIT allowed participants to efciently design
adaptive user interfaces that they rated to be of high quality. By
making our toolkit widely available, we hope not only to lower the
barrier for practitioners to get started creating adaptive UIs, but
also to enable new workfows that allow for more creativity and
require less repetitive and tedious tasks.

ACKNOWLEDGMENTS
This work was supported by the Innovation Fund Denmark (IFD
grant no. 6151-00006B) as part of the Manufacturing Academy of

Denmark (MADE) Digital project. Antti Oulasvirta was supported
by the Finnish Center for Artifcial Intelligence (FCAI), and Acad-
emy of Finland grants ‘Human Automata’ and ‘BAD’. Special thanks
to Aïna Linn Georges for the help with revisions and the anony-
mous reviewers for constructive feedback that helped improve the
paper.

REFERENCES
[1] Khalil Amine. 2019. Multiobjective Simulated Annealing: Principles and Algo-

rithm Variants. Advances in Operations Research 2019 (05 2019), 1–13. https:
//doi.org/10.1155/2019/8134674

[2] Narges Ashtari, Andrea Bunt, Joanna McGrenere, Michael Nebeling, and Parmit K.
Chilana. 2020. Creating Augmented and Virtual Reality Applications: Current
Practices, Challenges, and Opportunities. Association for Computing Machinery,
New York, NY, USA, 1–13. https://doi.org/10.1145/3313831.3376722

[3] Blaine Bell, Steven Feiner, and Tobias Höllerer. 2001. View Management for
Virtual and Augmented Reality. In Proceedings of the 14th Annual ACM Sym-
posium on User Interface Software and Technology (Orlando, Florida) (UIST ’01).
Association for Computing Machinery, New York, NY, USA, 101–110. https:
//doi.org/10.1145/502348.502363

[4] Leonardo Bonanni, Chia-Hsun Lee, and Ted Selker. 2005. A Framework for
Designing Intelligent Task-Oriented Augmented Reality User Interfaces. In Pro-
ceedings of the 10th International Conference on Intelligent User Interfaces (San
Diego, California, USA) (IUI ’05). Association for Computing Machinery, New
York, NY, USA, 317–319. https://doi.org/10.1145/1040830.1040913

[5] Amani Braham, F. Buendia, Maha Khemaja, and Faiez Gargouri. 2021. User
interface design patterns and ontology models for adaptive mobile applications.
Personal and Ubiquitous Computing (01 2021), 1–17. https://doi.org/10.1007/
s00779-020-01481-5

[6] John Brooke et al. 1996. SUS-A quick and dirty usability scale. Usability evaluation
in industry 189, 194 (1996), 4–7.

[7] Kelly Caine. 2016. Local Standards for Sample Size at CHI. In Proceedings of
the 2016 CHI Conference on Human Factors in Computing Systems (San Jose,
California, USA) (CHI ’16). Association for Computing Machinery, New York, NY,
USA, 981–992. https://doi.org/10.1145/2858036.2858498

[8] Eduardo Castillejo, Aitor Almeida, and Diego López de Ipiña. 2014. Ontology-
Based Model for Supporting Dynamic and Adaptive User Interfaces. International
Journal of Human–Computer Interaction 30, 10 (2014), 771–786. https://doi.org/10.
1080/10447318.2014.927287 arXiv:https://doi.org/10.1080/10447318.2014.927287

[9] Yi Fei Cheng, Yukang Yan, Xin Yi, Yuanchun Shi, and David Lindlbauer. 2021.
SemanticAdapt: Optimization-based Adaptation of Mixed Reality Layouts Lever-
aging Virtual-Physical Semantic Connections (UIST ’2021). Association for Com-

puting Machinery, New York, NY, USA. https://doi.org/10.1145/3472749.3474750
[10] Perkins Coie. 2021. 2021 XR Survey. https://www.perkinscoie.com/en/ar-vr-

survey-results/2021-augmented-and-virtual-reality-survey-results.html
[11] Tilman Deuschel and Ted Scully. 2016. On the Importance of Spatial Perception for

the Design of Adaptive User Interfaces. In 2016 IEEE 10th International Conference
on Self-Adaptive and Self-Organizing Systems (SASO). 70–79. https://doi.org/10.
1109/SASO.2016.13

[12] Anind Dey, Gregory Abowd, and Daniel Salber. 2001. A Conceptual Framework
and a Toolkit for Supporting the Rapid Prototyping of Context-Aware Appli-
cations. Human-Computer Interaction 16 (04 2001). https://doi.org/10.1207/
S15327051HCI16234_02

[13] Edsger W Dijkstra. 1982. On the role of scientifc thought. In Selected writings on
computing: a personal perspective. Springer, 60–66.

[14] Andrew T. Duchowski, Krzysztof Krejtz, Izabela Krejtz, Cezary Biele, Anna
Niedzielska, Peter Kiefer, Martin Raubal, and Ioannis Giannopoulos. 2018. The
Index of Pupillary Activity: Measuring Cognitive Load <i>Vis-à-Vis</i> Task
Difculty with Pupil Oscillation. In Proceedings of the 2018 CHI Conference
on Human Factors in Computing Systems (Montreal QC, Canada) (CHI ’18).
Association for Computing Machinery, New York, NY, USA, 1–13. https:
//doi.org/10.1145/3173574.3173856

[15] Barrett Ens, Eyal Ofek, Neil Bruce, and Pourang Irani. 2015. Spatial Constancy of
Surface-Embedded Layouts across Multiple Environments. In Proceedings of the
3rd ACM Symposium on Spatial User Interaction (Los Angeles, California, USA)
(SUI ’15). Association for Computing Machinery, New York, NY, USA, 65–68.
https://doi.org/10.1145/2788940.2788954

[16] João Marcelo Evangelista Belo, Anna Maria Feit, Tiare Feuchtner, and Kaj Grøn-
bæk. 2021. XRgonomics: Facilitating the Creation of Ergonomic 3D Interfaces. In
Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems.
Association for Computing Machinery, New York, NY, USA, Article 290, 11 pages.
https://doi.org/10.1145/3411764.3445349

[17] Anna Maria Feit, Myroslav Bachynskyi, and Srinath Sridhar. 2015. Towards
Multi-Objective Optimization for UI Design. (April 2015). http://annafeit.de/
resources/papers/Multiobjective_Optimization2015.pdf Presented at CHI 2015

https://doi.org/10.1155/2019/8134674
https://doi.org/10.1155/2019/8134674
https://doi.org/10.1145/3313831.3376722
https://doi.org/10.1145/502348.502363
https://doi.org/10.1145/502348.502363
https://doi.org/10.1145/1040830.1040913
https://doi.org/10.1007/s00779-020-01481-5
https://doi.org/10.1007/s00779-020-01481-5
https://doi.org/10.1145/2858036.2858498
https://doi.org/10.1080/10447318.2014.927287
https://doi.org/10.1080/10447318.2014.927287
https://arxiv.org/abs/https://doi.org/10.1080/10447318.2014.927287
https://doi.org/10.1145/3472749.3474750
https://www.perkinscoie.com/en/ar-vr-survey-results/2021-augmented-and-virtual-reality-survey-results.html
https://www.perkinscoie.com/en/ar-vr-survey-results/2021-augmented-and-virtual-reality-survey-results.html
https://doi.org/10.1109/SASO.2016.13
https://doi.org/10.1109/SASO.2016.13
https://doi.org/10.1207/S15327051HCI16234_02
https://doi.org/10.1207/S15327051HCI16234_02
https://doi.org/10.1145/3173574.3173856
https://doi.org/10.1145/3173574.3173856
https://doi.org/10.1145/2788940.2788954
https://doi.org/10.1145/3411764.3445349
http://annafeit.de/resources/papers/Multiobjective_Optimization2015.pdf
http://annafeit.de/resources/papers/Multiobjective_Optimization2015.pdf

AUIT – the Adaptive User Interfaces Toolkit UIST ’22, October 29-November 2, 2022, Bend, OR, USA

Workshop on Principles, Techniques and Perspectives on Optimization and HCI.
[18] Anna Maria Feit, Lukas Vordemann, Seonwook Park, Caterina Berube, and

Otmar Hilliges. 2020. Detecting Relevance during Decision-Making from
Eye Movements for UI Adaptation. In ACM Symposium on Eye Tracking Re-
search and Applications (Stuttgart, Germany) (ETRA ’20 Full Papers). Associ-
ation for Computing Machinery, New York, NY, USA, Article 10, 11 pages.
https://doi.org/10.1145/3379155.3391321

[19] Leah Findlater and Krzysztof Z. Gajos. 2009. Design space and evaluation chal-
lenges of adaptive graphical user interfaces. AI Magazine 30, 4 (2009), 68–73.
https://doi.org/10.1609/aimag.v30i4.2268

[20] Leah Findlater and Joanna McGrenere. 2008. Impact of Screen Size on Perfor-
mance, Awareness, and User Satisfaction with Adaptive Graphical User Interfaces.
In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
(Florence, Italy) (CHI ’08). Association for Computing Machinery, New York, NY,
USA, 1247–1256. https://doi.org/10.1145/1357054.1357249

[21] Krzysztof Gajos and Daniel S. Weld. 2004. SUPPLE: Automatically Generating
User Interfaces. In Proceedings of the 9th International Conference on Intelligent
User Interfaces (Funchal, Madeira, Portugal) (IUI ’04). Association for Computing
Machinery, New York, NY, USA, 93–100. https://doi.org/10.1145/964442.964461

[22] Krzysztof Gajos and Daniel S. Weld. 2005. Preference Elicitation for Interface Opti-
mization. In Proceedings of the 18th Annual ACM Symposium on User Interface Soft-
ware and Technology (Seattle, WA, USA) (UIST ’05). Association for Computing Ma-

chinery, New York, NY, USA, 173–182. https://doi.org/10.1145/1095034.1095063
[23] Ran Gal, Lior Shapira, Eyal Ofek, and Pushmeet Kohli. 2014. FLARE: Fast layout

for augmented reality applications. In 2014 IEEE International Symposium on
Mixed and Augmented Reality (ISMAR). 207–212. https://doi.org/10.1109/ISMAR.
2014.6948429

[24] Georgia Gkioxari, Jitendra Malik, and Justin Johnson. 2019. Mesh R-CNN. In
Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV).

[25] Camille Gobert, Kashyap Todi, Gilles Bailly, and Antti Oulasvirta. 2019. SAM:
A Modular Framework for Self-Adapting Web Menus. In Proceedings of the 24th
International Conference on Intelligent User Interfaces (Marina del Ray, California)
(IUI ’19). Association for Computing Machinery, New York, NY, USA, 481–484.
https://doi.org/10.1145/3301275.3302314

[26] Raphaël Grasset, Tobias Langlotz, Denis Kalkofen, Markus Tatzgern, and Di-
eter Schmalstieg. 2012. Image-driven view management for augmented reality
browsers. In 2012 IEEE International Symposium on Mixed and Augmented Reality
(ISMAR). 177–186. https://doi.org/10.1109/ISMAR.2012.6402555

[27] Uwe Gruenefeld, Jonas Auda, Florian Mathis, Stefan Schneegass, Mohamed
Khamis, Jan Gugenheimer, and Sven Mayer. 2022. VRception: Rapid Prototyping
of Cross-Reality Systems in Virtual Reality. (2022).

[28] Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Girshick. 2017. Mask
R-CNN. In Proceedings of the IEEE International Conference on Computer Vision
(ICCV).

[29] Otmar Hilliges, Christian Sandor, and Gudrun Klinker. 2006. Interactive Pro-
totyping for Ubiquitous Augmented Reality User Interfaces. In Proceedings of
the 11th International Conference on Intelligent User Interfaces (Sydney, Australia)
(IUI ’06). Association for Computing Machinery, New York, NY, USA, 285–287.
https://doi.org/10.1145/1111449.1111512

[30] Juan David Hincapié-Ramos, Xiang Guo, Paymahn Moghadasian, and Pourang
Irani. 2014. Consumed Endurance: A Metric to Quantify Arm Fatigue of Mid-Air
Interactions. In Proceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems (Toronto, Ontario, Canada) (CHI ’14). Association for Computing
Machinery, New York, NY, USA, 1063–1072. https://doi.org/10.1145/2556288.
2557130

[31] Tobias Hans Höllerer. 2004. User Interfaces for Mobile Augmented Reality Systems.
Ph. D. Dissertation. Columbia University.

[32] Scott Kirkpatrick, C. Gelatt, and M. Vecchi. 1983. Optimization by Simulated
Annealing. Science (New York, N.Y.) 220 (06 1983), 671–80. https://doi.org/10.
1126/science.220.4598.671

[33] Sarah Krings, Enes Yigitbas, Ivan Jovanovikj, Stefan Sauer, and Gregor Engels.
2020. Development Framework for Context-Aware Augmented Reality Appli-
cations. In Companion Proceedings of the 12th ACM SIGCHI Symposium on En-
gineering Interactive Computing Systems (Sophia Antipolis, France) (EICS ’20
Companion). Association for Computing Machinery, New York, NY, USA, Article
9, 6 pages. https://doi.org/10.1145/3393672.3398640

[34] Wallace S. Lages and Doug A. Bowman. 2019. Walking with Adaptive Augmented
Reality Workspaces: Design and Usage Patterns. In Proceedings of the 24th In-
ternational Conference on Intelligent User Interfaces (Marina del Ray, California)
(IUI ’19). Association for Computing Machinery, New York, NY, USA, 356–366.
https://doi.org/10.1145/3301275.3302278

[35] David Ledo, Steven Houben, Jo Vermeulen, Nicolai Marquardt, Lora Oehlberg, and
Saul Greenberg. 2018. Evaluation Strategies for HCI Toolkit Research. Association
for Computing Machinery, New York, NY, USA, 1–17. https://doi.org/10.1145/
3173574.3173610

[36] Germán Leiva, Jens Emil Grønbæk, Clemens Nylandsted Klokmose, Cuong
Nguyen, Rubaiat Habib Kazi, and Paul Asente. 2021. Rapido: Prototyping In-
teractive AR Experiences through Programming by Demonstration. In The 34th

Annual ACM Symposium on User Interface Software and Technology (Virtual Event,
USA) (UIST ’21). Association for Computing Machinery, New York, NY, USA,
626–637. https://doi.org/10.1145/3472749.3474774

[37] David Lindlbauer, Anna Maria Feit, and Otmar Hilliges. 2019. Context-aware
online adaptation of mixed reality interfaces. In Proceedings of the 32nd Annual
ACM Symposium on User Interface Software and Technology. 147–160.

[38] Feiyu Lu, Shakiba Davari, Lee Lisle, Yuan Li, and Doug A Bowman. 2020. Glance-
able ar: Evaluating information access methods for head-worn augmented reality.
In 2020 IEEE conference on virtual reality and 3D user interfaces (VR). IEEE, 930–
939.

[39] Feiyu Lu and Yan Xu. 2022. Exploring Spatial UI Transition Mechanisms with
Head-Worn Augmented Reality. In ACM CHI Conference on Human Factors in
Computing Systems (CHI ’22). ACM.

[40] Jacob Boesen Madsen, Markus Tatzqern, Claus B. Madsen, Dieter Schmalstieg,
and Denis Kalkofen. 2016. Temporal Coherence Strategies for Augmented Reality
Labeling. IEEE Transactions on Visualization and Computer Graphics 22, 4 (2016),
1415–1423. https://doi.org/10.1109/TVCG.2016.2518318

[41] R Timothy Marler and Jasbir S Arora. 2004. Survey of multi-objective optimization
methods for engineering. Structural and multidisciplinary optimization 26, 6
(2004), 369–395.

[42] Microsoft. 2022. About Hololens 2. https://docs.microsoft.com/en-us/hololens/
hololens2-hardware

[43] Microsoft. 2022. Solver overview — MRTK2. https://docs.microsoft.com/en-

us/windows/mixed-reality/mrtk-unity/mrtk2/features/ux-building-

blocks/solvers/solver?view=mrtkunity-2022-05
[44] Microsoft. 2022. Spatial awareness getting started — MRTK2. https://docs.

microsoft.com/en-gb/windows/mixed-reality/mrtk-unity/mrtk2/features/
spatial-awareness/spatial-awareness-getting-started?view=mrtkunity-2021-05

[45] Microsoft. n.d.. Mixed Reality Toolkit (MRTK) for Unity. https://github.com/
microsoft/MixedRealityToolkit-Unity

[46] Mahdi H. Miraz, Maaruf Ali, and Peter S. Excell. 2021. Adaptive user interfaces
and universal usability through plasticity of user interface design. Computer
Science Review 40 (2021), 100363. https://doi.org/10.1016/j.cosrev.2021.100363

[47] G. Mori, F. Paterno, and C. Santoro. 2004. Design and development of multide-

vice user interfaces through multiple logical descriptions. IEEE Transactions on
Software Engineering 30, 8 (2004), 507–520. https://doi.org/10.1109/TSE.2004.40

[48] Leon Müller, Ken Pfeufer, Jan Gugenheimer, Bastian Pfeging, Sarah Prange,
and Florian Alt. 2021. SpatialProto: Exploring Real-World Motion Captures for
Rapid Prototyping of Interactive Mixed Reality. In Proceedings of the 2021 CHI
Conference on Human Factors in Computing Systems (Yokohama, Japan) (CHI ’21).
Association for Computing Machinery, New York, NY, USA, Article 363, 13 pages.
https://doi.org/10.1145/3411764.3445560

[49] Michael Nebeling, Katy Lewis, Yu-Cheng Chang, Lihan Zhu, Michelle Chung,
Piaoyang Wang, and Janet Nebeling. 2020. XRDirector: A Role-Based Collab-
orative Immersive Authoring System. In Proceedings of the 2020 CHI Confer-
ence on Human Factors in Computing Systems (Honolulu, HI, USA) (CHI ’20).
Association for Computing Machinery, New York, NY, USA, 1–12. https:
//doi.org/10.1145/3313831.3376637

[50] Jefrey Nichols, Brad A. Myers, Michael Higgins, Joseph Hughes, Thomas K.
Harris, Roni Rosenfeld, and Mathilde Pignol. 2002. Generating Remote Con-
trol Interfaces for Complex Appliances. In Proceedings of the 15th Annual ACM
Symposium on User Interface Software and Technology (Paris, France) (UIST
’02). Association for Computing Machinery, New York, NY, USA, 161–170.
https://doi.org/10.1145/571985.572008

[51] Lauren Norrie and Roderick Murray-Smith. 2016. Investigating UI Displacements
in an Adaptive Mobile Homescreen. 8, 3 (2016). https://doi.org/10.4018/IJMHCI.
2016070101.oa

[52] Benjamin Nuernberger, Eyal Ofek, Hrvoje Benko, and Andrew D. Wilson. 2016.
SnapToReality: Aligning Augmented Reality to the Real World. In Proceedings of
the 2016 CHI Conference on Human Factors in Computing Systems. Association for
Computing Machinery, New York, NY, USA, 1233–1244. https://doi.org/10.1145/
2858036.2858250

[53] Allan Oliveira and Regina B. Araujo. 2012. Creation and Visualization of Context
Aware Augmented Reality Interfaces. In Proceedings of the International Working
Conference on Advanced Visual Interfaces (Capri Island, Italy) (AVI ’12). Association
for Computing Machinery, New York, NY, USA, 324–327. https://doi.org/10.
1145/2254556.2254618

[54] Antti Oulasvirta, Niraj Ramesh Dayama, Morteza Shiripour, Maximilian John,
and Andreas Karrenbauer. 2020. Combinatorial Optimization of Graphical User
Interface Designs. Proc. IEEE 108, 3 (2020), 434–464. https://doi.org/10.1109/
JPROC.2020.2969687

[55] Seonwook Park, Christoph Gebhardt, Roman Rädle, Anna Feit, Hana Vrza-
kova, Niraj Dayama, Hui-Shyong Yeo, Clemens Klokmose, Aaron Quigley, Antti
Oulasvirta, and Otmar Hilliges. 2018. AdaM: Adapting Multi-User Interfaces
for Collaborative Environments in Real-Time. In SIGCHI Conference on Human
Factors in Computing Systems (CHI ’18). ACM, New York, NY, USA.

[56] Fabio Paterno, Carmen Santoro, and Lucio Davide Spano. 2009. MARIA: A
Universal, Declarative, Multiple Abstraction-Level Language for Service-Oriented

https://doi.org/10.1145/3379155.3391321
https://doi.org/10.1609/aimag.v30i4.2268
https://doi.org/10.1145/1357054.1357249
https://doi.org/10.1145/964442.964461
https://doi.org/10.1145/1095034.1095063
https://doi.org/10.1109/ISMAR.2014.6948429
https://doi.org/10.1109/ISMAR.2014.6948429
https://doi.org/10.1145/3301275.3302314
https://doi.org/10.1109/ISMAR.2012.6402555
https://doi.org/10.1145/1111449.1111512
https://doi.org/10.1145/2556288.2557130
https://doi.org/10.1145/2556288.2557130
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1145/3393672.3398640
https://doi.org/10.1145/3301275.3302278
https://doi.org/10.1145/3173574.3173610
https://doi.org/10.1145/3173574.3173610
https://doi.org/10.1145/3472749.3474774
https://doi.org/10.1109/TVCG.2016.2518318
https://docs.microsoft.com/en-us/hololens/hololens2-hardware
https://docs.microsoft.com/en-us/hololens/hololens2-hardware
https://docs.microsoft.com/en-us/windows/mixed-reality/mrtk-unity/mrtk2/features/ux-building-blocks/solvers/solver?view=mrtkunity-2022-05
https://docs.microsoft.com/en-us/windows/mixed-reality/mrtk-unity/mrtk2/features/ux-building-blocks/solvers/solver?view=mrtkunity-2022-05
https://docs.microsoft.com/en-us/windows/mixed-reality/mrtk-unity/mrtk2/features/ux-building-blocks/solvers/solver?view=mrtkunity-2022-05
https://docs.microsoft.com/en-gb/windows/mixed-reality/mrtk-unity/mrtk2/features/spatial-awareness/spatial-awareness-getting-started?view=mrtkunity-2021-05
https://docs.microsoft.com/en-gb/windows/mixed-reality/mrtk-unity/mrtk2/features/spatial-awareness/spatial-awareness-getting-started?view=mrtkunity-2021-05
https://docs.microsoft.com/en-gb/windows/mixed-reality/mrtk-unity/mrtk2/features/spatial-awareness/spatial-awareness-getting-started?view=mrtkunity-2021-05
https://github.com/microsoft/MixedRealityToolkit-Unity
https://github.com/microsoft/MixedRealityToolkit-Unity
https://doi.org/10.1016/j.cosrev.2021.100363
https://doi.org/10.1109/TSE.2004.40
https://doi.org/10.1145/3411764.3445560
https://doi.org/10.1145/3313831.3376637
https://doi.org/10.1145/3313831.3376637
https://doi.org/10.1145/571985.572008
https://doi.org/10.4018/IJMHCI.2016070101.oa
https://doi.org/10.4018/IJMHCI.2016070101.oa
https://doi.org/10.1145/2858036.2858250
https://doi.org/10.1145/2858036.2858250
https://doi.org/10.1145/2254556.2254618
https://doi.org/10.1145/2254556.2254618
https://doi.org/10.1109/JPROC.2020.2969687
https://doi.org/10.1109/JPROC.2020.2969687

UIST ’22, October 29-November 2, 2022, Bend, OR, USA Belo et al.

Applications in Ubiquitous Environments. ACM Trans. Comput.-Hum. Interact.
16, 4, Article 19 (nov 2009), 30 pages. https://doi.org/10.1145/1614390.1614394

[57] Ken Pfeufer, Yasmeen Abdrabou, Augusto Esteves, Radiah Rivu, Yomna Ab-
delrahman, Stefanie Meitner, Amr Saadi, and Florian Alt. 2021. ARtention: A
design space for gaze-adaptive user interfaces in augmented reality. Computers
& Graphics 95 (2021), 1–12.

[58] Xavier Puig, Kevin Ra, Marko Boben, Jiaman Li, Tingwu Wang, Sanja Fidler,
and Antonio Torralba. 2018. VirtualHome: Simulating Household Activities via
Programs. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR).

[59] Scott D Roth. 1982. Ray casting for modeling solids. Computer graphics and
image processing 18, 2 (1982), 109–144.

[60] Paulo Salem. 2017. User Interface Optimization Using Genetic Programming
with an Application to Landing Pages. Proc. ACM Hum.-Comput. Interact. 1, EICS,
Article 13 (June 2017), 17 pages. https://doi.org/10.1145/3099583

[61] Christian Sandor and Gudrun Klinker. 2005. A Rapid Prototyping Software
Infrastructure for User Interfaces in Ubiquitous Augmented Reality. Personal
Ubiquitous Computing 9, 3 (2005), 169–185. https://doi.org/10.1007/s00779-004-

0328-1
[62] Ryo Suzuki, Rubaiat Habib Kazi, Li-Yi Wei, Stephen DiVerdi, Wilmot Li, and

Daniel Leithinger. 2020. RealitySketch: Embedding Responsive Graphics and
Visualizations in AR with Dynamic Sketching. In Adjunct Publication of the 33rd
Annual ACM Symposium on User Interface Software and Technology (Virtual Event,
USA) (UIST ’20 Adjunct). Association for Computing Machinery, New York, NY,
USA, 135–138. https://doi.org/10.1145/3379350.3416155

[63] Markus Tatzgern, Denis Kalkofen, Raphael Grasset, and Dieter Schmalstieg. 2014.
Hedgehog labeling: View management techniques for external labels in 3D space.
In 2014 IEEE Virtual Reality (VR). 27–32. https://doi.org/10.1109/VR.2014.6802046

[64] Markus Tatzgern, Valeria Orso, Denis Kalkofen, Giulio Jacucci, Luciano Gam-

berini, and Dieter Schmalstieg. 2016. Adaptive information density for augmented
reality displays. In 2016 IEEE Virtual Reality, VR 2016, Greenville, SC, USA, March
19-23, 2016, Tobias Höllerer, Victoria Interrante, Anatole Lécuyer, and Evan A.
Suma (Eds.). IEEE Computer Society, 83–92. https://doi.org/10.1109/VR.2016.
7504691

[65] Kashyap Todi, Gilles Bailly, Luis Leiva, and Antti Oulasvirta. 2021. Adapting
User Interfaces with Model-Based Reinforcement Learning. In Proceedings of the
2021 CHI Conference on Human Factors in Computing Systems (Yokohama, Japan)
(CHI ’21). Association for Computing Machinery, New York, NY, USA, Article
573, 13 pages. https://doi.org/10.1145/3411764.3445497

[66] Unity. n.d.. Unity Coroutines. https://docs.unity3d.com/Manual/Coroutines.html
[67] Unity. n.d.. Unity Mars. https://unity.com/products/unity-mars
[68] V. Černý. 1985. Thermodynamical Approach to the Traveling Salesman Problem:

An Efcient Simulation Algorithm. 45, 1 (Jan. 1985), 41–51. https://doi.org/10.
1007/BF00940812

[69] Robert Xiao, Scott Hudson, and Chris Harrison. 2017. Supporting Responsive
Cohabitation Between Virtual Interfaces and Physical Objects on Everyday Sur-
faces. Proc. ACM Hum.-Comput. Interact. 1, EICS, Article 12 (jun 2017), 17 pages.
https://doi.org/10.1145/3095814

[70] Robert Xiao, Julia Schwarz, Nick Throm, Andrew D. Wilson, and Hrvoje Benko.
2018. MRTouch: Adding Touch Input to Head-Mounted Mixed Reality. IEEE
Transactions on Visualization and Computer Graphics 24, 4 (2018), 1653–1660.
https://doi.org/10.1109/TVCG.2018.2794222

[71] E. Zitzler, Laumanns, M., and L. Thiele. 2001. SPEA2: Improving the Strength
Pareto Evolutionary Algorithm for Multiobjective Optimization. In Evolutionary
Methods for Design, Optimization and Control with Applications to Industrial
Problems, EUROGEN.

https://doi.org/10.1145/1614390.1614394
https://doi.org/10.1145/3099583
https://doi.org/10.1007/s00779-004-0328-1
https://doi.org/10.1007/s00779-004-0328-1
https://doi.org/10.1145/3379350.3416155
https://doi.org/10.1109/VR.2014.6802046
https://doi.org/10.1109/VR.2016.7504691
https://doi.org/10.1109/VR.2016.7504691
https://doi.org/10.1145/3411764.3445497
https://docs.unity3d.com/Manual/Coroutines.html
https://unity.com/products/unity-mars
https://doi.org/10.1007/BF00940812
https://doi.org/10.1007/BF00940812
https://doi.org/10.1145/3095814
https://doi.org/10.1109/TVCG.2018.2794222

AUIT – the Adaptive User Interfaces Toolkit

A IMPLEMENTATION DETAILS
In this section we describe how the cost functions and optimization
heuristics for each adaptation objective are implemented. Note that
the adaptation objectives are described in a diferent order here to
optimize page space.

In this pseudo-code, variables declared before the functions are
obtained dynamically or have default values that can be customized
in the Unity inspector. We omit some software engineering tech-
nicalities - for more technical details please refer to the source
code.

A.1 Adaptation Objectives

Algorithm 1: Distance Interval Objective

1 дXZ ← goal distance from context source in XZ plane
2 iXZ ← distance interval from дXZ (no cost penalty)
3 iY ← height of the hollow cylinder (no cost penalty)
4 t ← threshold for highest cost
5 uiXZ ← UI XZ coordinates
6 uiY ← UI Y coordinate
7 csXZ ← context source XY coordinates
8 csY ← context source Y coordinate
9 function Cost
10 di f XZ ← csXZ − uiXZ
11 dXZ ← magnitude(di f XZ) ▷ dist. from cs in XZ plane
12 dt ← abs(dXZ − дXZ) ▷ UI XZ distance from goal
13 cXZ ← max(0, dt − iXZ) ▷ no penalty if dist. ≤ iXZ
14 dY ← abs(csY − uiY) ▷ UI Y distance from goal
15 cY ← max(0, dY − iY /2) ▷ no penalty if dist. ≤ iY /2
16 c = cXY + cY
17 c ← min (c/t , 1) ▷ normalize cost according to t
18 return c
19 end function
20 function Heuristics
21 s ← random value ∈ [0, 1]
22 if s ≤ 0.5 then
23 дXZ ← csXZ − uiXZ
24 dXZ ← magnitude(дXZ) − дXZ ▷ distance from goal
25 дuXZ ← normalize(дXZ)
26 nPXZ ← uiXZ + дuXZ ∗ N(dXZ , 0.2) ▷ move to goal
27 дY ← csY − uiY
28 nPY ← uiY + дY ∗ N(0.3, 0.2) ▷ move to goal
29 return nP ▷ new position likely closer to goal
30 else
31 rU ← random unit vector
32 return uiPos + rU ∗ N(0.3, 0.2) ▷ move at random
33 end if
34 end function

UIST ’22, October 29-November 2, 2022, Bend, OR, USA

Algorithm 2: Avoid Occlusion Objective

1 ks ← UI keypoint array dynamically generated (local
coords.)

2 csPos ← context source position
3 uiTRS ← UI TRS matrix
4 uiPos ← UI position
5 function Cost
6 c ← 0
7 for all k in ks do
8 wK = uiT RS · k ▷ get k in world coord.
9 if raycast(csPos, wK) hits then
10 c ← c + 1 ▷ increase cost
11 end if
12 end for
13 return c/length(ks) ▷ return normalized cost
14 end function
15 function Heuristics
16 s ← random value ∈ [0, 1]
17 if s ≤ 0.5 then ▷ pick heuristic at random
18 for all k in ks do
19 дP = uiTRS · k ▷ get k in world coord.
20 if raycast(csPos, wK) hits then
21 n ← hit normal(csPos, wK) ▷ surface normal
22 return hit pos. + n ∗ N(1, 0.5) ▷ move away
23 end if
24 end for
25 else
26 rU ← random unit vector
27 return uiPos + rU ∗ N(0.3, 0.2) ▷ move at random
28 end if
29 end function

Algorithm 3: Anchor to Target Objective

1 o ← ofset vector provided by creator
2 t ← threshold for highest cost
3 csTRS ← context source TRS matrix
4 uiPos ← UI position
5 function Cost
6

1 l ← csTRS− · uiPos ▷ get UI position in cs local coord.
7 d ← distance(l , o) ▷ distance from ofset to UI
8 c ← min(d/t , 1) ▷ normalize cost according to t
9 return c
10 end function
11 function Heuristics
12 s ← random value ∈ [0, 1]
13 opt ← csTRS−1 · o ▷ compute optimal position
14 if s ≤ 0.33 then ▷ pick heuristic at random
15 return opt ▷ return optimal position
16 else
17 ou ← normalize (opt − uiPos)
18 uv ← random unit vector ▷ add randomness
19 ou ← ou + uv ∗ random value ∈ [0, 0.3]
20 return uiPos + ou ∗ N(1, 0.5)
21 end if
22 end function

UIST ’22, October 29-November 2, 2022, Bend, OR, USA Belo et al.

Algorithm 4: Spatial Coherence Objective

1 u ← adaptations allowed until a position is forgotten
2 vs ← data structure for visited voxel data
3 uiPos ← position of the UI
4 function OnAdapt(pos) ▷ called whenever ui adapts
5 for all v in vs
6 decrease v score by 1
7 if v score is 0 then
8 remove v from vs
9 end if
10 end for
11 add/update voxel at pos to vs with score u
12 end function
13 function Cost
14 if vs has voxel containing uiPos then
15 return 0
16 else
17 return 1
18 end if
19 end function
20 function Heuristics
21 s ← random value ∈ [0, 1]
22 if s ≤ 0.5 then ▷ pick heuristic at random
23 return voxel in vs closest to uiPos
24 else
25 return voxel in vs at random
26 end if
27 end function

Algorithm 5: Constant View Size Objective

1 sF ← scaling factor ▷ scaling based on linear function
2 iS ← scaling diference tolerance (no cost penalty)
3 d ← base scale intended distance for UI
4 t ← threshold for highest cost
5 dS ← UI default scale
6 uiS ← UI current scale
7 uiP ← UI position
8 csP ← context source position
9 function Cost
10 d ← magnitude(uiP − csP) ▷ get distance from ui to cs
11 i ← dS ∗ (d/iS ∗ sF) ▷ ideal scale based on d
12 c ← magnitude(uiS/i) ▷ compute scale diference
13 return min(c/t , 1) ▷ normalize according to t
14 end function
15 function Heuristics
16 s ← random value ∈ [0, 1]
17 if s ≤ 0.5 then
18 d ← magnitude(uiP − csP) ▷ dist. from ui to cs
19 i ← dS ∗ (d/iS ∗ sF) ▷ optimal scale based on d
20 return i ∗ N(1, 0.3)
21 else
22 r ← N(0.3, 0.2)
23 return uiS ∗ r ▷ randomize scale
24 end if
25 end function

Algorithm 6: Field of View Objective

1 bo ← boundary origin for desired region in FoV
2 i ← angle interval from bo (no cost penalty)
3 t ← angle threshold for highest cost
4 csTRS ← context source TRS matrix
5 uiPos ← UI position
6 function Cost
7

1← l csT RS− · uiPos ▷ get UI position in cs local coord.
8 a ← angle([0, 0, 1], l) ▷ angle between gaze and UI
9 a ← abs(a − bo) ▷ distance from desired origin
10 a ← max(0, a) ▷ no penalty if angle ≤ i
11 return min(a/t , 1) ▷ return normalized cost
12 end function
13 function Heuristics
14 s ← random value ∈ [0, 1]
15

1 lU I ← csTRS− · uiPos ▷ get UI pos. in cs local coord.
16 if s ≤ 0.5 then ▷ pick heuristic at random
17 a ← angle ([0, 0, 1], l) ▷ angle between gaze and UI
18 dir = 1 ▷ move towards cs forward
19 if a − i ≤ 0 then
20 dir = −1 ▷ move away from cs forward
21 end if
22 дW = csTRS · [0, 0, magnitude(lU I)]
23 д ← дW − uiPos
24 return uiPos + д ∗ dir ∗ N(0.3, 0.2)
25 else
26 rU ← random unit vector
27 return uiPos + rU ∗ N(0.3, 0.2) ▷ move at random
28 end if
29 end function

Algorithm 7: Look Towards Objective

1 csPos ← context source position
2 uiZ ← UI "look" vector ▷ UI forward or equivalent
3 uiPos ← UI position
4 t ← angle threshold for highest cost
5 function Cost
6 lA ← uiPos − csPos ▷ Vector from cs to ui
7 a ← angle(lA,uiZ) ▷ angle diference
8 return min(a/t , 1) ▷ return normalized cost
9 end function
10 function Heuristics
11 lA ← uiPos − csPos ▷ vector pointing to target
12 rot ← interpolate between uiZ and lA by N(1, 0.3)
13 return rot as a Quaternion
14 end function

