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Figure 1: AUIT supports creators defning adaptation policies for UI elements that combine multiple objectives for XR inter-
faces. In this example, a video call UI is gradually extended with adaptation objectives to render it visible and within reach. 
Complexity rises with more potentially competing objectives and context changes. AUIT simplifes the design of adaptations 
by fnding the best compromise via a multi-objective solver. 

ABSTRACT 
Adaptive user interfaces can improve experiences in Extended Re-
ality (XR) applications by adapting interface elements according 
to the user’s context. Although extensive work explores diferent 
adaptation policies, XR creators often struggle with their imple-

mentation, which involves laborious manual scripting. The few 
available tools are underdeveloped for realistic XR settings where it 
is often necessary to consider conficting aspects that afect an adap-
tation. We fll this gap by presenting AUIT, a toolkit that facilitates 
the design of optimization-based adaptation policies. AUIT allows 
creators to fexibly combine policies that address common objec-
tives in XR applications, such as element reachability, visibility, and 
consistency. Instead of using rules or scripts, specifying adaptation 
policies via adaptation objectives simplifes the design process and 

This work is licensed under a Creative Commons Attribution International 
4.0 License. 

UIST ’22, October 29-November 2, 2022, Bend, OR, USA 
© 2022 Copyright held by the owner/author(s). 
ACM ISBN 978-1-4503-9320-1/22/10. 
https://doi.org/10.1145/3526113.3545651 

enables creative exploration of adaptations. After creators decide 
which adaptation objectives to use, a multi-objective solver fnds 
appropriate adaptations in real-time. A study showed that AUIT 
allowed creators of XR applications to quickly and easily create 
high-quality adaptations. 
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1 INTRODUCTION 
Extended Reality (XR) is a medium that has gotten more widespread 
over the past years and will likely continue growing in the years to 
come [10]. Hardware improvements push the boundaries of what 
these applications can achieve, and sectors such as entertainment 
and manufacturing contribute towards this computing platform 
increasing popularity. However, easy-to-use XR applications are 
still challenging to develop. In contrast to traditional desktop or 
mobile applications, they are not confned to a 2D screen, but merge 
with the user’s real-world environment to diferent extents. A key 
challenge of XR applications is how well they adapt to changes in 
the user’s situation and surroundings [37]. 

The design of an adaptive UI for XR applications involves a high 
degree of complexity. As the user moves in the environment, con-
sidering context changes like his position or surrounding objects 
is crucial for creating an adaptation policy that provides a usable 
UI. Figure 1 illustrates one example scenario where a user has a 
foating video call interface close to him. The user might be un-
able to reach the virtual buttons, and positions outside his feld of 
view or colliding with physical objects are inappropriate. Thus, the 
environment’s geometry and the user’s position constantly afect 
the visibility and reachability of the UI element - two fundamental 
usability factors of XR applications. 

To address both requires considering multiple adaptation objec-
tives [17]. However, these are typically not independent and might 
compete with each other. For example, moving the video call to 
prevent occlusion might position it outside the reach of a user. Such 
interactions grow as the number of UI elements and the complex-

ity of the environment increase. They are hard for developers to 
foresee and resolve, increasing the difculty of creating adaptive 
XR interfaces. 

Over the last years, HCI researchers have proposed various meth-

ods to adapt interface elements in XR applications. They were 
concerned with the visibility and integration of virtual elements 
into the physical environment [9, 23, 37, 52] and their reachability 
or ergonomics [16, 30]. When considering criteria to adapt, these 
typically address independent aspects of the interface, such as posi-
tion and content [37]. However, these methods tend to be custom 
tailored to specifc applications and are difcult for creators to 
implement in practice. Existing tools for developing XR applica-
tions [45] only ofer naive adaptation policies that are inefective 
when multiple usability aspects come together. 

To close this gap, we propose AUIT, the Adaptive User Interfaces 
Toolkit for supporting the design of XR applications. AUIT sim-

plifes the adaptation of virtual elements to users’ contexts and 
enables the combination of multiple adaptation objectives. It also 
ofers a general framework that unifes prior research to make it 
available to practitioners. We achieve this goal by identifying fve 
design concepts that adaptive user interfaces must implement: 

Adaptation objectives Describe adaptation behaviors to address, 
such as visibility and reachability of UI elements. 

Solvers Algorithms to compute adaptation candidates for UIs, re-
solving conficts between objectives. 

Context widgets Process raw sensor data into higher abstraction 
levels to inform adaptations. 

Adaptation triggers The logic for when to invoke solvers and 
when to apply the adaptation proposals to the UI. 

Property transitions How properties of virtual content transi-
tion to a new state when adaptations are triggered. 

AUIT implements seven adaptation objectives that creators can 
fexibly assign to UI elements to address two fundamental usability 
issues of XR interfaces: visibility and reachability. AUIT automates 
confict resolution by continuously optimizing the interface and 
determining the best trade-of between the chosen adaptation ob-
jectives using a multi-objective solver. Creators can choose between 
diferent adaptation triggers for initiating the adaptation, either at 
fxed time intervals or when the solver fnds substantial UI improve-

ments. They can also select property transitions to decide how the 
UI transitions to its new state. AUIT is implemented as a Unity 
extension that creators can easily import to develop adaptive UIs 
without drastic changes in their current workfow. 

We evaluate AUIT’s usefulness through a user study with eight 
experts who actively create XR applications as part of their jobs. We 
found that the design concepts in AUIT were easy to understand for 
participants, allowing for a clear separation of concerns in adaptive 
UIs. The process was fast, and participants designed adaptive user 
interfaces for two diferent scenarios in less than 25 minutes. They 
appreciated how easy it was to combine adaptation objectives and 
the quality of the results, while feeling efcient considering the 
time spent and the adaptations obtained. Participants also discussed 
the importance of adaptive UIs and pointed out that their current 
practice was limited by manual scripting, highlighting the need for 
tools to facilitate their development. 

To summarize, this paper proposes AUIT, a toolkit based on a 
conceptual framework to support the creation of user interfaces 
that adapt to the user’s context. It allows for 1) combining diferent 
adaptation objectives, 2) resolving conficts between objectives us-
ing multi-objective optimization, and 3) customizing how and when 
XR content adapts. We demonstrate the utility of the toolkit through 
a study where experts successfully create high-quality adaptations 
for two applications using AUIT. We make the toolkit available 
through a Unity package that can be extended and customized by 
creators to ft their needs. AUIT makes existing research on adap-
tation methods for 3D interfaces available to creators, and ofers 
a unifying framework for future work. Source code is available at 
https://github.com/joaobelo92/auit. 

2 RELATED WORK 
Over the last decades, researchers have proposed diferent meth-

ods to adapt interfaces to improve usability. We start with a brief 
overview of adaptation and optimization techniques for 2D user 
interfaces. Then, we move on to research focusing on XR, start-
ing with view management techniques, followed by adaptation 
techniques focusing on other usability goals. Finally, we give an 
overview of related frameworks and toolkits. 

2.1 Adaptation and Optimization of 2D 
Interfaces 

The increasing availability of mobile devices has motivated signif-
cant work on adaptive UIs. Researchers have proposed model-based 
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approaches allowing developers to adapt applications across de-
vices based on rules and logic (e.g., MARIA/TERESA [47, 56]) and 
methods that dynamically generate interfaces for multiple devices 
[50]. Gajos and Weld introduced SUPPLE, an approach that uses 
optimization to design UIs [21]. Similarly to SUPPLE, we use cost 
functions in our optimization procedure to represent objectives 
that guide adaptations in XR. 

To support designers of 2D applications, researchers have ex-
plored genetic algorithms [60], other combinatorial optimization 
approaches [54], and data-driven optimization [22] based on user 
preferences to compute an optimal UI. The UI can also use optimiza-

tion in real-time to dynamically adapt to users’ preferences, context, 
or a device’s capabilities (e.g. [8, 11, 18, 25, 55]). Such adaptations of 
user interfaces are relevant on mobile devices [5, 51] that typically 
have small screen sizes [20]. Recently, Todi et al. [65] presented a 
method for adaptive user interfaces based on reinforcement learn-
ing. There is extensive research on adaptive 2D UIs, and we refer 
to Miraz et al. [46] for a broader discussion of related work in this 
area. 

2.2 View Management Techniques 
View management techniques address how to maintain virtual ob-
jects in the user’s view plane. These techniques focus on visibility 
aspects, such as avoiding occlusion and maintaining spatial rela-
tionships of virtual objects. Pioneering work focused on algorithms 
that use the upright rectangular extents of content in the view plane 
to avoid occlusion, adapting object properties such as their position, 
size, and transparency [3]. Grasset et al. focused on optimizing lay-
outs of elements during run-time in the 2D view plane [26], while 
Tatzgern et al. explored this issue in 3D space [63]. Spatio-temporal 
coherence is another relevant factor to consider in XR experiences. 
Using spatial information from previous frames can help reduce 
visual discontinuities. Experiments suggest that users prefer limited 
update rates over continuous update rates for adaptations [40]. 

Other work investigated adaptive UIs to manage information 
density in AR and avoid information overload, which might afect 
task performance depending on the user’s cognitive load. Therefore, 
researchers have developed adaptive level-of-detail (LOD) meth-

ods for AR interfaces. Tatzgern et al. [64] proposed an adaptive 
information density display for AR using hierarchical clustering. 
Their approach automatically groups UI elements to reduce in-
formation overload and provides the user the control to unfold 
the level of detail. Several works use special sensors, such as eye-
tracking technology, to adapt how and which content to present to 
the user [37, 38, 57]. 

View management techniques are closely related to UI adapta-
tions. AUIT aims to make this line of work available to practitioners 
through a tool to adapt UIs that they can extend to support other 
sources of context (e.g., eye-gaze) and objectives (e.g., less-cluttered 
UI). 

2.3 Adaptive User Interfaces in XR 
UIs in XR pose additional challenges compared to traditional UIs 
because of the higher-dimensional design space, context changes, 

and broader range of interaction metaphors. Adaptive UIs are par-
ticularly important in XR scenarios using wearable [34], ubiqui-
tous [29, 61], and mobile [31] computing platforms. Oliveira and 
Araujo [53] developed a context-aware AR system that adapts its 
interface based on changing contexts. Their system uses adapta-
tion rules which select an appropriate UI pattern according to the 
current context. To improve the usability of XR applications, cre-
ators must consider factors such as real-world geometry [23, 52], 
cognitive load [37], or ergonomics [16]. Gal et al. [23] presented 
a method to automatically generate object layouts in AR applica-
tions, where the virtual elements in the AR application adapt to 
real-world geometry. 

Ens et al. proposed a body-centric layout management technique 
that keeps layouts consistent across multiple environments while 
adapting to local geometric and visual features [15]. The work from 
Xiao et al. [69] explores various interaction techniques that use 
spatial awareness and optimization to adapt to diferent work sur-
faces. Later on, Lindlbauer et al. proposed an optimization-based 
approach to automatically control when and where mixed reality 
(MR) applications are shown and how much information they dis-
play, depending on the user’s cognitive load [37]. Lu and Xu [39] 
studied diferent levels of automation and control of adaptive UI 
in AR. Their results suggest that users prefer and perform better 
when adaptations are semi-automated. 

All these works show how diferent adaptation factors can im-

prove usability in XR applications. AUIT provides a novel platform 
for creators to experiment with several adaptation goals and can 
be extended to support many more. 

2.4 Frameworks and Toolkits 
As XR technology is becoming widely available, researchers called 
for better support for developers across various stages of the design 
process of creating XR experiences [2]. As such, there has been a 
surge in research for tools that can ease the design and development 
of augmented [36, 48, 62] and virtual reality applications [27, 49]. 
We extend existing work with a toolkit to create adaptive UIs. 

There is limited work on frameworks to facilitate the creation of 
adaptive UIs. Bonanni et al. [4] presented a framework for adaptive 
UI design focused on an AR kitchen scenario to support cooking, a 
scenario we build upon in our user study. Krings et al. implemented 
context-aware UI adaptations with a rule-based framework in which 
any change in context can trigger adaptation actions [33]. 

There are also other frameworks with some support for creating 
UI adaptations. For example, MRTK [45] has solvers [43] that use 
algorithms to calculate the position and orientation of UI elements. 
Existing solvers in MRTK focus on fundamental usability issues, 
such as visibility and reachability, as we do in the initial iteration 
of our toolkit. Although MRTK allows creators to chain multiple 
solvers with diferent adaptation objectives, it runs these sequen-
tially without support for multi-objective optimization. Moreover, 
each solver in MRTK is tied to specifc transitions (e.g., smooth 
movement over time, triggered every frame), limiting the design 
space of adaptations for XR. 

Unity Mars [67] is another authoring tool that provides prox-
ies to represent real-world objects, allowing creators to design UI 
adaptations based on rules relative to these proxies. 
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These frameworks focus on rule-based adaptations or algorithms 
to address specifc adaptation objectives and lack the fexibility to 
combine multiple adaptation goals. We propose a framework that 
can integrate existing research and is easy to extend and generalize 
various scenarios encountered in the XR landscape. We use this 
framework as the foundation for AUIT, giving fexibility to cre-
ators by allowing them to combine diferent adaptation objectives, 
fnd adaptations using multi-objective optimization, and customize 
when and how UI elements transition from one state to another. 
AUIT separates adaptation concerns [13] into components, provid-
ing a modular approach where it is straightforward to customize 
diferent aspects of an adaptation. 

3 AUIT: DESIGN CONCEPTS 
To facilitate the design of adaptive UIs, we propose a clear separa-
tion of concerns [13] of the diferent design concepts present in an 
adaptation. Throughout this paper, we refer to the creator as the 
individual responsible for the application’s development or design 
and the user as the end-user that will use the application. Consider 
the video call scenario presented in Figure 1. A creator develops an 
application that consists of a single UI element with a live video call 
and some controls to interact with it. The creator wants the video 
to be visible to the user and follow him as he moves around without 
interfering with his tasks and the environment. Such a scenario can 
quickly become complex, with various considerations about what 
kind of adaptive behavior is required, what contextual information 
it depends on, the conditions that cause an adaptation, and how to 
execute the UI adaptation. Such questions are not specifc to this 
example, and are relevant to consider for many types of UI adap-
tations in XR. Therefore, we formulate these concerns as design 
goals for UI adaptations, followed by a framework to address them. 

3.1 Design Goals 
D1: Support a range of adaptation behaviors. XR applications 

are not limited to the dimensions of a screen, in contrast to the 
GUIs present in traditional applications. In this setting, the design 
space tends to be broad and challenging to predict at design time. 
The design space also changes at runtime due to context changes 
such as the user’s position or moving real-world objects. Consider 
the scenario in Figure 1 - the creator designs an adaptive UI that 
is 1) in reach, 2) in the user’s feld of view, and 3) not occluded 
by other objects. However, diferent scenarios have diferent re-
quirements, and no specifc combination of adaptation behaviors 
addresses the needs of the wide variety of applications possible in 
XR. Lindlbauer et al. [37] explored multiple adaptation objectives, 
but their approach focus on specifc scenarios and fxed adaptation 
objectives, limiting generalization to other settings. Flexibility to 
combine diferent adaptation objectives across various UI elements 
allows creators to develop a wider variety of designs. 

D2: Allow combining multiple adaptation objectives in one adap-
tation. Multiple adaptation objectives can confict with each other. 
For example, in the scenario from Figure 1, the adaptation objective 
to position objects in a specifc zone of the user’s feld of view 
(FoV) can confict with the objective to avoid collisions. Although 
related work has explored methods to fnd suitable solutions when 
considering multiple adaptation objectives through multi-objective 

optimization [23, 37], the support for combining adaptation objec-
tives is still limited in existing tools. Therefore, the framework must 
be capable of fnding a compromise between multiple objectives 
at runtime without constraining which objectives are possible to 
select. 

D3: Support for context collection and interpretation. The lack 
of standard methods to acquire and handle context is one of the 
barriers identifed by Dey et al. [12] for using context in applica-
tions. In the scenario from Figure 1, context plays a crucial role in 
providing appropriate UI adaptations - it is necessary to know the 
user’s position, where he is looking, and the environment geome-

try. In the past, applications would retrieve the user’s context with 
custom implementations that processed sensor data into applica-
tions. Nowadays, this issue is not as prominent for XR applications. 
Game engines and software development kits already support some 
contextual information at a high abstraction level. Nonetheless, 
methods to interpret context at higher levels of abstraction that are 
generalizable across diferent applications are still a requirement to 
facilitate the creation of adaptive UIs in XR. 

D4: Methods to customize when and why an adaptation occurs. 
Depending on the application, creators might require diferent 
strategies for triggering UI adaptations. For example, in the video 
call scenario encountered in Figure 1, a naive approach that adapts 
the UI at a constant update rate might be sufcient, but the cre-
ator could be interested in a diferent strategy such as adapting 
the UI only when the quality of the layout goes below a certain 
threshold. Lindlbauer et al. [37] propose temporal smoothing to 
improve transitions through adaptations, while Krings et al. [33] 
decide when to adapt the UI based on rules. The framework must 
allow creators to customize why and when UI adaptations occur to 
increase fexibility. 

D5: Support for a variety of property transitions. When consider-
ing the position of a UI element in an XR application, there are many 
possible ways it can adapt from one state to another. For example, 
in Figure 1, a creator can choose to update the position of the video 
call by moving it over time in 3D or instantly. These are just a few 
of the many possible transitions a creator could use for adapting 
the position of an object, one of the properties to adapt in XR. Con-
sider now other properties of UI elements, like size, rotation, or 
modality. In such a vast design space, a framework to facilitate the 
creation of adaptive user interfaces must allow creators to choose 
from multiple property transitions. 

3.2 Design Concepts for Adaptation Policies 
We propose fve design concepts for the development of adaptation 
policies to address the design goals we just presented. We provide 
an overview in Figure 2. Creating an adaptation policy that con-
siders multiple adaptation objectives for an XR application should 
incorporate these to some extent: 

Adaptation objectives (D1) are goals that guide the UI adapta-
tion. For greater fexibility, an objective should only have one goal, 
allowing creators to combine objectives with diferent goals in 
one UI adaptation. For example, a creator might want a button to 
be reachable to the user while avoiding collisions with the real-
world environment. By abstracting these goals into two separate 



AUIT – the Adaptive User Interfaces Toolkit UIST ’22, October 29-November 2, 2022, Bend, OR, USA 

objectives, creators can use them modularly for other adaptations 
throughout the application. Although an adaptation objective must 
have a single goal, it is worth noting that it can refer to a set of 
UI elements. For example, an objective to avoid clutter can have 
multiple UI elements as a target, but it is still a single goal. 

Solvers (D2) are approaches that try to fnd the optimal solution 
to a stated optimization problem [54]. In our framework, solvers 
generate adaptation proposals to optimize the UI according to the 
adaptation objectives selected by creators. 

Context widgets (D3) encapsulate how context is retrieved and 
make that data accessible to applications. Dey et al. [12] proposed 
such a component, and we refer to their work for a more in-depth 
overview. In short, context widgets process raw data and make it 
available at higher levels of abstraction, allowing creators to reuse 
and customize the usage of context data throughout the applica-
tion. For XR applications, development tools such as MRTK [45] 
have some context widgets available. An example is the spatial 
awareness system in MRTK [44], a feature to provide real-world en-
vironmental awareness through a collection of meshes representing 
the environment geometry, which demonstrates how raw sensor 
data from the device is converted into a higher level of abstraction 
(in a mesh format), facilitating its integration in XR applications. 

Adaptation Triggers (D4) are responsible for the logic to invoke 
solvers and if the solver proposals are applied. For example, creators 
can save computational resources by invoking the solver only when 
the layout quality goes below a certain threshold. Then, adaptations 
might be applied if the improvements from a new proposal are 
sufcient to justify the adaptation. The framework should allow 
creators to customize adaptation triggers and use or implement 
diferent strategies. 

Property Transitions (D5) address how virtual content adapts to 
its new state when adaptations occur. Once an adaptation trigger 
executes an adaptation, property transitions defne how the relevant 
properties of the UI element adapt from the previous to the new 
state. For example, there are diferent ways a UI element can move 
from position x to position y, such as moving over time from one 
position to another or fading out from the previous to the new 
position. 

4 AUIT: TOOLKIT IMPLEMENTATION 
We implement the framework introduced in the prior section through 
AUIT, a toolkit to facilitate the creation of adaptive user interfaces 
for XR applications. To optimize XR interfaces considering a combi-

nation of adaptation objectives, we formulate a cost minimization 
problem and solve it using multi-objective optimization. Adaptation 
objectives are formulated mathematically through a cost function 
representing how much the current layout fulflls that objective. 

From an optimization perspective, we are dealing with a multi-

objective optimization problem to optimize multiple objective func-
tions simultaneously. In this case, objectives can contradict each 
other such that improving the solution towards one will worsen any 
of the others. Non-trivial problems have a set of optimal solutions 
that form the Pareto optimal frontier [41] instead of a single global 
optimal solution. To simplify picking a desirable solution in our 
toolkit, we opt for a weighted sum method [41], where creators 

Figure 2: Overview of the design concepts for adaptive UIs. 
MAUI proposes 5 concepts to design adaptation policies for 
XR applications. 

articulate their preferences about the relative importance of difer-
ent objectives using weights. We describe how we implement each 
design concept we proposed in Section 3 as a component of our 
toolkit: 

4.1 Adaptation Objectives 
Adaptation objectives are the criteria the UI adapts to and represent 
atomic adaptation behaviors that accomplish usability goals, such 
as visibility and reachability of the UI. 

We defne each adaptation objective through a cost function. To 
facilitate the customization of weights by creators, each adaptation 
objective we implement has a normalized cost function that outputs 
a cost from 0 to 1, reaching the highest value when the current 
layout infringes the adaptation objective beyond a customizable 
threshold. For example, consider an adaptation objective to keep 
virtual content from colliding with objects in the physical world. In 
this context, such an objective would return a value of 0 when ap-
plied to a hologram occupying a position that results in no collisions. 
This value would increase when the hologram starts colliding with 
environment geometry, reaching the value of 1 when the whole 
area of its virtual content is colliding. We implement heuristics 
for each adaptation objective so the solver can fnd improvements 
more efciently. In addition, the solver can still search for new 
solutions following a random approach to avoid getting stuck in 
local minima. 

We include seven adaptation objectives in AUIT that we illus-
trate in Figure 3, that identifes the high-level usability goals each 
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Figure 3: Adaptation objectives that are currently supported 
in AUIT. Creators can customize and combine them to de-
sign adaptation policies. 

adaptation objective contributes to, from visibility, reachability, and 
learnability. Here, we briefy describe the adaptation objectives 
AUIT supports and refer the reader to the appendix for a more 
detailed description of cost functions and optimization heuristics. 

4.1.1 Field of View Objective (Figure 3a). Ensures the UI element 
is within a specifc region of the user’s feld of view. Creators can 
select a pre-defned peripheral view interval or create a custom one 
by defning its inner and outer boundaries. 

Optimization heuristic: attempt to move the UI element towards 
the FoV interval selected by the creator. 

4.1.2 Look Towards Objective (Figure 3b). Rotates the UI element 
towards a selected context source. It defaults to the user’s position. 
This objective can contribute to visibility, as content such as text 
and images will become easier to see when rotated towards the 
user. 

Optimization heuristic: rotate the UI towards the optimal rotation. 

4.1.3 Constant View Size Objective (Figure 3c). Scales the UI ele-
ment depending on its distance from a target. This objective aims 
to maintain a constant view size to a context source, typically the 
user. We determine the optimal size of the UI using a confgurable 
linear function dependent on the distance from the UI to the con-
text source. This is relevant to improve visibility of the UI without 
updating its position. 

Optimization heuristic: scale the UI towards the optimal scale 
according to its distance from the context source. 

4.1.4 Avoid Occlusion Objective (Figure 3d). Avoids positions where 
the environment geometry or other virtual elements in the scene 
would occlude the object (typically to the user). Avoiding occlusions 
also prevents collisions with other virtual or physical objects. To 
check for occlusion, we dynamically add a confgurable set of points 
in a grid composition to the UI element. Then, we draw rays [59] 
from the context source to each point and increase the cost for each 
ray hitting other content. 

Optimization heuristic: move the UI in the direction of the surface 
normal hit by one of the obstructed rays. 

4.1.5 Anchor to Target Objective (Figure 3e). Aims to position a UI 
element at an ofset from a selected context source. It selects the 
rotation and position of the user’s head by default and the creator 
must provide the ofset. Relevant when a UI element should follow 
the user or a virtual object. 

Optimization heuristic: move the UI in the direction of the anchor 
point by a random distance. 

4.1.6 Distance Interval Objective (Figure 3f). Keeps UI elements 
positioned within a customizable distance interval in the shape of 
a vertical hollow cylinder from a selected context source - typically 
the user’s position. The creator can set the inner and outer boundary 
of the cylinder area. This objective is relevant in cases where UI 
elements must be reachable to support hand input or at a distance 
that allows the user to see their content. 

Optimization heuristic: move the UI towards the hollow cylinder 
by a random distance. 

4.1.7 Spatio-Temporal Coherence Objective (Figure 3g). Prioritizes 
adaptations where the UI element adapts to positions where it has 
been before, avoiding updates unless there are substantial improve-

ments. Relevant to improve usability by leveraging the user’s spatial 
memory [40]. 

Optimization heuristic: pick the closest previously visited posi-
tion or other visited position at random. 

4.2 Solvers 
Solvers are the algorithms responsible for computing adaptation 
proposals. As mentioned earlier, we formulate a cost minimiza-

tion problem and allow creators to articulate their preferences in 
terms of the relative importance of each adaptation objective using 
weights. An XR application typically contains v virtual elements. 
Each virtual object can have multiple adaptation objectives a - each 
having a correspondent weight w and cost function c - we can 
articulate the problem with a weighted sum: 

v aÕÕ 
U = wi j ci j (®x) (1) 

i=1 j=1 

where x® is the decision vector that consists of UI confguration 
parameters for all the UI elements to optimize and the minimum 
of U is Pareto optimal [41]. One of the goals of our framework is 
to generalize to a wide range of objectives, so we are particularly 
interested in methods capable of solving non-linear optimization 
problems. For that reason, the solver we implement uses simulated 



AUIT – the Adaptive User Interfaces Toolkit UIST ’22, October 29-November 2, 2022, Bend, OR, USA 

annealing [32, 68], which gradually converges to a near-optimal 
solution [1]. To fnd appropriate solutions more efciently, our 
solver uses heuristics implemented for each objective and some 
randomness to avoid local optima. The solver uses early stopping to 
stop searching for proposals when it fnds a suitable candidate and 
Unity coroutines [66] to distribute the computational load across 
multiple frames. 

4.3 Context Widgets 
Context widgets are the components responsible for processing 
raw sensor data into higher levels of abstraction. An advantage 
of building our toolkit for Unity is that several context widgets 
are available out of the box. It is trivial to retrieve fundamental 
context data for XR applications such as the position and gaze of the 
user from the Unity Camera component, which follows the user’s 
head movement and rotation when using an HMD. Other relevant 
context information, such as the user’s environment geometry or 
hand tracking, can be available depending on the development 
platform. For example, when developing for the Hololens, its SDK 
provides hand tracking and the environment geometry in Unity [44]. 
Because the adaptation objectives that are part of our frst iteration 
of the toolkit consider fundamental usability goals, the context 
widgets already available in Unity are sufcient. For more fexibility, 
the creator can change the context source of adaptation objectives 
in the Unity inspector. For example, an adaptation objective that 
uses a position in 3D can be customized to use the user’s pose or 
another virtual object in the scene. 

4.4 Adaptation Triggers 
Adaptation triggers are the component responsible for the logic 
to invoke the solver and apply the resulting adaptation proposal. 
AUIT supports two adaptation triggers to handle 1) when and how 
frequently to invoke the solver and 2) when to apply the adaptation 
proposed by the solver: 

4.4.1 Interval optimization trigger. A basic adaptation strategy is to 
use a solver to generate UI proposals and apply them at a fxed rate, 
which creators can customize. This strategy involves a trade-of 
between update rate vs. usability. If the update rate is too high, it 
can result in too many adaptations that are a nuisance to the user. If 
the update rate is too low, the UI might violate adaptation objectives 
for too long until it adapts. Moreover, higher update rates result in 
a higher computational load as the solver runs more often. 

4.4.2 Significant improvement trigger. This adaptation trigger only 
adapts the UI if it will result in an improvement. It invokes the 
solver once the quality of the UI (determined by the correspondent 
cost functions) is below a confgurable threshold. Adaptations are 
applied if they improve on the previous interface by a ratio cus-
tomizable by creators. This approach saves computational power 
because the solver only executes when the quality of the UI declines. 

4.5 Property Transitions 
Property transitions adapt the UI from one state to another. Once an 
adaptation trigger starts an adaptation for a UI element, its property 
transitions are applied. Depending on the property to adapt, AUIT 
invokes the correspondent property transition - diferent properties 

Figure 4: The processing fow of AUIT for the example adap-
tation in Figure 1. The cost from each objective is calculated 
using context. When invoked, the solver computes a new 
adaptation proposal considering all adaptation objectives – 
if this signifcantly improves the adaptation state, the UI 
uses a smooth movement transition to accomplish the UI 
adaptation. A solver can fnd proposals for multiple UI ele-
ments in the same optimization loop. 

such as position and rotation require their respective property 
transitions. AUIT supports the following: 

4.5.1 Instantaneous Movement. UI element moves instantaneous 
from the current position to the new one. 

4.5.2 Smooth Movement. movement animation from the current 
to the new position over time using linear interpolation. 

4.5.3 Smooth Rotation. rotation animation from the current to the 
new rotation over time using linear interpolation. 

4.5.4 Smooth Scaling. scaling animation from the current to the 
new scale over time using linear interpolation. 

4.6 Architecture 
Now we describe the software architecture to put all the compo-

nents in AUIT together (see Figure 5). 
Adaptation objectives access their context widgets directly to 

compute cost functions. The toolkit allows creators to change the 
context widget that is used by an adaptation objective through the 
Unity inspector, as long as it is compatible (e.g., anchor to target 
objective can use the user’s position or the position of another 
virtual object as its context source). Adaptation objectives are then 
associated with UI elements. It is possible to associate the same 
adaptation objective to diferent UI elements, and each instance 
supports diferent confgurations. Creators must assign property 
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Figure 5: AUIT software architecture 

(a) In-Editor Work (b) In-scene Menus 

Figure 6: Users primarily use AUIT through the editor, but 
it is possible to tweak weights in an immersive setting for 
online confguration of adaptations. 

transitions for each property the UI elements adapt to (e.g., adapta-
tions that involve the position and rotation of the UI will require 
corresponding property transitions). 

To manage adaptation triggers and solvers, we created an auxil-
iary class named Adaptation Manager. Adaptation managers gather 
all the objectives in the UI elements to optimize, invoke the solver 
using the logic in the adaptation trigger to compute adaptation 
proposals, and apply adaptations using the property transitions. 
Note that adaptation managers can optimize multiple UI elements 
in the same optimization loop by enabling a fag indicating the 
solver is global and indicating which UI elements it optimizes. 

The adaptation objectives, triggers, and transitions derive from 
a corresponding abstract class. These abstract classes serve as a 
starting point for creators that want to extend the toolkit with new 
implementations of the components present in AUIT. Implementing 
additional components for AUIT, such as new adaptation objectives 
or property transitions, can be done by following three steps: 

(1) Create a new script component in Unity 
(2) Inherit from the abstract class that implements the compo-

nent of interest 
(3) Implement the correspondent class abstract methods (e.g., 

for Adaptation Objectives, implement the Cost Function and 
Heuristic methods) 

4.7 Technical Performance 
Although not the focus of this work, it is important to assess how 
well it performs on common XR devices. Hence, we benchmark 
how the toolkit runs on a standalone device tailored for MR experi-
ences. We test the Microsoft HoloLens 2 [42], a popular MR device 
nowadays. Note that the HoloLens 2 uses a mobile Qualcomm 
Snapdragon 850 with limited performance compared to laptop or 
desktop processors. Our benchmarking shows that AUIT can run 
consistently at 60fps in a scene with three UI elements (each with 
four adaptation objectives) without noticeable frame rate drops. 

4.8 Using and Extending AUIT in a Project 
Creators can add AUIT to an existing Unity project by importing 
the Unity package we make available. To design adaptations, a cre-
ator associates toolkit components to UI elements in the scene - by 
dragging and dropping or typing their names in the Unity inspec-
tor. Creators can customize AUIT components through the Unity 
inspector without requiring coding. Once adaptation objectives and 
property transitions are added, alongside a solver and respective 
adaptation trigger, AUIT is ready to adapt the UI. Creators can 
immediately visualize the adaptations they create by entering play 
mode in Unity. It is possible to adjust the weights of adaptation 
objectives in real-time (see Fig. 6) through the Unity inspector or 
in an immersive setting, allowing adaptive UIs to be experienced 
immediately through an XR device or simulation. To optimize mul-

tiple UI elements in the same optimization loop, creators must add 
these to an adaptation manager component and enable the option 
to use a global solver. 

5 TOOLKIT EVALUATION 
To evaluate the utility of AUIT, we conducted a study where creators 
of XR applications design adaptive UIs for two scenarios using AUIT. 
Assessing toolkit usage has been identifed as a valuable step to 
evaluate what toolkits can do, whom they can support, and which 
tasks their users can perform [35]. The study aims to explore three 
research questions: (1) the conceptual clarity of toolkit components, 
(2) toolkit usability, and (3) the quality of adaptations. 

5.1 Study design 
First, the experimenter introduces participants to the design con-
cepts present in AUIT. Then, they use AUIT to create adaptive 
user interfaces for two XR scenarios. To facilitate the introduction 
to the wide variety of features and customization the toolkit sup-
ports, the experimenter assists the creator throughout the study 
by answering questions about specifcs of parameters and other 
technical details they fnd unclear. For that reason, we consider our 
study a combination of a usability study and a walkthrough demon-

stration, according to the toolkit evaluation methods identifed by 
Ledo et al. [35]. Initially we planned to use MRTK’s solvers [43] as 
a baseline. However, in a pilot study, we noticed how sequential 
optimization was insufcient to successfully fulfll the goals of our 
scenarios in a satisfactory manner. Such a baseline would require 
coding and result in an unfair comparison. For these reasons, we 
only evaluated AUIT. 

The two scenarios present in our study are a video call (Figure 
7a) and an interactive recipe (Figure 7b). To increase control and 
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(a) Scenario 1: Video Call (b) Scenario 2: Interactive Recipe 

Figure 7: The UI panels from the two scenarios. 

streamline the study, participants start each design task from a 
scene containing the corresponding UI elements in Figure 7. 

To allow quick prototyping, we use a simulation of an MR ap-
plication in Unity based on VirtualHome [58], to model activities 
occurring in a kitchen. Participants could quickly see the adapta-
tions they create by starting the simulation, which shows what an 
end-user would see from a frst-person point of view when using 
the application. The user randomly performs diferent tasks in the 
kitchen, such as opening the fridge to gather ingredients, moving 
to the stove or counter to prepare food, or having a break doing 
something else. We asked participants to consider the kitchen in 
our simulation as the real-world in an MR application, while the UIs 
from the scenarios would be the holograms the user sees through 
the HMD. 

5.2 Participants 
We recruited 8 experts for the study who develop XR applications 
and have experience with Unity (1 female, age: M = 32.5, SD = 
3.38). Although there is no meaningful cut-of point for which 
the sample size is enough [7], note that the goal of our study was 
to gather qualitative feedback - it is not our intention to draw 
statistically signifcant conclusions. Four participants shared an 
academic background and conducted research in XR, while the 
remaining four reported jobs in the industry where they actively 
develop XR applications. On average, participants had several years 
of experience developing XR applications (M = 4.5, SD = 2.56). On 
a scale from 1 (low) to 5 (high), participants reported familiarity 
with Adaptive User Interfaces (M = 3.25, SD = 0.71) and some 
regularity in developing them (M = 2.5, SD = 1.51). 

5.3 Procedure 
After an introduction to the study and signing the consent form, 
participants went through the following phases: 

5.3.1 Adaptive user interfaces and existing tools. We start the study 
with a discussion about adaptive user interfaces for XR experi-
ences. Participants reported their opinion on their importance, and 
those who develop adaptations revealed their current methods and 
practices to implement them. 

5.3.2 Introduction to AUIT. After introducing the concept of adap-
tive UIs and the aim of the study, the experimenter explained the 
toolkit components to the participant. Then, six adaptation objec-
tives are showcased through videos, followed by a discussion about 

breakdowns that might occur when using naive strategies to com-

bine multiple adaptation objectives. Participants reported how they 
currently handle adaptations with conficting objectives or how 
they would do it if faced with such a problem. 

5.3.3 Creating adaptive user interfaces using AUIT. Next, we start 
the main task, where participants use AUIT to create adaptive UIs 
for two scenarios: 

Video call A video call application in XR, with a UI element (Fig-
ure 7a) that contains the video feed and basic call controls 
that support hand input. The end-user is performing tasks 
in the kitchen while on a video call. The goal is to create an 
adaptation policy where the video call is visible, in the user’s 
reach, and the virtual element is not occluded. 

Interactive Recipe A cooking application to provide recipe in-
structions, interactive videos, and access to the list of in-
gredients. In this scenario, the application contains two UI 
elements: 1) the instruction panel and 2) a panel with controls 
that support hand input (Figure 7b). The user interacts with 
the system through the control panel, where it is possible to 
change instructions, control the video, and spawn co-located 
timers in the kitchen. The goal is to create an adaptation 
policy where both UIs are visible and do not overlap with 
each other. In this scenario, only the control panel needs to 
be reachable. 

The order of the tasks represents a learning curve, with a simple 
video call task frst (one UI), followed by the interactive recipe 
scenario (two UIs). Participants are encouraged to meet other us-
ability criteria they deem relevant. After each task we elicit user 
feedback by asking them to fll out a questionnaire and open-ended 
questions. 

5.3.4 Feedback and discussion. Finally, we conduct an open-ended 
interview with the participants on aspects of AUIT, such as whether 
and how they would use it in their work and potential trade-ofs of 
doing so. 

5.4 Results 
We started the study with a discussion about adaptive UIs for XR. 
All the participants considered adaptations to be crucial to provide 
a good user experience in XR applications: "It’s really important 
because you want the user to [be able to] interact with the system 
when he moves around" (P4); "for XR [experiences] to not be frus-
trating [...] the interface [should] adapt to the environment" (P1). 
Creators also mentioned difculties caused by the lack of resources 
and tools: "Resources to develop AUIs are limited" (P5); "I don’t 
think [our company] has prioritized creating [AUIs], I think partly 
due to the [low] availability of tools to make it happen" (P8). Par-
ticipants that actively develop adaptive user interfaces described 
their current practices are mostly based on custom rule-based im-

plementations: "we develop our adaptations [...] we try to create our 
behaviors" (P4); "[we had to] customize MRTK behavior because 
often it doesn’t behave the way we want [...] we faced [usability] 
issues and have solved them by implementing our own [rule-based] 
logic" (P6). 
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Table 1: The top row shows some of the potential usability 
breakdowns that can occur when using naive adaptation ap-
proaches in scenario 1; The bottom row shows adaptations 
created by a study participant during scenario 1 where AUIT 
overcomes some of these issues. 

All participants successfully designed adaptations that met the 
requirements of both scenarios. In Scenario 1: Video Call, the partic-
ipants spent between 6 and 18.3 minutes (M = 11.92, SD = 4.57), 
whereas in Scenario 2: Interactive Recipe they took between 4.82 
and 23.87 minutes (M = 10.87, SD = 6.26). 

5.4.1 Conceptual clarity of design concepts. After the presentation 
of the toolkit, participants showed understanding of the diferent 
design concepts throughout the study, suggesting it provides a 
clear separation of concerns for the problem: "the adaptation speed 
is still slow, [but] that is outside of the scope of the adaptation 
objective." (P4); "In VR I would use the player’s transform as the 
context [source] for the distance [interval] objective" (P5); "another 
[adaptation] objective that could be added [... is to] take the [user’s 
FOV], make it into a grid, and then specify which cells you want 
[virtual objects] to be at" (P6). Moreover, a participant suggested 
the design concepts in AUIT make development easier: "[the toolkit 
components] are very much in line with the Unity philosophy of 
structuring behavior, which would make it easy to implement [XR 
adaptations]" (P8). 

5.4.2 Toolkit usability. After each scenario, participants flled in 
a questionnaire with questions concerning the difculty in using 
the toolkit to create adaptations for the video call (S1) and inter-
active recipe (S2) scenarios. On a scale from 1 (very easy) to 5 
(very hard) participants reported that combining objectives was 
easy, but the difculty slightly increases with more UI elements 
(S1: M = 1.25, SD = 0.43; S2: M = 2.25, SD = 0.66). Meanwhile, 
confguring components in the toolkit was reported as easy in both 
scenarios (S1: M = 2.13, SD = 0.59; S2: M = 1.88, SD = 0.59). In 
regards to fnding appropriate weights for each objective, partici-
pants rated the difculty of this task as medium for both scenarios 
(S1: M = 2.5, SD = 0.86; S2: M = 2.75, SD = 0.18). Note that partic-
ipants used around 4 adaptation objectives in S1 (M = 4.13, SD = 
0.59) and 8 in S2 (M = 7.5, SD = 1.32). 

To develop adaptations using AUIT, creators followed a simi-

lar workfow throughout the study. They would add or remove 

Table 2: Adaptations by participants for scenario 2 (top row 
- P3); (bottom row - P8). Both solutions fulfll visibility re-
quirements while considering world geometry using difer-
ent combinations of adaptation objectives, highlighting the 
toolkit’s fexibility. While P3 attempted to group both UI el-
ements, P8 focused on maintaining these in the same zones 
of the user’s FoV over time. 

components to the UI, such as adaptation objectives, tweak param-

eters, and run the simulation to visualize the resulting adaptations. 
Then, they would repeat this process until they were satisfed with 
the result, appreciating that they could see the adaptations cre-
ated. A participant suggested the possibility to add commonly used 
combinations of toolkit components through a pre-confgured and 
reusable asset to make the current workfow faster - "there are some 
objectives that often will go together [...] I like the [fexibility] to 
freely defne what you want your behavior to be like [...] but it 
[requires some setup]" (P4). 

Throughout the study, participants would occasionally ask for 
details about some of the parameters in components of the toolkit 
- "[Without documentation], it’s hard to understand what some 
of these [parameters] do" (P5), highlighting the importance of re-
sources to support the development and help developers get started 
with the toolkit. Nonetheless, they immediately understood many 
existing features due to familiarity with Unity and computer graph-
ics concepts. As AUIT evolves, it is crucial to provide good tutorials 
and up-to-date documentation. In a few instances, experimenters 
helped participants debug specifc behaviors in adaptations. Go-
ing forward, it is important to expand on the existing debugging 
capabilities of the toolkit, which are limited to console logging. 

5.4.3 Qality of adaptations. When asked if they succeeded in 
creating the adaptations they had initially envisioned, participants 
reported on a scale from 1 (no, not at all) to 5 (yes, absolutely) that 
AUIT enabled them to do so in both scenarios (S1: M = 4.38, SD = 
0.48; S2: M = 3.75, SD = 0.82). This feedback is interesting, con-
sidering that participants solved both tasks using diferent com-

binations of adaptation objectives, diferent settings for property 
transitions, and diferent parameters for the adaptation trigger. Even 
though all participants met basic usability requirements, such as 
visibility and reachability, some went a step further and considered 
factors such as consistency (about the position of the UI in relation 
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to the user) and grouping of related virtual elements (in scenario 2) 
- see Tables 1 and 2. 

On a scale from 1 (very poor) to 5 (very high), participants rated 
the adaptations they created to be of high quality (S1: M = 4, SD = 
0.5; S2: M = 4.13, SD = 0.60). When considering the time spent 
and the results obtained, creators reported using a scale from 1 
(very inefcient) to 5 (very efcient), that they felt highly efcient 
(S1: M = 4.38, SD = 0.48; S2: M = 4.25, SD = 0.66). Participants 
also mentioned how the toolkit could be valuable in their current 
work, pointing out how it could make development faster: "This is a 
challenge that we have every time we create a HoloLens application. 
Our workfow is pretty much the same [all the time]. We use MRTK 
and then code until it behaves like we want to, which can take a lot 
of time" (P6). A participant with less coding expertise appreciated 
that it was easy to get started with AUIT: "I think it’s a huge beneft, 
particularly from my standpoint where I don’t do a lot of coding. 
Instead of creating a lot of scripts myself, this is a toolkit that would 
allow me to prototype things very quickly, test things out, and 
demonstrate [them to my team]" (P7). 

6 DISCUSSION 
We present AUIT, a toolkit to facilitate the design of adaptive UIs 
for XR applications. AUIT allows creators to combine adaptation 
objectives and fnd appropriate solutions using multi-objective op-
timization. Our approach lowers the barrier for creators to develop 
and experiment with adaptation policies while making the develop-
ment process efcient through a clear separation of concerns. AUIT 
is a unifying toolkit that can bring together diferent adaptation 
methods, such as the variety of objectives we already support and 
other concepts explored in related work. 

In our expert evaluation, participants pointed out that adaptive 
UIs are particularly important for providing good user experiences 
in XR applications. Moreover, they reported that existing tools lack 
appropriate support for designing adaptive UIs, requiring repeti-
tive and time-consuming programming tasks. Their input suggests 
the toolkit components are understandable, and its separation of 
concerns can facilitate the development of adaptations. 

Our study demonstrated how AUIT simplifes combining adap-
tation objectives and customizing adaptations, allowing creators 
to fnish tasks involving complex behaviors in a short time while 
reporting feeling efcient doing so. All the participants successfully 
performed the proposed tasks, and their workfow showcases how 
AUIT can enable creative exploration of several aspects of adaptive 
UIs. Participants also reported that the toolkit allowed them to cre-
ate the adaptations they had envisioned and rated their creations to 
be of high quality, suggesting how AUIT can support the creation 
of adaptive UIs. 

AUIT is a plugin for Unity, so it can be used alongside other 
tools such as MRTK, giving creators more options without requir-
ing drastic changes to existing workfows. Furthermore, it allows 
for quick prototyping of adaptive UIs - most game engines allow 
creators to visualize changes throughout development (e.g., play 
mode in Unity) - AUIT allows similar prototyping, letting users 
update several aspects of an adaptation without requiring scripting. 
Ideally, approaches such as our toolkit will be better integrated into 
XR development tools, reducing the challenges for creators to get 

started with the development of adaptations. Moreover, adding new 
components to AUIT to consider other adaptation aspects opens 
new opportunities to explore the immense design space of adaptive 
UIs. 

6.1 Limitations and Future Work 
AUIT presents a frst step towards a general toolkit for the design 
of adaptive UIs for XR applications. In this frst version we have 
focused on two fundamental usability issues of XR applications: 
visibility and reachability of individual UI elements. However, the 
fve design concepts described in this paper allow to extend AUIT 
in the future, for example to address other usability issues, enable 
joint optimization of multiple UI elements or allow creators to 
interactively add constraints to the optimization. Now we discuss 
these opportunities for future work in more detail and underline 
limitations of our research. 

Adaptation objectives. We implemented seven adaptation objec-
tives related to fundamental usability issues in XR applications, but 
many others can contribute to better usability. Creators can build 
on existing research to implement new adaptation objectives as 
part of AUIT, such as ergonomics [16] or surface magnetism [70]. 
AUIT is currently limited to optimizing properties such as position, 
rotation, and scale, which are critical to ensure the visibility of UI 
elements. However, there are other properties of interest to adapt 
in XR settings, such as the level of detail or the decision to show or 
hide a UI element. Integrating those into AUIT is possible, but not 
straightforward, and requires more research to extend our solvers 
and support the consideration of other factors, such as the utility 
of a UI confguration and how it afects the user’s cognitive load in 
our cost formulation. In this initial version of AUIT, we limit the 
optimization of multiple virtual elements to objectives that only 
consider properties of a single UI element at a time. An interest-
ing direction is to extend AUIT to support global objectives that 
consider multiple UI elements, for example to avoid clutter in the 
user’s FoV. 

Solvers and alternative optimization methods. In the current im-

plementation of our toolkit, we use a weighted sum method to 
combine multiple objectives into one cost function. This cost func-
tion is a linear combination of the objective’s cost functions that 
allows a designer to set the weights according to the importance 
of individual adaptation objectives. This method works well if the 
particular costs of objectives have a similar scale, the reason why 
we designed normalized cost functions. However, an initial selec-
tion of weights does not guarantee the desired solution, requiring 
creators to adjust these during the design process. An additional 
disadvantage of using a weighted sum method is that it cannot fnd 
certain Pareto optimal solutions in the case of a non-convex objec-
tive space [41], a problem that other methods such as evolutionary 
algorithms could overcome [71]. 

Context widgets. We use context widgets that are already part of 
most XR development tools. Adding methods to retrieve context 
in high abstraction levels can enable the design of new adaptation 
objectives. Some options with potential are enhanced scene un-
derstanding [24, 28], measuring cognitive load [14], or full-body 
tracking. 
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Adaptation triggers. Although UI adaptations have the poten-
tial to improve usability [37], they can also be counterproduc-
tive [19, 65]. For example, adaptations can afect the user’s attention 
or memory of the UI layout. One of the adaptation triggers imple-

mented as part of our toolkit considers that adaptations come at 
a cost and only adapt when there are considerable improvements. 
However, other approaches could assess the utility of an adaptation 
to the user or add support for adding rules before or after running 
the optimization procedure. 

Property transitions. Property transitions can avoid detrimental 
efects when adaptations occur and are currently under-explored 
in AUIT. Some examples of property transitions that could enhance 
usability are the replication of UI elements temporarily - to avoid 
changes in the layout - or anchor UI elements to body parts, such as 
the hands - a technique commonly used in applications supporting 
hand input. 

Evaluation. Although our study suggests how AUIT can be rele-
vant for creators, it has a small sample size of 8 experts. Replicating 
the study with more participants using a standardized test for usabil-
ity, such as the System Usability Scale [6], could provide relevant 
quantitative results. 

Other scenarios. Although we cover video calls and interactive 
cooking scenarios in our work, AUIT can generalize to other set-
tings. An example would be sketching in 3D, whether in VR for 
creating 3D models, or AR for drawing in 3D. Here, a UI could adapt 
the position of a color palette to be easily reachable by the non-
dominant hand. Another example is manufacturing, where workers 
often need to assemble separate parts into larger machinery. As 
the hands are busy, an AR interface can provide clear instructions 
to the user. The UI could adapt to be close to relevant parts of the 
user’s assembling steps while avoid occlusion. Furthermore, it is 
interesting to consider AR in everyday life as a personal computing 
device. Users might frequently transition between diferent loca-
tions, rooms, and activities, bringing in a new level of complexity -
tools such as AUIT can support the development of adaptive AR 
content to ft the user’s context. 

7 CONCLUSION 
We presented AUIT, a toolkit to facilitate the design of adaptive 
UIs. AUIT implements fve design concepts to support the develop-
ment of such adaptations. The toolkit allows creators to combine 
multiple adaptation objectives as part of their development process 
and easily customize each aspect of an adaptive user interface. Our 
study with experts suggests that the design concepts we propose 
give creators a valuable separation of concerns for creating adapta-
tions. Furthermore, AUIT allowed participants to efciently design 
adaptive user interfaces that they rated to be of high quality. By 
making our toolkit widely available, we hope not only to lower the 
barrier for practitioners to get started creating adaptive UIs, but 
also to enable new workfows that allow for more creativity and 
require less repetitive and tedious tasks. 
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AUIT – the Adaptive User Interfaces Toolkit 

A IMPLEMENTATION DETAILS 
In this section we describe how the cost functions and optimization 
heuristics for each adaptation objective are implemented. Note that 
the adaptation objectives are described in a diferent order here to 
optimize page space. 

In this pseudo-code, variables declared before the functions are 
obtained dynamically or have default values that can be customized 
in the Unity inspector. We omit some software engineering tech-
nicalities - for more technical details please refer to the source 
code. 

A.1 Adaptation Objectives 

Algorithm 1: Distance Interval Objective 

1 дXZ ← goal distance from context source in XZ plane 
2 iXZ ← distance interval from дXZ (no cost penalty) 
3 iY ← height of the hollow cylinder (no cost penalty) 
4 t ← threshold for highest cost 
5 uiXZ ← UI XZ coordinates 
6 uiY ← UI Y coordinate 
7 csXZ ← context source XY coordinates 
8 csY ← context source Y coordinate 
9 function Cost 
10 di f XZ ← csXZ − uiXZ 
11 dXZ ← magnitude(di f XZ ) ▷ dist. from cs in XZ plane 
12 dt ← abs(dXZ − дXZ ) ▷ UI XZ distance from goal 
13 cXZ ← max(0, dt − iXZ ) ▷ no penalty if dist. ≤ iXZ 
14 dY ← abs(csY − uiY ) ▷ UI Y distance from goal 
15 cY ← max(0, dY − iY /2) ▷ no penalty if dist. ≤ iY /2 
16 c = cXY + cY 
17 c ← min (c/t , 1) ▷ normalize cost according to t 
18 return c 
19 end function 
20 function Heuristics 
21 s ← random value ∈ [0, 1]
22 if s ≤ 0.5 then 
23 дXZ ← csXZ − uiXZ 
24 dXZ ← magnitude(дXZ ) − дXZ ▷ distance from goal 
25 дuXZ ← normalize(дXZ ) 
26 nPXZ ← uiXZ + дuXZ ∗ N(dXZ , 0.2) ▷ move to goal 
27 дY ← csY − uiY 
28 nPY ← uiY + дY ∗ N(0.3, 0.2) ▷ move to goal 
29 return nP ▷ new position likely closer to goal 
30 else 
31 rU ← random unit vector 
32 return uiPos + rU ∗ N(0.3, 0.2) ▷ move at random 
33 end if 
34 end function 
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Algorithm 2: Avoid Occlusion Objective 

1 ks ← UI keypoint array dynamically generated (local 
coords.) 

2 csPos ← context source position 
3 uiTRS ← UI TRS matrix 
4 uiPos ← UI position 
5 function Cost 
6 c ← 0 
7 for all k in ks do 
8 wK = uiT RS · k ▷ get k in world coord. 
9 if raycast(csPos, wK) hits then 
10 c ← c + 1 ▷ increase cost 
11 end if 
12 end for 
13 return c/length(ks) ▷ return normalized cost 
14 end function 
15 function Heuristics 
16 s ← random value ∈ [0, 1]
17 if s ≤ 0.5 then ▷ pick heuristic at random 
18 for all k in ks do 
19 дP = uiTRS · k ▷ get k in world coord. 
20 if raycast(csPos, wK) hits then 
21 n ← hit normal(csPos, wK ) ▷ surface normal 
22 return hit pos. + n ∗ N(1, 0.5) ▷ move away 
23 end if 
24 end for 
25 else 
26 rU ← random unit vector 
27 return uiPos + rU ∗ N(0.3, 0.2) ▷ move at random 
28 end if 
29 end function 

Algorithm 3: Anchor to Target Objective 

1 o ← ofset vector provided by creator 
2 t ← threshold for highest cost 
3 csTRS ← context source TRS matrix 
4 uiPos ← UI position 
5 function Cost 
6

1 l ←  csTRS− · uiPos ▷ get UI position in cs local coord. 
7 d ← distance(l , o) ▷ distance from ofset to UI 
8 c ← min(d/t , 1) ▷ normalize cost according to t 
9 return c 
10 end function 
11 function Heuristics 
12 s ← random value ∈ [0, 1]
13 opt ← csTRS−1 · o ▷ compute optimal position 
14 if s ≤ 0.33 then ▷ pick heuristic at random 
15 return opt ▷ return optimal position 
16 else 
17 ou ← normalize (opt − uiPos) 
18 uv ← random unit vector ▷ add randomness 
19 ou ← ou + uv ∗ random value ∈ [0, 0.3]
20 return uiPos + ou ∗ N(1, 0.5)
21 end if 
22 end function 
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Algorithm 4: Spatial Coherence Objective 

1 u ← adaptations allowed until a position is forgotten 
2 vs ← data structure for visited voxel data 
3 uiPos ← position of the UI 
4 function OnAdapt(pos) ▷ called whenever ui adapts 
5 for all v in vs 
6 decrease v score by 1 
7 if v score is 0 then 
8 remove v from vs 
9 end if 
10 end for 
11 add/update voxel at pos to vs with score u 
12 end function 
13 function Cost 
14 if vs has voxel containing uiPos then 
15 return 0 
16 else 
17 return 1 
18 end if 
19 end function 
20 function Heuristics 
21 s ← random value ∈ [0, 1]
22 if s ≤ 0.5 then ▷ pick heuristic at random 
23 return voxel in vs closest to uiPos 
24 else 
25 return voxel in vs at random 
26 end if 
27 end function 

Algorithm 5: Constant View Size Objective 

1 sF ← scaling factor ▷ scaling based on linear function 
2 iS ← scaling diference tolerance (no cost penalty) 
3 d ← base scale intended distance for UI 
4 t ← threshold for highest cost 
5 dS ← UI default scale 
6 uiS ← UI current scale 
7 uiP ← UI position 
8 csP ← context source position 
9 function Cost 
10 d ← magnitude(uiP − csP ) ▷ get distance from ui to cs 
11 i ← dS ∗ (d/iS ∗ sF ) ▷ ideal scale based on d 
12 c ← magnitude(uiS/i) ▷ compute scale diference 
13 return min(c/t , 1) ▷ normalize according to t 
14 end function 
15 function Heuristics 
16 s ← random value ∈ [0, 1]
17 if s ≤ 0.5 then 
18 d ← magnitude(uiP − csP ) ▷ dist. from ui to cs 
19 i ← dS ∗ (d/iS ∗ sF ) ▷ optimal scale based on d 
20 return i ∗ N(1, 0.3)
21 else 
22 r ← N(0.3, 0.2)
23 return uiS ∗ r ▷ randomize scale 
24 end if 
25 end function 

Algorithm 6: Field of View Objective 

1 bo ← boundary origin for desired region in FoV 
2 i ← angle interval from bo (no cost penalty) 
3 t ← angle threshold for highest cost 
4 csTRS ← context source TRS matrix 
5 uiPos ← UI position 
6 function Cost 
7

1←   l csT RS− · uiPos ▷ get UI position in cs local coord. 
8 a ← angle([0, 0, 1], l ) ▷ angle between gaze and UI 
9 a ← abs(a − bo) ▷ distance from desired origin 
10 a ← max(0, a) ▷ no penalty if angle ≤ i 
11 return min(a/t , 1) ▷ return normalized cost 
12 end function 
13 function Heuristics 
14 s ← random value ∈ [0, 1]
15

1  lU I ← csTRS− · uiPos ▷ get UI pos. in cs local coord. 
16 if s ≤ 0.5 then ▷ pick heuristic at random 
17 a ← angle ([0, 0, 1], l ) ▷ angle between gaze and UI 
18 dir = 1 ▷ move towards cs forward 
19 if a − i ≤ 0 then 
20 dir = −1 ▷ move away from cs forward 
21 end if 
22 дW = csTRS · [0, 0, magnitude(lU I )]
23 д ← дW − uiPos 
24 return uiPos + д ∗ dir ∗ N(0.3, 0.2)
25 else 
26 rU ← random unit vector 
27 return uiPos + rU ∗ N(0.3, 0.2) ▷ move at random 
28 end if 
29 end function 

Algorithm 7: Look Towards Objective 

1 csPos ← context source position 
2 uiZ ← UI "look" vector ▷ UI forward or equivalent 
3 uiPos ← UI position 
4 t ← angle threshold for highest cost 
5 function Cost 
6 lA ← uiPos − csPos ▷ Vector from cs to ui 
7 a ← angle(lA,uiZ ) ▷ angle diference 
8 return min(a/t , 1) ▷ return normalized cost 
9 end function 
10 function Heuristics 
11 lA ← uiPos − csPos ▷ vector pointing to target 
12 rot ← interpolate between uiZ and lA by N(1, 0.3)
13 return rot as a Quaternion 
14 end function 


