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Lönnrotinkatu 7, 50100 Mikkeli, Finland (e-mail: juha.backman@luke.fi)

Abstract: This study highlights a combined center of gravity (CG) approach to model the comprehensive
dynamics of the ground vehicles with articulated steering using solely six degrees of freedom (6-DOF).
It is the case with an articulated vehicle that its CG shifts laterally towards the center of rotation during
a turn. Thus, the idea is to compute the combined CG position of the multi-body articulated vehicle,
which leads to the correction of the moment arms and body inertias about the updated CG position in
the dynamic equations. Hence, the body forces and moments are computed with respect to the corrected
CG position. In addition, the paper illustrates mathematical modeling of the center-articulated steering
mechanism for the ground vehicle while restricting its operation to the primary handling regime. Overall,
the draft presents the design of a nonlinear 6-DOF simulation for a load-haul-dump (LHD) type of
articulated vehicle with a traveling CG. The simulation data is presented from one simulation run, where
the critical results are analyzed. The obtained results signify the simplicity in using a combined CG to
represent the vehicle dynamics.

Keywords: Articulated steering, multi-body ground vehicles, nonlinear dynamic model, vehicle
modeling and simulation, autonomous ground vehicles.

1. INTRODUCTION

At Aalto University, one of the research and development plat-
forms for autonomous driving in uneven terrains is Rakkatec’s
unmanned ground vehicle as depicted in Figure 1. Rakka UGV
is a load-haul-dump (LHD) type of articulated vehicle with
center-articulated steering. The other machine of interest with
articulated steering is Ponsse’s Bison forwarder, which serves
the purpose of transporting cut-to-length logs from forest stands
to roadside. The main aspect of this study involves the demon-
stration of (semi-)autonomous driving in the uneven terrains us-
ing these vehicles. Therefore, it necessitates the development of
a nonlinear simulation platform to test, for example, navigation
and control methods for these vehicles. This study focuses on
the development of a 6-DOF nonlinear dynamic model for the
articulated vehicles using combined CG.

Altafini (1999) describes a load-haul-dump (LHD) type of ar-
ticulated vehicle as a complex multi-body system that consti-
tutes two bodies, namely front body and rear body, attached by
a hitch point. The wheels attached to the front or rear bodies are
non-steerable. In such vehicles, the joint provides steering to the
connected bodies by varying the fluid pressures in the hydraulic
actuators. The kinematic equations of motion of such vehicles
are found either by considering a single-vehicle coordinate
system as in Polotski and Hemami (1997) when the origin is
attached to the articulation point, or by using two coordinate
systems fixated to the centers of the front and rear axles (as
discussed in Altafini (1999); Corke and Ridley (2001)). Polot-
ski and Hemami (1997) further extended the kinematic model
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Fig. 1. A photograph of the Rakkatec unmanned ground vehicle
(Rakka–UGV). The vehicle can be seen maneuvering us-
ing center-articulated steering (courtesy: Rakkatec Ltd.).

to a kinetic one in Hemami and Polotski (1997), where the
traction and articulation forces were further taken into account
to derive, in particular, the equation for angular acceleration of
the vehicle about the intersection point of the front and rear
axles. Likewise, Lei et al. (2021) presented a planar model
where the purpose is to perform the lateral stability analysis
of the articulated vehicle with the focus on transverse swing
characteristic of the vehicle. It, too, limits the study to flat and
two-dimensional surfaces, which is certainly not the case in
mining and forestry.

The limitation in describing an extensive dynamic model for the
articulated vehicle is that it undergoes CG position variations
during articulated steering. It is because of the lateral shift
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of the articulated vehicle’s CG along the radius of curvature
while turning. Such a structural change impacts the funda-
mental assumption of the single rigid body with a fixed CG,
which has been a norm to describe the dynamic equations of
the conventional car-like vehicles so far. Eventually, it leads
to the construction of complex nonlinear dynamic models with
higher degrees of freedom, where the dynamic equations as-
sume separate CGs fixed to the front and rear bodies of the
articulated vehicle (see, for example, Li et al. (2013, 2014)).
However, the dynamic models presented in Li et al. (2013,
2014) solely serve the purpose of simulating dynamics with no
feasibility to extend these models to design control and estima-
tion methods for articulated vehicles. Therefore, the motivation
of this research is to extend the single rigid body assumption as
presented in Hemami and Polotski (1997) to build a nonlinear
6-DOF simulation for the articulated vehicles.

The organization of the rest of the document is as follows.
Brief details about a generalized 6-DOF (6 degrees of freedom)
model of the vehicle used in the simulation are provided in
Section 2. In Section 3, the problem addressed in this paper is
formulated. Section 4 presents the impact of changes in joint in-
ertia matrix and the vehicle CG position due to articulated steer-
ing on the resulting equations of motion (EOMs). In Section 5,
we present the equations to compute sideslip angle using the ve-
locities of each corner (strut-mounts) of the articulated vehicle.
The CG position in the inertial frame is mentioned in Section 6.
Next, the simulation results are discussed in Section 7. Finally,
the conclusive remarks are mentioned in Section 8.

2. 6-DOF VEHICLE MODEL

Figure 2 illustrates a top schematic view of the vehicle under
discussion. Point P is the location of the articulation joint with

Fig. 2. Relations among different reference frames attached to
the vehicle during articulation.

only one degree of freedom, the steering angle δ. Point F
represents the point fixed to the center of front axle (CFA),
whereas point R is attached to the center of rear axle (CRA).
Further, we assume that a reference frame XY Z attached to P,
a frame XFYFZF attached to CFA, and XRYRZR attached to
CRA, respectively. Moroever, the coordinate system XGYGZG

represents a global (inertial) frame of reference. The distance

from P to F is denoted by lF , while the distance from P to R
is represented by lR. The total length of the vehicle is l, width
d, and height h. During articulation, the frame of references
attached to P, F, and R move with respect one another such
that the frames XFYFZF and XRYRZR can aligned to XY Z
by angles δ/2 and −δ/2, respectively, provided lF = lR.
Note that, the condition lF = lR, is true for the vehicle under
discussion (Leander (2020)).

With articulated vehicles such as LHD and forwarders, it is the
case that the wheels are modeled as a spring-damper system
(see, for example, Li et al. (2013)) ). We consider three coordi-
nate systems to express the comprehensive dynamics of the ve-
hicle. The attitude and position of the body are measured in the
global (inertial) frame of reference (XGYGZG). The coordinate
frame, x′y′z′, is attached to the tire ground contact patch. The
subscript t is used to represent quantities in coordinate frame
attached to the tire ground contact patch. In addition ,we assume
that a coordinate frame (xyz) is fixed to the vehicle’s center of
gravity (CG). The CG-fixed coordinate frame (xyz) is aligned
with the motion of the combined center of the mass of the front
and rear bodies. We will use subscript b to represent quantities
in the vehicle body frame. The transformation from inertial
coordinates (XGYGZG) to body coordinates (xyz) follows the
consecutive Euler angle rotations as defined in Etkin and Reid
(1995).

The EOMs collected from Shim and Ghike (2007); Etkin and
Reid (1995) are as follows:

ẊG = u cos θ cosψ + v(cosψ sin θ sinϕ− cosϕ sinψ)

+ w(sinϕ sinψ + cosϕ cosψ sin θ)
(1)

ẎG = u cos θ sinψ + v(cosϕ cosψ + sin θ sinϕ sinψ)

+ w(cosϕ sin θ sinψ − cosψ sinϕ)
(2)

ŻG = −u sin θ + v cos θ sinϕ+ w cos θ cosϕ (3)
u̇ = Fx/m+ g sin θ − (qw − rv), (4)
v̇ = Fy/m− g sinϕ cos θ − (ru− pw), (5)
ẇ = Fz/m− g cosϕ cos θ − (pv − qu), (6)
L = Ixxṗ− Ixy(q̇ − rp)− (Iyy − Izz)qr

− Iyz(q
2 − r2)− Izx(ṙ + pq),

(7)

M = Iyy q̇ − Ixy(ṗ+ qr)− (Izz − Ixx)rp

− Izx(r
2 − p2)− Iyz(ṙ − pq),

(8)

N = Izz ṙ − Ixy(p
2 − q2)− (Ixx − Iyy)pq

− Iyz(q̇ + rp)− Izx(ṗ− qr),
(9)

ψ̇ = q sinϕ sec θ + r cosϕ sec θ, (10)

θ̇ = q cosϕ− r sinϕ, (11)

ϕ̇ = ψ̇ sin θ + p. (12)
The position coordinates (XG, YG, ZG) represent the position
of vehicle’s CG in global frame of reference. The body veloc-
ities, i.e. the linear velocities of the vehicle CG are defined as
longitudinal (forward) velocity (u), lateral (left-side) velocity
(v), and up velocity (w). The state vector contains roll rate (p),
pitch rate (q), and yaw rate (r) which are the angular veloc-
ities of the vehicle frame about CG. Finally, the state vector
constitutes Euler angles, that are roll angle (ϕ – positive right-
side down), pitch angle (θ – positive front-side down), and yaw
angle (ψ – positive counterclockwise). Thus, the state vector
is defined as X = {XG, YG, ZG, u, v, w, p, q, r, ψ, θ, ϕ}. Fx,
Fy , and Fz are forces experienced by the vehicle body along
x, y, and z axes, respectively. L, M , and N are the rolling,
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of the articulated vehicle’s CG along the radius of curvature
while turning. Such a structural change impacts the funda-
mental assumption of the single rigid body with a fixed CG,
which has been a norm to describe the dynamic equations of
the conventional car-like vehicles so far. Eventually, it leads
to the construction of complex nonlinear dynamic models with
higher degrees of freedom, where the dynamic equations as-
sume separate CGs fixed to the front and rear bodies of the
articulated vehicle (see, for example, Li et al. (2013, 2014)).
However, the dynamic models presented in Li et al. (2013,
2014) solely serve the purpose of simulating dynamics with no
feasibility to extend these models to design control and estima-
tion methods for articulated vehicles. Therefore, the motivation
of this research is to extend the single rigid body assumption as
presented in Hemami and Polotski (1997) to build a nonlinear
6-DOF simulation for the articulated vehicles.

The organization of the rest of the document is as follows.
Brief details about a generalized 6-DOF (6 degrees of freedom)
model of the vehicle used in the simulation are provided in
Section 2. In Section 3, the problem addressed in this paper is
formulated. Section 4 presents the impact of changes in joint in-
ertia matrix and the vehicle CG position due to articulated steer-
ing on the resulting equations of motion (EOMs). In Section 5,
we present the equations to compute sideslip angle using the ve-
locities of each corner (strut-mounts) of the articulated vehicle.
The CG position in the inertial frame is mentioned in Section 6.
Next, the simulation results are discussed in Section 7. Finally,
the conclusive remarks are mentioned in Section 8.

2. 6-DOF VEHICLE MODEL

Figure 2 illustrates a top schematic view of the vehicle under
discussion. Point P is the location of the articulation joint with

Fig. 2. Relations among different reference frames attached to
the vehicle during articulation.

only one degree of freedom, the steering angle δ. Point F
represents the point fixed to the center of front axle (CFA),
whereas point R is attached to the center of rear axle (CRA).
Further, we assume that a reference frame XY Z attached to P,
a frame XFYFZF attached to CFA, and XRYRZR attached to
CRA, respectively. Moroever, the coordinate system XGYGZG

represents a global (inertial) frame of reference. The distance

from P to F is denoted by lF , while the distance from P to R
is represented by lR. The total length of the vehicle is l, width
d, and height h. During articulation, the frame of references
attached to P, F, and R move with respect one another such
that the frames XFYFZF and XRYRZR can aligned to XY Z
by angles δ/2 and −δ/2, respectively, provided lF = lR.
Note that, the condition lF = lR, is true for the vehicle under
discussion (Leander (2020)).

With articulated vehicles such as LHD and forwarders, it is the
case that the wheels are modeled as a spring-damper system
(see, for example, Li et al. (2013)) ). We consider three coordi-
nate systems to express the comprehensive dynamics of the ve-
hicle. The attitude and position of the body are measured in the
global (inertial) frame of reference (XGYGZG). The coordinate
frame, x′y′z′, is attached to the tire ground contact patch. The
subscript t is used to represent quantities in coordinate frame
attached to the tire ground contact patch. In addition ,we assume
that a coordinate frame (xyz) is fixed to the vehicle’s center of
gravity (CG). The CG-fixed coordinate frame (xyz) is aligned
with the motion of the combined center of the mass of the front
and rear bodies. We will use subscript b to represent quantities
in the vehicle body frame. The transformation from inertial
coordinates (XGYGZG) to body coordinates (xyz) follows the
consecutive Euler angle rotations as defined in Etkin and Reid
(1995).

The EOMs collected from Shim and Ghike (2007); Etkin and
Reid (1995) are as follows:

ẊG = u cos θ cosψ + v(cosψ sin θ sinϕ− cosϕ sinψ)

+ w(sinϕ sinψ + cosϕ cosψ sin θ)
(1)

ẎG = u cos θ sinψ + v(cosϕ cosψ + sin θ sinϕ sinψ)

+ w(cosϕ sin θ sinψ − cosψ sinϕ)
(2)

ŻG = −u sin θ + v cos θ sinϕ+ w cos θ cosϕ (3)
u̇ = Fx/m+ g sin θ − (qw − rv), (4)
v̇ = Fy/m− g sinϕ cos θ − (ru− pw), (5)
ẇ = Fz/m− g cosϕ cos θ − (pv − qu), (6)
L = Ixxṗ− Ixy(q̇ − rp)− (Iyy − Izz)qr

− Iyz(q
2 − r2)− Izx(ṙ + pq),

(7)

M = Iyy q̇ − Ixy(ṗ+ qr)− (Izz − Ixx)rp

− Izx(r
2 − p2)− Iyz(ṙ − pq),

(8)

N = Izz ṙ − Ixy(p
2 − q2)− (Ixx − Iyy)pq

− Iyz(q̇ + rp)− Izx(ṗ− qr),
(9)

ψ̇ = q sinϕ sec θ + r cosϕ sec θ, (10)

θ̇ = q cosϕ− r sinϕ, (11)

ϕ̇ = ψ̇ sin θ + p. (12)
The position coordinates (XG, YG, ZG) represent the position
of vehicle’s CG in global frame of reference. The body veloc-
ities, i.e. the linear velocities of the vehicle CG are defined as
longitudinal (forward) velocity (u), lateral (left-side) velocity
(v), and up velocity (w). The state vector contains roll rate (p),
pitch rate (q), and yaw rate (r) which are the angular veloc-
ities of the vehicle frame about CG. Finally, the state vector
constitutes Euler angles, that are roll angle (ϕ – positive right-
side down), pitch angle (θ – positive front-side down), and yaw
angle (ψ – positive counterclockwise). Thus, the state vector
is defined as X = {XG, YG, ZG, u, v, w, p, q, r, ψ, θ, ϕ}. Fx,
Fy , and Fz are forces experienced by the vehicle body along
x, y, and z axes, respectively. L, M , and N are the rolling,

pitching and yawing moments of the vehicle body, respectively.
The forces and moments include those transmitted to the sprung
mass via tires – modeled as spring-damper systems – at each
corner of the vehicle (Li et al. (2013)). m is the body mass of
the vehicle. g is the acceleration due to gravity. Ixx, Iyy , and
Izz are the moments of inertia, whereas Ixy , Iyz , and Izx are
the products of inertia of the vehicle body around its CG.

It is crucial to highlight here that the the body inertia values vary
as the CG shifts since assumption that the CG remains fixed to
some reference point of the vehicle (such as P) is not valid for
the articulated vehicles. This point is further highlighted in the
next section.

3. PROBLEM FORMULATION

First, let us define the inertia matrix of the vehicle assuming a
single rigid body as:

IB =

[
Ixx −Ixy Ixz
−Iyx Iyy −Iyz
−Izx −Izy Izz

]
(13)

where

Ixx =

∫
(y2 + z2)dm;

Iyy =

∫
(x2 + z2)dm;

Izz =

∫
(x2 + y2)dm

are the moments of inertia of the rigid body around its CG
along x, y, and z axes, respectively. Moreover, the off-diagonal
elements are the products of inertia of the vehicle defined as:

Ixy =

∫
xydm; Izx =

∫
xzdm; Iyz =

∫
yzdm

where
Ixy = Iyx; Izx = Ixz; Iyz = Iyz.

Equations (7–9) can be simplified further if we assume that a
plane of symmetry exists for the vehicle. Commonly, xz–plane
is assumed to be the plane of symmetry for the vehicle. In Etkin
and Reid (1995), it is assumed for the air vehicles, however, we
extend the same assumptions to the case of ground vehicles.
Consequently, this leads to simplification where

Ixy = Iyz = 0.

Furthermore, the only remaining off-diagonal term Ixz can be
eliminated if the direction of body axes coincide with the prin-
ciple axes (direction of motion) of the vehicle as discussed in
Shim and Ghike (2007). Under such assumptions, IB becomes
a diagonal matrix.

As mentioned above, this is generally not the case with ground
vehicles with articulated steering due to the relative motion of
front and rear bodies. Moreover, the net inertia matrix IB of
the articulated vehicle may alter when the mass of the front
body or the rear body changes during loading. In addition, the
dimensions of the front and rear body is not exactly the same in
almost every situation. Next, we present an elementary solution
to this problem in where the aim is to preserve the conventional
form of the EOMs, as mentioned in Etkin and Reid (1995);
Shim and Ghike (2007).

4. CG CORRECTED MOMENT EQUATIONS

The procedure is detailed as follows:

(1) Firstly, the origin (0, 0, 0) of the vehicle is assumed to be
fixed at the point of articulation P.

(2) Further, we assume that the front and rear bodies are
cuboids with homogeneous mass distribution with indi-
vidual inertia matrices, denoted by IB,F and IB,R, re-
spectively. These inertia matrices are considered diagonal
matrices for the reasons discussed earlier.

(3) The position vectors of the strut mounting points (p̃kl) and
CG locations of the front (p̃CG,F ) and rear (p̃CG,R) bodies
are defined about the origin of the vehicle. Thus, each
position vector rotates about the origin during articulated
steering.

(4) Thus, during articulated steering the combined CG posi-
tion of the vehicle pCG is given as

pCG =
mFRz(δ/2)p̃CG,F +mRRz(−δ/2)p̃CG,R

mR +mF
(14)

where Rz(·) is the rotation matrix (see, Appendix A for
its definition), and mF and mR denote the mass of front
and rear bodies, respectively. Note that, we are assuming
the articulation joint to have only one degree of freedom,
i.e., the joint can only rotate about z–axis.

(5) Further, we correct the displacement of the CG positions
of the front and rear bodies for the updated vehicle CG
position as

pCG, F = Rz(δ/2)p̃CG, F − pCG; (15)
and

pCG, R = Rz(−δ/2)p̃CG, R − pCG. (16)
(6) We compute the net inertia tensors IB by combining two

cuboids after rotating constituent parts by articulation an-
gle and applying parallel axes theorem for the displace-
ments of CG positions pCG, F and pCG, R. Thus, we get

IB = Rz(δ/2)IB,FRz(δ/2)
T

+Rz(−δ/2)IB,RRz(−δ/2)T

+
∑
i

mi((p
T
CG, ipi, CG)E3 − (pi, CGp

T
CG, i)), (17)

where i = {F,R} represent the front and rear bodies,
E3 is a 3x3 identity matrix, and superscript T shows the
vector (or matrix) transpose.

(7) Subsequently, the new moment arms and inertia values are
used to compute angular accelerations from equations 7–
9.

It is straightforward to notice that besides the diagonal terms
of IB , the only nonzero term would be Ixy due to uneven
mass distributions, for example, due to cargo loading to the
rear body. However, Iyz and Ixz terms remain zero because of
symmetric dimensions of the cuboids. This leads to re-writing
equations (7–9) for body rates as

[
ṗ
q̇
ṙ

]
=

[
Ixx −Ixy 0
−Iyx Iyy 0
0 0 Izz

]−1 [
Lp

Mq

Nr

]
(18)

where
Lp = L− Ixyrp+ (Iyy − Izz)qr, (19)
Mq = M + Ixyqr + (Izz − Ixx)rp, (20)
Nr = N + Ixy(p

2 − q2) + (Ixx − Iyy)pq. (21)

It is crucial to mention mention here that the moment arms (or
lever arms) used to compute the body moments L, M , and N
due to tire forces have to be corrected for pCG. It is achieved by
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correcting the position vectors associated with each strut-mount
(corner) of the vehicle with respect to corrected CG position as

pkl = Rz(δkl)p̃kl − pCG, (22)
where the subscript (kl) represents left front (lF ), right front
(rF ), left rear (lR), and right rear (rR) tires and strut-mounts.
δkl denotes the steering angle for each tire location, such that
for front tires we have

δkF = δ/2; (23)
whereas for rear wheels, we have

δkR = −δ/2, (24)
provided lF = lR.

Next, we move on to discuss the computation of tire forces
assuming the vehicle operates in the primary handling regime.

5. CG CORRECTED TIRE FORCES

In this study, each tire only introduces a central force com-
ponent (Fs) and a drag force components (Fd) to the 6-DOF
model by resolving the tire forces into x′y′z′ coordinate by
the steering angle (Dixon (1996)). Thus, additional degree of
freedom due to spinning of each wheel is not considered in
the simulations. Furthermore, to model tire forces in the non-
linear 6-DOF simulations, we restrict ourselves to the primary
handling regime. Dixon (1988) noted four types of handling
regions for a ground vehicle (either car or truck) by describing
the variation of the steering angle δ with the lateral acceleration
ac. The range of ac in the primary handling regime goes up to 3
m/s2 for cars and 1 m/s2 for trucks. For Rakka UGV to operate
in primary handling regime, it implies that for the commanded
seering angle and nominal speed of the vehicle the condition
ac < 1 m/s2 is always satisified.

In such a case, the lateral tire force Fykl
is related to the sideslip

angle αkl as
Fykl

= −Cα,klαkl, (25)
where Cα,kl is the cornering stiffness of klth tire. In the
coordinate frame (x′y′z′) fixed to the tire ground contact patch,
the lateral slip angle is given as (Shim and Ghike (2007))

αkl = tan−1


vt,kl
ut,kl


− δkl, (26)

where ut,kl, vt,kl, and wt,kl are the longitudinal, lateral, and
vertical velocities at the tire-ground contact point in the x′y′z′

coordinate frame. These velocities can be obtained by first
transforming the CG velocities to the velocities of strut-mount
points expressed in the body-fixed coordinate frame as


ub,kl

vb,kl
wb,kl


=


u
v
w


− Ṙz(δkl, δ̇kl)p̃kl

+

Ṙx(0, p) + Ṙy(0, q) + Ṙz(0, r)


pkl, (27)

where pkl is CG corrected position of each strut-mounting
point, p̃kl is strut-mount position with respect to point P. More-
over, Ṙx(·, ·), Ṙy(·, ·), and Ṙz(·, ·) are the time derivatives of
the respective rotation matrices. Subsequently, the velocities of
the strut mounting points in the CG-fixed coordinate frame are
transformed to the velocities in the x′y′z′ coordinate frame as

ut,kl

vt,kl
wt,kl


= Ry(θ)Rx(ϕ)


ub,kl

vb,kl
wb,kl


. (28)

In addition, we model the longitudinal force on the klth tire as
Fxkl

= µFzkl
, (29)

where µ is the friction coefficient. Finally, the wheel forces
in body frame are obtained by transforming the tire forces
to the strut-aligned (or, vehicle motion aligned) forces. Such
transformation is obtained by


Fxbkl

Fybkl

Fzbkl


 = Rx(−ϕ)Ry(−θ)



Fxtkl

Fytkl

Fztkl


 , (30)

where we obtain the tire forces in wheel-centered coordinate
frame by resolving the longitudinal (Fxkl

) and lateral (Fykl
)

tire forces as 

Fxtkl

Fytkl

Fztkl


 = Rz(δkl)


Fxkl

Fykl

Fzkl


. (31)

It is crucial to highlight here that the change in CG manifests
itself in the body acceleration equations as additional velocity
components introduced by Ṙz(δkl, δ̇kl)pkl in the velocities of
each corner of the vehicle. The CG-shifted velocities of each
corner ub,kl, vb,kl, and wb,kl are used to compute sideslip
angles αkl. This ultimately leads to the computation of the
body forces Fxbkl

, Fybkl
, and Fzbkl

with respect to corrected
CG. Subsequently, these body forces are used to update body
acceleration using equations (4–6) corresponding to new CG
location (pCG).

6. CG POSITION IN INERTIAL FRAME

Exclusively, there remains a requirement to modify equa-
tions (1–3) to obtain the corrected CG positions in the inertial
(global) frame of reference. Using vector-matrix notations for
convenience, it is solely achievable by re-writing equations (1–
3) as 


ẊG

ẎG

ŻG


 = CG

b


u
v
w


+ ṗCG


, (32)

where
CG

b = Rz(ψ)Ry(θ)Rx(ϕ) (33)
is the transformation matrix to convert body coordinates to
global coordinates, and ṗCG is obtained by taking derivative of
equation (14) as

ṗCG =
mF Ṙz(δ/2, δ̇/2)p̃CG,F +mRṘz(−δ/2,−δ̇/2)p̃CG,R

mR +mF
(34)

provided masses mF and mR do not change during vehicle
operation.

7. SIMULATION RESULTS

In this section, we discuss the results obtained from a simula-
tion run. The important vehicle parameters used in the simula-
tion are mentioned in Table 1. Figure 3 illustrates the open
loop responses corresponding to forward acceleration ax = u̇,
ground speed Vg =

√
u2 + v2, steering angle δd, and yaw

rate r of Rakka UGV. Here, the actual inputs to the dynamic
model are the acceleration axc and rate of change steering
command d(δc)/dt commands. The steering angle command
δc is obtained by integration of d(δc)/dt command. Likewise,
the speed command Vc is obtained by integrating axc while the
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correcting the position vectors associated with each strut-mount
(corner) of the vehicle with respect to corrected CG position as

pkl = Rz(δkl)p̃kl − pCG, (22)
where the subscript (kl) represents left front (lF ), right front
(rF ), left rear (lR), and right rear (rR) tires and strut-mounts.
δkl denotes the steering angle for each tire location, such that
for front tires we have

δkF = δ/2; (23)
whereas for rear wheels, we have

δkR = −δ/2, (24)
provided lF = lR.

Next, we move on to discuss the computation of tire forces
assuming the vehicle operates in the primary handling regime.

5. CG CORRECTED TIRE FORCES

In this study, each tire only introduces a central force com-
ponent (Fs) and a drag force components (Fd) to the 6-DOF
model by resolving the tire forces into x′y′z′ coordinate by
the steering angle (Dixon (1996)). Thus, additional degree of
freedom due to spinning of each wheel is not considered in
the simulations. Furthermore, to model tire forces in the non-
linear 6-DOF simulations, we restrict ourselves to the primary
handling regime. Dixon (1988) noted four types of handling
regions for a ground vehicle (either car or truck) by describing
the variation of the steering angle δ with the lateral acceleration
ac. The range of ac in the primary handling regime goes up to 3
m/s2 for cars and 1 m/s2 for trucks. For Rakka UGV to operate
in primary handling regime, it implies that for the commanded
seering angle and nominal speed of the vehicle the condition
ac < 1 m/s2 is always satisified.

In such a case, the lateral tire force Fykl
is related to the sideslip

angle αkl as
Fykl

= −Cα,klαkl, (25)
where Cα,kl is the cornering stiffness of klth tire. In the
coordinate frame (x′y′z′) fixed to the tire ground contact patch,
the lateral slip angle is given as (Shim and Ghike (2007))

αkl = tan−1


vt,kl
ut,kl


− δkl, (26)

where ut,kl, vt,kl, and wt,kl are the longitudinal, lateral, and
vertical velocities at the tire-ground contact point in the x′y′z′

coordinate frame. These velocities can be obtained by first
transforming the CG velocities to the velocities of strut-mount
points expressed in the body-fixed coordinate frame as


ub,kl

vb,kl
wb,kl


=


u
v
w


− Ṙz(δkl, δ̇kl)p̃kl

+

Ṙx(0, p) + Ṙy(0, q) + Ṙz(0, r)


pkl, (27)

where pkl is CG corrected position of each strut-mounting
point, p̃kl is strut-mount position with respect to point P. More-
over, Ṙx(·, ·), Ṙy(·, ·), and Ṙz(·, ·) are the time derivatives of
the respective rotation matrices. Subsequently, the velocities of
the strut mounting points in the CG-fixed coordinate frame are
transformed to the velocities in the x′y′z′ coordinate frame as

ut,kl

vt,kl
wt,kl


= Ry(θ)Rx(ϕ)


ub,kl

vb,kl
wb,kl


. (28)

In addition, we model the longitudinal force on the klth tire as
Fxkl

= µFzkl
, (29)

where µ is the friction coefficient. Finally, the wheel forces
in body frame are obtained by transforming the tire forces
to the strut-aligned (or, vehicle motion aligned) forces. Such
transformation is obtained by


Fxbkl

Fybkl

Fzbkl


 = Rx(−ϕ)Ry(−θ)



Fxtkl

Fytkl

Fztkl


 , (30)

where we obtain the tire forces in wheel-centered coordinate
frame by resolving the longitudinal (Fxkl

) and lateral (Fykl
)

tire forces as 

Fxtkl

Fytkl

Fztkl


 = Rz(δkl)


Fxkl

Fykl

Fzkl


. (31)

It is crucial to highlight here that the change in CG manifests
itself in the body acceleration equations as additional velocity
components introduced by Ṙz(δkl, δ̇kl)pkl in the velocities of
each corner of the vehicle. The CG-shifted velocities of each
corner ub,kl, vb,kl, and wb,kl are used to compute sideslip
angles αkl. This ultimately leads to the computation of the
body forces Fxbkl

, Fybkl
, and Fzbkl

with respect to corrected
CG. Subsequently, these body forces are used to update body
acceleration using equations (4–6) corresponding to new CG
location (pCG).

6. CG POSITION IN INERTIAL FRAME

Exclusively, there remains a requirement to modify equa-
tions (1–3) to obtain the corrected CG positions in the inertial
(global) frame of reference. Using vector-matrix notations for
convenience, it is solely achievable by re-writing equations (1–
3) as 


ẊG

ẎG

ŻG


 = CG

b


u
v
w


+ ṗCG


, (32)

where
CG

b = Rz(ψ)Ry(θ)Rx(ϕ) (33)
is the transformation matrix to convert body coordinates to
global coordinates, and ṗCG is obtained by taking derivative of
equation (14) as

ṗCG =
mF Ṙz(δ/2, δ̇/2)p̃CG,F +mRṘz(−δ/2,−δ̇/2)p̃CG,R

mR +mF
(34)

provided masses mF and mR do not change during vehicle
operation.

7. SIMULATION RESULTS

In this section, we discuss the results obtained from a simula-
tion run. The important vehicle parameters used in the simula-
tion are mentioned in Table 1. Figure 3 illustrates the open
loop responses corresponding to forward acceleration ax = u̇,
ground speed Vg =

√
u2 + v2, steering angle δd, and yaw

rate r of Rakka UGV. Here, the actual inputs to the dynamic
model are the acceleration axc and rate of change steering
command d(δc)/dt commands. The steering angle command
δc is obtained by integration of d(δc)/dt command. Likewise,
the speed command Vc is obtained by integrating axc while the

Table 1. Vehicle Parameters

Quantity Specification
Type Rakka UGV
Mass (Self) 3000 kg
Gross Weight 6000 kg
Length of the Vehicle 4.6 m
Width 2.1 m
Height 1.1 m
Distance from front axle to joint 0.95 m
Distance from rear axle to joint 0.95 m
Distance between axles 2 m
Minimum Turning Radius (rc) 2.3 m
Rated Speed (Vc) 0.44 m/s
Maximum Steering Angle (δc) ±33◦

Maximum Steering Rate (d(δc)/dt) ±17◦/s

Fig. 3. The inputs forward acceleration command axc, speed
command Vc, steering rate command d(δc)/dt, and yaw
rate command rc are shown in blue. The output responses
of Rakka UGV (ax, Vg , δd, and r) are shown in dashed red
lines.

commanded yaw rate rc is computed by Vc/rc. It is important
to mention here that for the Rakka UGV axc and d(δc)/dt
commands are adjusted such that the maximum speed of the
vehicle does not exceed 0.5 m/s, whereas the maximum steering
angle and steering rate for Rakkatec platform are always within
prescribed limits of ±33◦ and ±17◦/s, respectively. This is to
ensure that the condition ac < 1 m/s2 is always met.

In Figure 4, the (X,Y ) trajectory shown in blue represents the
path traveled by the CG as computed by the dynamic model,
whereas the trajectory shown in red depicts the path traversed
by the articulation point P in the inertial frame. Notice that
the tighter turn of the CG in Figure 4 is reflected by lower
radius of curvature in comparison to the articulation point P.
It highlights that the CG shift towards instantaneous center or
rotation (ICR) during turn that eventually results in a smaller
radius of curvature.

Figure 5 shows the roll profile of the vehicle. During articulated
turn, the CG shifts to the left of point P resulting in a nega-
tive roll angle, indicating the right-side of the vehicle moving
slightly upwards as CG shifts to the left. Figure 6 illustrates the

Fig. 4. (X,Y )-path simulation results traversed by the CG
(shown in blue) and the point of articulation P (shown in
red) of Rakka UGV.

Fig. 5. Top: Roll angle profile of the vehicle is shown. Bottom:
Profile corresponding to evolution of yaw angle ψ and yaw
rate r is shown.

change in the height of the CG due to spring compression from
initial height of 0m. It also depicts the change in pitch angle as
the vehicle starts accelerating forward. Note that, here negative
pitch implies front-side down of the vehicle. One critical obser-
vation to made from Figure 6 is the nonzero pitch rate q after
time t = 60 sec. Notice that the pitch rate is in the body frame,
however the pitch angle is in an inertial frame. Since the roll
angle is nonzero after time t = 60 sec, the yaw turning is seen
in pitch rate even though the pitch angle does not change.
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Fig. 6. Top: zcg corresponds to height of CG in the inertial
frame. w represents the up-velocity of the CG. Bottom:
Evolution of pitch angle θ and pitch rate q in the simula-
tion.

8. CONCLUSIONS AND FUTURE WORK

This paper highlights the efficacy of using a combined CG to
simulate 6-DOF dynamic model of the ground vehicles with
center-articulated steering. At first, it is necessary to compute
the CG and joint inertia matrix of the vehicle during articulated
steering. The lever arms are shifted as seen from the new CG
position at each simulation time step. Accordingly, the equa-
tions for body torques (moments), forces, and inertial positions
of the vehicle with respect to corrected CG is computed. A real-
istic scenario is simulated to study the turning characteristics of
an articulated vehicle of choice at the rated speed and maximum
steering angle. The analysis of the simulation results shows that
the dynamic model predicts the cornering behavior realistically.

These results are crucial in, for example, designing model-
based speed and steering controllers for the articulated vehicles.
The simulation platform will provide a functional basis for fur-
thering the mathematical model for articulated forest machines
considering uneven terrains.
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Appendix A. ROTATION MATRICES

For convenience of expression, the rotation matrices about x, y,
and z–axes are defined as follows:

Rx(ϕ) =

[
1 0 0
0 cosϕ − sinϕ
0 sinϕ cosϕ

]
, (A.1)

Ry(θ) =

[
cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

]
, (A.2)

with

Rz(ψ) =

[
cosψ − sinψ 0
sinψ cosψ 0
0 0 1

]
. (A.3)

The time derivatives of the rotation matrices are given as
follows:

Ṙx(ϕ, ϕ̇) =

[
0 0 0
0 − sinϕ − cosϕ
0 cosϕ − sinϕ

]
ϕ̇, (A.4)

Ṙy(θ, θ̇) =

[− sin θ 0 cos θ
0 1 0

− cos θ 0 − sin θ

]
θ̇, (A.5)

and

Ṙz(ψ, ψ̇) =

[− sinψ − cosψ 0
cosψ − sinψ 0
0 0 1

]
ψ̇. (A.6)


