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ABSTRACT
The paper focuses on a new type of interactive learning content for
SQL programming - worked examples of SQL code. While worked
examples are popular in learning programming, their application for
learning SQL is limited. Using a novel tool for presenting interactive
worked examples, Database Query Analyzer (DBQA), we performed
a large-scale randomized controlled study assessing the value of
worked examples as a new type of practice content in a database
course. We report the results of the classroom study examining the
usage and the impact of DBQA. Among other aspects, we explored
the effect of textual step explanations provided by DBQA.

CCS CONCEPTS
• Applied computing → Interactive learning environments; •
Information systems → Structured Query Language.

KEYWORDS
worked examples, textual explanations, computer science education, 
OLM, classroom study, SQL

1 INTRODUCTION
Worked examples and problems are two key types of smart learn-
ing content for studying programming languages [5]. For learning
programming languages like Java or Python, both types of learn-
ing content are well represented. However, for learning Structured
Query Language (SQL), current work predominantly focuses on
SQL problems with automatic assessment [6, 18, 22]. This paper
attempts to bridge this gap by introducing and evaluating Data-
base Query Analyzer (DBQA) [13], an online learning tool for SQL
worked examples that interactively illustrates and explains the step-
by-step execution of SQL SELECT statements. We report the results
of a large-scale randomized control study where DBQA examples
were used by learners among other types of interactive learning
content through an online SQL Practice System. In our analysis, we
focus on the usage and the impact of DBQA, as well as the effect of
textual step explanations provided by DBQA.

2 RELATED WORK
Over the last 30 years, worked examples, also referred to as worked-
out examples [2], have gradually emerged as an important instruc-
tional approach supported by learning technology. Worked exam-
ples are comprised of the presentation of a problem, the solution
steps, and the final solution. Students use these examples as models
of how to solve certain types of problems. A sizable body of re-
search on the use of worked examples for acquiring cognitive skills
has been accumulated in various domains, such as mathematics
and physics [2, 27]. This research has consistently shown that in
the early stages of skill acquisition when students typically have
little or no domain knowledge, instruction that relies more heavily
on studying worked examples is more effective for learning than
the traditional approach of being focused on only problem-solving.
Previous work has shown that early example-based instruction
leads to better learning outcomes, which are reached in less time
and with less effort [16, 28].

In the domain of learning programming, the majority of research
on worked examples has focused on animated code examples. An-
imated examples do not limit the example presentation to just
showing students the code of example programs, but allow the
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Figure 1: An SQL SELECT example presented in DBQA with-
out the step explanation support. The yellow color highlights
the currently executed step in the query text while the blue-
color highlights previously executed steps if any.

students to see the code executed step-by-step using program visu-
alization [26]. The use of step-wise program visualization enables
students to see the internal state and intermediate results or pro-
gram execution, which are usually hidden [11, 19, 25], and thus
better understand the behavior of program constructs [29]. More
recently, there have been several attempts to develop other types
of worked examples that focus on code exploration rather than
code animation [8, 31]. However, direct comparison of other types
of worked examples with animated examples [15] has indicated
higher effectiveness of animated examples.

The use of worked examples in the domain of SQL programming
is much less explored. While static code examples were found ef-
fective in combination with problem-focused SQL-Tutor [23] and
interactive annotated examples were a popular component of Data-
base Exploratorium [6], we were not able to find any studies of SQL
code examples that visualize step-by-step execution of SQL code.

3 PRESENTING SQL EXAMPLES WITH DBQA
In this study, SQL code examples were illustrated using Database
Query Analyzer (DBQA) [13], a learning tool that uses data-oriented
visualizations to illustrate the effects that clauses and conditions
have on SQL SELECT statements. DBQA illustrates intermediate
data sets similar to those maintained by the database management
system during the processing of the query (Figure 1). Upon query
submission, DBQA processes clauses in an SQL SELECT statement
in the following order (if present): FROM, WHERE, SELECT, GROUP
BY, HAVING, and ORDER BY. For each clause and condition, DBQA
highlights the query component being processed and updates the
intermediate data set displayed to the student accordingly. “Next”
and “Previous” buttons allow the student to step forward and back-
ward in the query execution, allowing for procedural-like query
execution and illustration. Students can highlight already executed
clauses by checking the “highlight previous steps" checkbox. Addi-
tional features in DBQA allow the learner to view all tables, columns,
and keys in a database, as well as view all data in those tables.

DBQA can be used as a learning tool as a stand-alone system
allowing students to explore custom queries that they want to
execute on a database, or as an interoperable service [12] that can

Clause Explanation(s)

SELECT “Remove all columns other than...”
“Retain all columns from...”

FROM “Retrieve all rows from...”
“Retrieve all rows from the Cartesian product of...”

JOIN “Add columns from table that satisfy
the following condition...”

WHERE
HAVING

“Remove all rows other than those that satisfy
the following column condition...”

GROUP BY “Combine rows (according to the grouping function)
with matching values in the following column(s)...”

ORDER BY “Sort all rows according to values
in the following column(s)...”

Table 1: DBQA query step explanations.
be integrated with other systems as a provider of reusable smart
learning content through the LTI protocol, which was the case
for this study. DBQA was integrated into the SQL Practice System
(presented in Section 4.1) as a tool to deliver interactive worked
examples for SQL SELECT statements that cover multiple SQL
topics such as subqueries and aggregate operators. For example,
given the following query (Figure 1):

SELECT name_first, name_last, email
FROM instructor
WHERE department = 'Math'

DBQA would present the following steps to the student: (1) high-
light the FROM clause and display all of the data in the instructor
table, (2) highlight the condition in the WHERE clause and remove
all rows in the intermediate data set that do not match the speci-
fied condition, and (3) highlight the SELECT clause and remove all
columns in the intermediate data set that are not in the select list.
Students should explore the three query step executions presented
above to fully explore this particular SQL example.

To better convey the modifications on the intermediate data set
by each query clause and condition, text-based query step explana-
tions presented in Table 1 were added to DBQA for the purpose of
this study. Figure 2D shows an instance where the textual explana-
tion “Retrieve all rows from: course” was shown as a yellow-marked
text for the current execution step FROM course.

4 CLASSROOM STUDY
We evaluated the impact of the SQL example tool in a large-scale
empirical study where the tool was made available as a component
of an SQL Practice System. In this section, we describe the course
context, study design, and relevant parts of the practice system.

4.1 SQL Practice System
4.1.1 Open Learner Model Interface. The goal of the SQL Practice
System is to provide access to four types of interactive learning
content that can help students to practice SQL topics. Since the
system was designed to be used in a free mode, i.e., students can
choose when and how to practice, the interface of the practice sys-
tem was designed to help students with monitoring their progress
and choosing the most appropriate content to practice. The ac-
cess to all four types of interactive learning content is organized
by topics and augmented by an open learner model (OLM) [4, 9].



Figure 2: The interface of the SQL Practice System. The topic-based (A) and concept-based OLM (B). The list of available learning
contents for the topic SELECT-FROM-WHERE is shown and grouped under four content types (C). A DBQA activity accessed by
a student in textual-DBQA condition and a query execution step is shown with textual explanation for FROM clause(D).

The goal of OLM is to increase students’ awareness of their learn-
ing progress. As seen in Figure 2, there is a topic-based (A) and
concept-based (B) OLM. The grid (Fig. 2A me row) represents the
average progress of a learner for each topic, which increases by
completing activities within a topic (Fig. 2C). The darker color of
the cell indicates a higher level of completion in a topic or an ac-
tivity. In parallel, as the student works with the problem-solving
activities (i.e., Query Analysis and Query Execution), estimations of
their knowledge level on the different SQL concepts are calculated
based on their correct/incorrect attempts [30]. These estimations
are shown through the length and the color of the concept bar chart
shown in Fig. 2B, where each bar represents an SQL concept cov-
ered in the course. The longer and the greener the bar, the higher
the estimated knowledge of this SQL concept. Students can explore
the OLM by (1) mousing over the topics to get an overview of the
concepts that are introduced in each of these topics, or also by (2)
mousing over the learning activities to know which concepts can
be practiced through each activity.

4.1.2 Practice Content. Figure 2 shows four types of interactive
content available in the SQL Practice System. Query Examples are
annotated SQL examples served through the WebEx tool [8], which
allow students to interactively examine textual annotations for
each SQL clause and condition, line by line. From the Query Demon-
stration row, students can access worked-out examples presented
through DBQA. Query Analysis row provides access to SQL prob-
lems served through SQL-Tutor [22], a constraint-based tutor for
teaching SQL, where students have a structured SQL select query
template to answer a given SQL problem. SQL-Tutor provides mul-
tiple support and feedback options such that students can see the

errors associated with their queries based on well-defined con-
straints, and even ask for a partial solution. Finally, Query Execution
activities are problems that assess learners’ SQL knowledge and are
solved by writing free-form SQL select statements for a given prob-
lem text. The submitted query is evaluated against a model solution
using a sample database, and immediate correct/incorrect feedback
is provided. These problems are served through SQL Assessment
Tool (SAT) [6] and generated through pre-defined templates. Every
time a student accesses a problem, the problem text is randomly
selected from a predefined problem set. SAT has another unique
feature, query build mode that allows learners to run their SQL
queries multiple times and lets them see the actual query result
before submitting it as an answer for assessment. Attempts to both
SQL-Tutor and SAT are used by the student modeling component
to update concept-level knowledge estimates. In this study, stu-
dents had access to 63 annotated examples, 42 DBQA examples, 52
SQL-Tutor problems, and 55 SAT problems through the practice
system.

4.2 Study Context
The study was conducted from February to May 2021 on an under-
graduate database management course at a major research univer-
sity in Finland. The course is compulsory in two majors: Computer
science, and Industrial engineering and management. It is also very
popular among students from other bachelor’s and master’s pro-
grams, with 587 students starting the course in the spring of 2021.
The course content covers relational modeling, relational algebra,
UML modeling, SQL, and transaction management. The course ma-
terial and related exercises were presented using the local course
management system (CMS)[17]. To pass the course, students have



to take a compulsory exam and implement a team project in which 
a small database is designed and implemented using SQLlite.

Two groups of learning and assessment tools were provided for 
students to gain and practice their database knowledge: CMS exer-
cises and SQL Practice System. Neither of the tools was mandatory 
for passing the class, but their use was incentivized through the 
mechanism of exercise points that play an important role in course 
grading. By collecting exercise points, students can improve their 
(passing) exam grade by up to 1.5 grades on a scale of 0-5, where 1 
denotes a pass and 5 is the best grade. The opportunities to earn ex-
ercise points differed considerably between CMS exercises and the 
SQL Practice System, reflecting their role in the course. CMS exer-
cises on various course topics were designed more as an assessment 
tool. Each solved exercise earned exercise points and was the means 
by which students could earn most of their points. In contrast, SQL 
Practice System was offered for additional practice for students 
who needed more support to gain SQL knowledge. It was accessible 
through a link from the CMS, and the incentives to use it were 
much weaker to avoid “practicing for points” rather than knowl-
edge. While the practice system offered a large number of problems 
and worked examples for 11 SQL topics, only up to 22 exercise 
points (about 8.4% of the maximum available exercise points) could 
be earned through this system. More precisely, students could earn 
up to 2 points per topic by solving two SQL problems (1 for each 
type), and no points could be earned by working with examples. 
The status of the earned points was visible to students as shown in 
the top-left corner of Figure 2 (e.g., Extra Points Earned: 5/22).

4.3 Study Design and Conditions
While the main goal of the study was to assess the DBQA tool in a 
realistic context, we also used it as an opportunity to find some op-
timal settings for the tool, namely, the presence of a concept-based 
open learner model (OLM) and the presence of textual explanations 
in the step-wise query execution. In our past work with other pro-
gramming languages, we found that both concept-based OLM [10] 
and explanatory visualization [20] could make example exploration 
more valuable. We hoped that they could also be helpful in the 
context of learning SQL. To explore these two aspects, the study 
was designed as a two-by-two randomized control experiment with 
the following conditions:
OLM Conditions:

(1) Topic-based OLM only (topic-OLM)
(2) Topic-based OLM and concept-based OLM (concept-OLM)

DBQA Conditions:
(1) Visual query execution steps (visual-DBQA)
(2) Visual query execution steps and textual query step expla-

nations (textual-DBQA)
Students who were assigned to the concept-OLM condition used

the SQL Practice System version shown in Figure 2A, and those
who were assigned to the topic-OLM condition could only access
the topic-based OLM without concept-level knowledge estimations.
Similarly, students in the textual-DBQA condition explored worked
examples in DBQA with textual support whereas the visual-DBQA
condition had access to other visual demonstrations without the tex-
tual support. Students were assigned randomly to each of the four
study conditions. Prior to the experiment, we hypothesized that

augmenting query execution illustrations with textual explanations
might improve the learners’ understanding of visualization and
raise learners’ eagerness to explore more execution steps [20, 25].
Similarly, we expected that the concept-based OLM would pro-
vide additional navigational support and could potentially increase
student engagement with the learning tools [7, 9].

4.4 Dataset and Overall System Usage
The dataset includes the interaction logs collected through the SQL
Practice System. To assess the effectiveness of the practice system
and its components, we also administered pre- and post-tests. The
pre-test was administered before students started working with
the SQL exercises. The post-test was administered at the end of the
semester. Both tests had 10 problems, including 5 multiple-choice
and 5 SQL fill-in-the-blank problems, which concentrated on SQL
SELECT statements. Pre and post-test problems were isomorphic 1.

At the beginning of the course, we informed students about this
research and asked them to give their consent for participation. In
this paper, we considered only data from students who gave their
consent. Table 2 presents the summary statistics about the practice
system usage for students who attempted at least one problem and
viewed at least one example (N=131). Specifically, students solved
on average 28 unique problems in total considering both SQL-Tutor
and SAT, which is beyond the limit for earning the extra exercise
points in full (22 problems), and almost half of the students exceeded
this limit. Beyond problems, students were also engaged with both
types of worked-out examples and viewed on average 21 unique
examples in total. It is evident that the students practiced with the
SQL Practice System substantially and allowed us to investigate
further both DBQA usage and effects of study conditions.

Table 2: Summary statistics for the practice system usage of
the learning activities by students who attempted at least
one activity (N=131)

Content Usage Metric Mean SD

Annotated Distinct accesses 14.2 13.3
Examples Annotated line views 38.9 56.0

DBQA Distinct accesses 7.0 10.3
Execution step views 25.3 45.6

SQL-Tutor Problem solving attempts 46.1 34.9
Successful attempts 13.7 10.8
Distinct problems solved 12.9 10.1

SQL Problem solving attempts 31.0 21.2
Assessment Successful attempts 16.1 13.9
Tool Distinct problems solved 15.1 10.5

Attempts in query build mode 17.5 24.1

5 RESULTS
In this section, we present our results starting from a broader per-
spective and later share our findings from deeper analyses. First,
we explore if practicing with the SQL Practice System is associ-
ated with student learning (Section 5.1). Then, we investigate the
possible impact of practicing with worked examples on problem-
solving activities within the practice system (Section 5.2). Next, we
1There were no significant differences in pre/post-test scores between study conditions.
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inspect the effects of randomized experiment conditions (i.e., OLM-
condition and DBQA-condition) on the usage of DBQA (Section 
5.3). Finally, we analyze the effect of textual step explanations on 
DBQA usage over the course period (Section 5.4).

5.1 External Value of Practice System Usage
We started our analysis by checking the relationship between the 
practice system usage and student learning. Following our prior 
research findings [3], we concentrated on success rate related fea-
tures. We considered using the overall success rate and first-attempt 
success rate in both the SQL assessment tool (SAT) and SQL-Tutor 
as features. To test such connections, we can only consider students 
who had both pre/post-test scores and used the SAT and SQL-Tutor 
at least once (N=110). We performed a backward step-wise fea-
ture selection process to pick the important usage metrics. This 
process picked the overall success rate in SAT and pre-test scores 
as features. Then, we fitted a  linear regression model to predict 
post-test scores using these features. We found a significant model 
(𝐹 (2, 107) = 14.8, 𝑎𝑑 𝑗 .𝑅2 = .20, 𝑝 < .001) and the results indicated 
that the overall success rate was a statistically significant predictor 
(𝐵 = 7.50, 𝑡 = 3.433, 𝑝 < .001, 𝜂2 = .10) of post-test scores after con-
trolling for pre-test scores (𝐵 = 9.15, 𝑡 = 4.189, 𝑝 < .001, 𝜂2 = .14), 
such that a 10% increase in success rate was associated with a 4.8%
increase in post-test scores. We believe that given the intelligent-
tutoring-system nature of the SQL-Tutor and multiple feedback/hint 
options (e.g., partial solution request), the success rate in SQL-Tutor 
problems was not a significant factor in this analysis. Following 
these findings, we concentrated more on success rate related met-
rics in SAT in the following analyses to assess the value of the 
worked-out example tools.

5.2 Internal Value of Worked Examples
Following the prior work on worked examples [14, 15], we extended 
our analysis to see if practice with worked examples was associated 
with performance in problem-solving activities, specifically the 
success rate in SAT (see the previous section). As we discussed in 
Section 4.4, students used the practice system substantially. How-
ever, some students decided not to use some of the available learning 
tools. For this reason, we only considered students who practiced 
with all types of learning content (N=91) to assess the value of 
worked examples.

We have extracted multiple usage metrics for each example tool 
to summarize learners’ engagement levels. But, since these metrics 
for each example tool were highly correlated (i.e., Pearson’s r > .8), 
we can only use one for each example tool in our regression models. 
Thus, we selected the number of execution step views for DBQA 
and the number of annotated line views for Annotated Examples to 
summarize the learners’ engagement with the example tools.

We first fitted a linear regression model to predict the overall 
success rate in SAT using the features mentioned earlier. The regres-
sion model was statistically significant (𝐹 (2, 88 = 3 .65), 𝑎𝑑 𝑗 .𝑅2 = 
.06, 𝑝 = .030)2: viewing more execution steps in DBQA was signif-
icantly and positively associated with higher success rate in SAT 
problems (𝐵 = .07, 𝑡 = 2.212, 𝑝 = .029, 𝜂2 = .07). Viewing more 
annotated lines was not significant (𝐵 = −.03, 𝑡  = −.978, 𝑝  = .331).
2The pre-test scores did not improve the model fit and were removed.

In our prior work [1], we found out that learners exhibited two
divergent practice behaviors in a similar SQL Practice System. Some
students tended to learn by exploring worked-out examples and
then solving SQL problems. Others preferred to solve problems
through multiple attempts and by executing SQL queries in the
execution mode for exploration and debugging purposes. Hence,
we further hypothesized that exploring worked examples might
affect students’ problem-solving behavior in this study as well.
To test our hypothesis, we fitted negative binomial generalized
linear models (due to over-dispersion) to predict the number of
attempts using the query build mode in SAT. We controlled for prior
knowledge and the number of distinct SQL problems attempted
(i.e., students who practiced with more problems might need to
use query build mode more). The model that used the number
of execution steps viewed in DBQA as a feature improved the
overall fit when compared to a model that did not use this feature
(𝜒2 (1) = 4.870, 𝑝 = .027). However, the model that used the number
of line views in Annotated Examples (AE) did not improve the
overall fit (𝜒2 (1) = .099, 𝑝 = .753). To summarize, students who
explored more execution steps in DBQA used the query build mode
in SAT significantly fewer times, suggesting that they used DBQA
to understand how SQL queries work and needed fewer query
building attempts for debugging and exploring their mistakes.

In the learning process, the persistence in problem-solving ac-
tivities (i.e., not giving up after failing to solve a problem but keep
trying to solve it) is constantly associated with better learning out-
comes [21, 24]. In light of these research findings, we explored if
work with examples affected student persistence in solving SQL
problems in SAT. We calculated the ratio of problems that students
abandoned (abandon-ratio) after their first failed attempt. Then, we
fitted a linear regression model to predict abandon-ratio and added
the number of execution step views in DBQA and line views in
AE as features. The model was statistically significant (𝐹 (2, 88) =
5.427, 𝑝 = .006). Both features related to example tools were sig-
nificant predictors: viewing more execution steps was associated
with lower abandon-ratio (𝐵 = −.05, 𝑡 = −3.133, 𝑝 = .002, 𝜂2𝑝 = .07)
while viewing more annotated lines was associated with higher
abandon-ratio (𝐵 = .03, 𝑡 = 2.042, 𝑝 = .044, 𝜂2𝑝 = .05). These find-
ings suggest that DBQA might help students to be more persistent
during problem-solving whereas AE might not be that beneficial.

5.3 Effect of Textual Query Step Explanations
In the preceding sections, we reported the benefit of the SQL Prac-
tice System and the worked-out example learning content on learn-
ing and problem-solving performance. As summarized in Section
4.3, in this study we had two by two study designs, i.e., OLM (topic-
OLM/concept-OLM) and DBQA (textual/visual) conditions. In this
section, we present the effect of these randomized experiment con-
ditions on the usage of DBQA. We used the same set of learners
from Section 5.2 (N=91).

We checked the effect of both OLM and DBQA conditions by
conducting two separate two-way ANOVAs on the ratio of fully
explored DBQA examples (i.e., exploring all the execution steps in a
DBQA example) to the number of examples that at least one execu-
tion step was viewed (exploration-ratio); and the average number of
explored execution steps per unique DBQA example, which is cal-
culated by dividing the total number of explored steps by the total
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number of accessed DBQA examples. We also added the interaction 
effect of study conditions. We did not add the pre-test scores as the 
covariate due to the missing linear relationship between pre-test 
scores and the dependent variables.

ANOVA on exploration ratio found a significant interaction ef-
fect between study conditions (𝐹 (1, 87) = 5.172, 𝑝 = .025) with 
small-to-medium effect size ( 𝜂2 = .06), and marginal main effect of 
OLM type (𝐹 (1, 87) = 3.252, 𝑝 = .075), but no significant main effect 
of step explanations (𝐹 (1, 87) = 2.434, 𝑝 = .122). Similarly, ANOVA 
on the average execution steps revealed a significant interaction 
effect (𝐹 (1, 87) = 7.357, 𝑝  = .008) with small-to-medium effect size 
(𝜂2 = .08), but no main effect of OLM type (𝐹 (1, 87) = .197, 𝑝  = .659) 
and of step explanations (𝐹 (1, 87) = .938, 𝑝 = .336). As shown in 
Figure 3, post-hoc analyses on average step executions revealed 
that students who received textual step explanations explored sig-
nificantly more steps (𝑀 = 3.35) compared to students who did not 
have access to these explanations (𝑀 = 2.32), but only in concept-
based OLM condition (𝐹 (1, 87) = 6.6, 𝑝 = .012). A similar conclu-
sion was reached from the post-hoc analysis of the exploration 
ratio. Thus, the effect of textual explanations on both average step 
executions and exploration ratio depends on the type of OLM visu-
alization. To summarize, students who had access to textual step 
execution explanations tended to view more steps on average and 
fully explore a higher number of examples. However, such an effect 
only exists when students had access to fine-grained OLM design.

Figure 3: The average number of explored query execution
steps by study conditions (marginal effects) in the ANOVA
model. Purple bars denote 95% confidence interval.

5.4 Time-based Effect of Step Explanations
Following the interaction effect between study conditions on DBQA
usage metrics, it is clear that students were engaged with DBQA
at different levels of intensity, but we do not know if this was the
case during the whole course period. Hence, in this section, we
explore the effect of textual explanations throughout the course. We
computed the average number of execution step views per week
per student for the concept-based OLM condition. As shown in
Figure 4, students in textual explanation condition worked with
DBQA much more at the beginning of the semester (i.e., during the
first two weeks). Then, this gap between conditions disappeared for
the 3rd week of the semester. After the 3rd week, students engaged

with DBQA examples consistently more when represented with
textual explanations. To confirm our visual inspection, we further
conducted an ANOVA on the average step count with week number
and DBQA condition as factors. The ANOVA revealed a significant
main effect of the DBQA condition (𝐹 (1, 13) = 8.963, 𝑝 = .010)
with a large effect size (𝜂2𝑝 = .408) but the week number was not
significant (𝐹 (1, 13) = .478, 𝑝 = .501).

Figure 4: The number of DBQA step-execution views per
student per week for textual and visual DBQA conditions.

6 CONCLUSION
We presented an online learning tool for SQL programming that il-
lustrates the step-by-step execution of SQL SELECT statements. The
tool can also provide textual explanations for the SQL clauses and
conditions. In this study, we evaluated DBQA in a large-scale ran-
domized control experiment as a part of an online non-mandatory
SQL Practice System with multiple open learner model features.

The findings showed that when working with the SQL Practice
System, the success rate in the SQL Assessment Tool (SAT) was
associated with higher post-test scores even after controlling for
the pre-test scores. After observing a positive connection between
the system usage and learning outcomes, we evaluated the impact
of worked examples on problem-solving activities. Exploring more
query execution steps in DBQA was associated with a higher suc-
cess rate, fewer query building attempts, and higher persistence
during problem-solving in SAT. Finally, we explored the effect of
textual explanations and open learner model features on the usage
of DBQA and found out that students who accessed textual explana-
tions viewed more steps on average in DBQA and fully explored a
higher number of examples. However, this effect was only observed
for students who used the concept-based OLM design.

While bringing some interesting and promising results, our study
had limitations. The main limitation originates from our intention
to assess a tool in a realistic context - a semester-long classroom
study. Even if we checked the effect of prior knowledge on our
analyses, we could not control for other factors that might influence
learners’ usage behavior such as learning through other resources.
Finally, given that the majority of the practice system usage was
non-mandatory, our results might be subject to self-selection bias.
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