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Figure 1: Given its high-precision requirement and multimodality of solutions, learning shots for simulated billiards (a.k.a.
computational pool) represents a long-standing challenge that has yet to be solved. A collection of neural network policies
trained with our novel approach can produce multiple highly-skilled billiards shots for a given situation. The image shows
four different shots sampled from our policies, given the same initial configuration.

ABSTRACT
Deep reinforcement learning (DRL) algorithms for movement con-
trol are typically evaluated and benchmarked on sequential deci-
sion tasks where imprecise actions may be corrected with later
actions, thus allowing high returns with noisy actions. In contrast,
we focus on an under-researched class of high-risk, high-precision
motion control problems where actions carry irreversible outcomes,
driving sharp peaks and ridges to plague the state-action reward
landscape. Using computational pool as a representative exam-
ple of such problems, we propose and evaluate State-Conditioned
Shooting (SCOOT), a novel DRL algorithm that builds on advantage-
weighted regression (AWR) with three key modifications: 1) Per-
forming policy optimization only using elite samples, allowing the
policy to better latch on to the rare high-reward action samples; 2)
Utilizing a mixture-of-experts (MoE) policy, to allow switching be-
tween reward landscape modes depending on the state; 3) Adding
a distance regularization term and a learning curriculum to en-
courage exploring diverse strategies before adapting to the most
advantageous samples. We showcase our features’ performance in
learning physically-based billiard shots demonstrating high action
precision and discovering multiple shot strategies for a given ball
configuration.
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1 INTRODUCTION
Deep reinforcement learning (DRL) is today’s dominant paradigm
for controlling physically simulated characters in computer anima-
tion and robotics [Bergamin et al. 2019; Merel et al. 2020; Peng et al.
2021; Won et al. 2020a], superseding previous techniques such as
direct space-time optimization [Witkin and Kass 1988] and trajec-
tory optimization techniques based on gradient information [Tassa
et al. 2012, 2014] or sampling [Al Borno et al. 2012; Hämäläinen
et al. 2014, 2015; Liu et al. 2012]. Although DRL can produce highly
unrealistic movements in common benchmarks such as OpenAI
Gym [Brockman et al. 2016] and DeepMind Control Suite [Tassa
et al. 2018], this can be explained by the simplistic benchmark sim-
ulation models and reward functions. Guiding DRL with suitable
reference movement data can help synthesize natural and control-
lable movements [Bergamin et al. 2019; Merel et al. 2020; Peng et al.
2019b; Won et al. 2020a].

Thus far, the considerable body of work on DRL in continuous ac-
tion spaces studies a fairly limited set of test problems. In particular,
locomotion, balancing, and other common sequential control tasks
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Figure 2: Left: a view of a physically-simulated billiards ta-
ble with 1-dimensional state and action variables. Right: the
state-action reward landscape corresponding to the simpli-
fied billiards environment. Dark regions indicate high reward
at the state-action coordinate. Best viewed in colour.

allow the agent to produce occasional noisy or erroneous actions,
which later actions can correct by compensating for the noise/error.
The same does not apply to many other tasks like shooting an arrow
or hitting a sculpture with a chisel. In such scenarios, the agent
has little to no control over the outcome once the action is exe-
cuted, making the task less error-tolerant and hence less forgiving.
Consequentially, the learned policy must be much more precise.
Motivated by this, we pose and tackle the following question: Can
DRL algorithms solve motion control problems that are unforgiving
towards imprecise actions?

We examine the problem of billiard shot learning as a represen-
tative problem, capturing crucial properties of the class of problems
above, which we dub high-risk and high-precision motion control
problems. Successful shots in billiards require highly precise (low-
entropy) actions, as even one or two degrees of shot angle difference
can make a huge difference in the resulting trajectory. Also, failed
shots cause drastic and irreversible state changes, which an op-
ponent can exploit. Billiards is also a convenient testbed from a
computational and didactic perspective—in its simplest form, it can
be studied with only 1 or 2 state and action dimensions, allowing
highly informative visualizations of the reward landscapes and
algorithm behaviour.

In this paper, we first identify opportunities for algorithmic im-
provement by examining the performance of multiple off-the-shelf
DRL algorithms. We then develop a set of algorithm modifications
that allows for sufficient adaptation to the highly sparse, sharp,
disjointed, and multimodal reward landscapes of billiards, thereby
achieving highly precise control of the cue ball. As a result, we
produce a neural network policy that can compute successful bil-
liard shots in a single forward pass, which is a significant step-up
from existing solutions based on iterative optimization techniques
such as covariance matrix adaptation evolution strategy (CMA-ES,
Hansen et al. 2003).

Our contributions can be summarized as follows:

• We test and visualize several off-the-shelf DRL algorithms (PPO
[Schulman et al. 2017], SAC [Haarnoja et al. 2018], and AWR
[Peng et al. 2019b]) and show that they fail even in the most
simple billiards variants. We analyze the visuals and highlight
opportunities for improvement.

• Novel algorithm: we propose and evaluate a novel DRL approach
named SCOOT (State-Conditioned Shooting) that combines fea-
tures from existing algorithms and modifications motivated by
the characteristics of billiards.
• We demonstrate the capacity of SCOOT to both produce highly
precise shots and suggest multiple alternative strategies for a
given ball configuration.

2 RELATED WORK
Sampling-based Optimization for Control. Sampling-based opti-

mization is a well-suited tool for solving high-risk, high-precision
motion control problems. Combined with physical simulation,
sampling-based optimization has proven successful in performing
physics-based motion control as a form of shooting method. Basic
tools for optimizing action sequences range from the cross-entropy
method (CEM, De Boer et al. 2005) and covariance matrix adapta-
tion evolution strategy (CMA-ES, Hansen et al. 2003) to more recent
methods such as iCEM [Pinneri et al. 2020]. Trajectory optimization
with a long simulation horizon has been shown to induce require-
ments for high-precision [Hämäläinen et al. 2020b], where a high
ratio between simulation and control frequencies warrants that a
controller must construct precise action sequences. Sampling-based
trajectory optimization has successfully performed several trajec-
tory optimization tasks with careful reward engineering [Al Borno
et al. 2012; Naderi et al. 2017]. More recently, CMA-ES was used to
perform physics-based keyframe tracking as a space-time optimiza-
tion solver [Witkin and Kass 1988] in conjunction with compact
action parameterization [Kim et al. 2021]. The main problem hin-
dering the application of sampling-based optimization in practice
is computing cost and time delay in obtaining a solution. Hence,
the focus of computer animation and movement control research
has shifted to learning neural control policies that compute motion
control parameters in a single forward pass, often requiring mere
milliseconds of GPU time. DRL is closely related to sampling-based
optimization: one may view learning a neural policy as solving
multiple variants of a movement optimization problem in parallel,
each variant specified by the policy network’s input [Hämäläinen
et al. 2020a]. Typically, this means that optimized variables such as
the mean and variance of CMA-ES search distribution become func-
tions of the policy network input, parameterized by the network
weights and biases.

Deep Reinforcement Learning. Kwiatkowski et al. [2022] presents
a comprehensive survey of reinforcement learning methods for
character animation. The first steps for benchmarking physics-
based control tasks and environments often involve popular off-the-
shelf algorithms such as Proximal Policy Optimization (PPO, Schul-
man et al. 2017) and Soft Actor-Critic (SAC, Haarnoja et al. 2018).
Modifications for these off-the-shelf algorithms, such as Advantage-
Weighted Regression (AWR, Peng et al. 2019b), have been proposed
over the years, showing potential performance improvements. More
recently, mixture-of-experts (MoE) methods [Peng et al. 2019a; Won
et al. 2020b] have gained traction due to their capabilities to model
diverse motions in the presence of multiple objectives or multi-task
motion data. Our work is closely related to AWR in viewing DRL as
a weighted regression task while employing MoE for performance
improvement. Complementing previous MoE work, we contribute
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Figure 3: Visualization of converged policies on the one-dimensional billiards reward landscape. Orange markers indicate
state-conditioned action means, and coloured circles indicate state-action samples in the replay buffer, with hues indicating
observed returns. Best viewed in colour.

novel visualizations of the reward landscape that help explain why
and when MoE policies can be useful.

Computational Pool. Computational pool is a great testbed for
optimization, noted for the difficulties inherent to planning in con-
tinuous domain [Greenspan 2005; Landry et al. 2011]. Previous
attempts at solving billiards include Monte-Carlo tree search ap-
proaches [Chen and Li 2019; Smith 2007] and variants of sampling-
based trajectory optimization [Archibald et al. 2010; Landry and
Dussault 2007]. Fragkiadaki et al. [2015] successfully applied CMA-
ES in conjunction with a visual predictive model of the pool table
with multiple balls. However, learning to produce viable shots in
real-time has remained an open challenge. Hu et al. [2019] presents
a differentiable billiards simulator, backpropagating through which
can optimize a shot. However, their simplified setup excludes table
borders, and the gradient-based shot optimization can take multi-
ple iterations depending on initialization. To our best knowledge,
El Mekki et al. [2019] is the only publicly available academic work
that solves the problem using a DRL algorithm. However, this work
treats billiards as a sequential decision (i.e. multiple shots are al-
lowed in sequence) rather than a high-risk high-precision problem.

3 NOTATION AND PRELIMINARIES
As usual with DRL, we assume a Markov Decision Process (MDP)
where at timestep 𝑡 , the agent observes a state s𝑡 and takes an action
a𝑡 , which results in a new state s𝑡+1 and scalar reward 𝑟𝑡 = 𝑟 (s𝑡 , a𝑡 ).
A policy network 𝜋𝜃 defines a state-conditioned distribution for
sampling actions as a ∼ 𝜋𝜃 (a|s), where 𝜃 denotes policy parameters.
In our case, s defines the initial ball configuration for a billiards
shot, and a defines the cue ball’s launch velocity.

Other key concepts include the return 𝑅(s, a) = ∑
𝑡 𝛾

𝑡𝑟𝑡 of a
state-action sequence starting at state s = s0 and action a = a0,
where 𝛾 ∈ [0, 1) is a discounting parameter. State value or expected
return for a state is denoted by 𝑉 (s) = Ea [𝑅(s, a)]. The objective
is to maximize the expected return over some state distribution,
in our case the positions of billiards balls sampled randomly. In
this paper, we only focus on learning single optimal shots instead

of shot sequences, setting 𝛾 = 0. This makes the returns equal to
instantaneous rewards, 𝑅(s, a) = 𝑟 (s, a), which can simplify DRL
algorithm implementation.

4 BILLIARDS SIMULATOR
For our experiments, we implement a high-fidelity billiards environ-
ment in Unity with NVIDIA PhysX engine in the style of OpenAI’s
Gym interface. The placement of the cue ball is parameterized into
the state vector, and the agent is to output action parameters which
apply an impulse to the cue ball at the beginning of the simula-
tion. The rest of the trajectory follows from contacts and collisions
accrued as a consequence. For exploring the performances of off-
the-shelf algorithms, we simplify state and action variations to just
1 dimension each. As shown in Figure 2, the output of the action
is the shot angle, where the striking force is held constant. We
make the problem a single decision rather than a sequential one
and simulate for a long horizon (200 timesteps with a single action).
This reflects how in real billiards, new actions are only taken after
the balls have stopped moving after the previous action; thus, each
action can have extensive and irreversible effects on the game state.

Reward Design. The reward function reflects the characteristics
of the whole shot trajectory and use simple bonus and penalty
terms bounded in [0, 1], which simplifies balancing their weights.
Specifically, our reward function is as follows:

𝑟 (s, a) = I (target ball pocketed)

+ 0.01 · exp
(
−min

𝑝,𝑡
| |qtarget𝑡 − q𝑝 | |2

)
+ 0.01 ·

(
1 − exp

(
−min

𝑝,𝑡
| |qcue𝑡 − q𝑝 | |2

))
(1)

where I(·) is the indicator function, qcue𝑡 and qtarget𝑡 are the 𝑥𝑦-
positions of the cue ball and the target ball at the physics timestep
𝑡 of the simulated shot trajectory, and q𝑝 is the 𝑥𝑦-position of the
pocket 𝑝 . In case the cue ball is pocketed, the trajectory registers
as a failure, and the reward is set to 0. The exponential terms are
reward shaping terms that guide the target ball to move close to a
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pocket while penalizing for the cue being too close to any pocket.
The weights of the shaping terms are set to be low in relation to the
binary pocketing reward so that the maximum reward cannot be
obtained without an actually successful shot. Without the shaping
terms, the reward landscape would have large regions with zero
gradient.

Visualizing the Optimization Landscape. In the case of 1-
dimensional states and actions, we can directly visualize the policy
optimization problem using 𝑠, 𝑎 as the axes, 𝑟 (𝑠, 𝑎) as the objective
function. Actions sampled from the policy can also be plotted on
top of the objective function landscape to visualize DRL algorithm
progress and convergence. Examples of this are provided in Figure
2 and Figure 3. One can see that the high-precision action require-
ment manifests as the landscape having narrow peaks and ridges.
A good policy is one that samples actions only at the peaks/ridges,
for any given state.

The fact that one can aim at different pockets and utilize bounces
manifests as multimodality—most states have more than a single
high-reward action. Between states, the high-reward actions change
somewhat smoothly, but there are also discontinuities resulting
from some shots pocketing the cue ball together with the target
ball.

5 PROBLEMS WITH OFF-THE-SHELF DRL
Before introducing our SCOOT algorithm, let us first establish that
the problem of learning billiards shots is indeed hard and not solved
by common off-the-shelf DRL algorithms. We exclude model-based
methods from consideration due to the high sensitivity of state
transitions arising from billiards’ contact- and collision-rich nature.
As such, leveraging learned dynamics models becomes infeasible:
prediction errors for state transitions will necessarily result in im-
precise actions. Here, we examine the performance of three popular
model-free, actor-critic based DRL methods, namely, Proximal Pol-
icy Optimization (PPO, Schulman et al. 2017), Soft Actor-Critic
(SAC, Haarnoja et al. 2018), and Advantage-Weighted Regression
(AWR, Peng et al. 2019b). For PPO and SAC, we utilize the popular
Stable Baselines 3 implementations [Raffin et al. 2019]. For AWR,
we use the official paper codebase. As visualized in Figure 3, even in
the simplest case (1-dimensional state and action), these methods,
without further modification, fail to achieve a viable solution across
the state space:
• PPO ( Figure 3a) locks on to the discontinuities of the reward
landscape, resulting in the learned policy fluctuating between
landscape peaks. There are multiple states where the learned
policy produces unsuccessful shots.
• SAC ( Figure 3b) fails to lower its state-conditioned action en-
tropy adequately, possibly due to the entropy regularization me-
chanic that biases the algorithm more towards exploration than
exploitation, which is not a good fit for high-risk, high-precision
problems.
• AWR without learned action variance (the default, Figure 3c)
is only able to model the rough shape of the peaks present in
the reward landscape. With learned action variance ( Figure 3d),
AWR adapts more appropriately to the peaks, but the final policy
fluctuates between peaks similar to PPO. However, here is less
action noise, possibly because of the ability to use a large buffer

s
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Figure 4: Overview of policy optimization iterations with a
mixture-of-experts policy and elite samples from off-policy
experience replay buffer.

of off-policy experience. Because of the sharpness of the reward
peaks, high-reward actions are sampled only rarely, and using
off-policy data from previous iterations helps AWR to not "forget"
the good actions after each iteration, allowing the algorithm to
model the reward landscape peaks more accurately.
Throughout the rest of the paper, we use AWR with learned

action variance as the baseline and starting point when developing
and evaluating our SCOOT algorithm.

6 STATE-CONDITIONED SHOOTING
Our proposed SCOOT algorithm builds on AWR, with modifications
proposed and evaluated in the following sections. Figures 5 and
6 summarize the results of each proposed modification, showing
both the converged policies and the learning curves, i.e., the learned
policy’s mean return as a function of the number of training shots.

Algorithm overview. The key operating principle of both SCOOT
and AWR is the same: At each iteration, new actions are sampled,
simulated, and added to a FIFO experience buffer, and the policy dis-
tribution is fitted to the actions that yield high returns. This follows
the trend of casting RL as a (self-)supervised learning problem
[Eysenbach et al. 2020; Ghosh et al. 2019; Kumar et al. 2019]. Con-
ceptually, this is also similar to black-box optimization methods
like CMA-ES and CEM, which implement a similar iteration of sam-
pling candidate optimization solutions from a search distribution
and fitting the distribution to the best candidates. However, the
search distribution of CMA-ES and CEM is not conditioned on state,
and they only use the current iteration’s sampled experience in
the distribution updates. In contrast, AWR’s and SCOOT’s policy
networks define state-conditioned search distributions for actions,
and a multi-iteration experience replay buffer (a FIFO queue) avoids
forgetting old actions that yielded high returns, which is a good fit
for our case where sampling good actions is rare. This comes at the
cost of possibly slower convergence, as the policy can get "stuck"
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Table 1: Summary of differences between SCOOT (ours) and commonly-used off-the-shelf model-free DRL algorithms.

Algorithm On/Off Policy Action Distr. Elite Selection? Action Var. Curriculum?
PPO [Schulman et al. 2017] On Gaussian ✗ Learned global ✗

SAC [Haarnoja et al. 2018] Off Gaussian ✗ State-conditioned ✗

AWR [Peng et al. 2019b] Off Gaussian ✗ Fixed (default) or learned global ✗

SCOOT (ours) Off Gaussian Mixture ✓ Learned global ✓

Algorithm 1: State-Conditioned Shooting (SCOOT)
1 D ← Experience replay buffer, initially empty FIFO queue
2 𝜃, 𝜙 ← Parameters of policy (𝜋𝜃 ) and value (𝑉𝜙 ) networks
3 for iteration 𝑘 = 1, · · · , 𝑘max do
4 add experience

{
⟨s, a, 𝑅(s, a)⟩𝑖,· · · ,𝑛

}
sampled via 𝜋𝜃 to D

5 𝜙 ← argmin𝜙 E⟨s,a⟩∼D
[
(𝑅(s, a) −𝑉𝜙 (s))2

]
; // Train 𝑉𝜙 (Eq. 3)

6 D∗ ← SelectElites(D, 𝜙) ; // (Eq. 4)

7 𝜃 ← argmax𝜃 E⟨s,a⟩∼D∗
[

𝐴(s, a) log𝜋𝜃 (a|s)︸                  ︷︷                  ︸
Advantage-weighted regression

+ 𝜆dist · Ldist︸       ︷︷       ︸
Distance regularization

]
; // Train 𝜋𝜃 (Eqs. 2, 5 and 6)

8 end

to old actions that are good but suboptimal; the AWR paper shows
how fitting the policy to old experiences corresponds to optimizing
a bound instead of the true objective.

More specifically, the policy is fitted to the best actions by up-
dating 𝜃 to maximize the weighted log-likelihood:

𝜃 ← argmax
𝜃
E⟨s,a⟩∼D [𝑊 (s, a) log𝜋𝜃 (a|s)] , (2)

where D denotes the experience replay buffer, and the weights
𝑊 (s, a) denote how good a sampled action a is in state s. AWR
uses𝑊 (s, a) = exp( 1

𝛽
· 𝐴(s, a)), where 𝛽 is a hyperparameter, and

𝐴(s, a) is an advantage estimate𝐴(s, a) = 𝑅(s, a) −𝑉 (s). Intuitively,
the advantage is positive if action a yields a higher return than
expected in state s. The exponentiation maps the advantages to
non-negative sample weights. For a practical implementation,𝑉 (s)
is approximated by a value network𝑉𝜙 (s) trained with the observed
returns in a supervised manner, minimizing the L2-loss:

𝜙 ← argmin
𝜙
E⟨s,a⟩∼D

[(
𝑅(s, a) −𝑉𝜙 (s)

)2]
. (3)

The SCOOT algorithm is summarized in Figure 4 and Algorithm1.
This follows the AWR algorithm definition with the following mod-
ifications:
• We add the selection of elite samples (Line 6, Algorithm 6.1)
• Enabled by the above, we also use advantages as weights without
exponentiation,𝑊 (s, a) = 𝐴(s, a) (Line 7, Section 6.1)
• We use a state-conditioned Gaussian mixture instead of a single
Gaussian as the action distribution (Section 6.2)
• We add distance regularization to the policy update (Line 7, Sec-
tion 6.2)

Additionally, we implement a 3-stage training curriculum to prevent
premature convergence (Section 6.3). Table 1 provides a summary
of the difference between SCOOT and other common model-free
DRL algorithms.

6.1 Elite Samples
One key consequence of our reward landscape’s sparsity and sharp-
ness is the overwhelmingly high ratio between low-return and
high-return action samples, especially at initialization. In fitting
the policy, one would like to only focus on the high-return actions,
disregarding the low-return ones. Such fitting to only elite samples,
e.g., top 50%, is also central to black-box optimization algorithms
such as CMA-ES and CEM.

More formally, we select elite samples from the experience replay
buffer, using the value network’s state value estimate 𝑉𝜙 (s):

D∗ =
{
⟨s, a, 𝑅(s, a)⟩ | ⟨s, a, 𝑅(s, a)⟩ ∈ D, 𝑅(s, a) > 𝑉𝜙 (s)

}
(4)

A consequence of the above is that the advantage estimates𝐴(s, a) =
𝑅(s, a) −𝑉𝜙 (s) of the elite samples are always non-negative. Thus,
the AWR-style exponentiation is no longer necessary to convert
advantages to non-negative sample weights.

Impact on Performance. Empirically, using the elite samples and
directly using advantages as weights improves performance over
the baseline AWR, as illustrated in Figures 6 and 5. This also removes
the need for AWR’s temperature hyperparameter 𝛽 .

6.2 Distance-Regularized Mixture-of-Experts
To handle the discontinuities and multimodality of the reward
landscape, we employ a multimodal policy. Specifically, we use a
mixture-of-experts (MoE) policy with 𝐻 Gaussian heads:

𝜋𝜃 (a | s) =
𝐻∑︁
ℎ=1

𝑝ℎ (s)N
(
a; 𝜇ℎ

𝜃
(s), 𝜎2

)
, (5)

where N denotes a Gaussian PDF and 𝑝ℎ (s) ∈ [0, 1] is the state-
conditioned component weight, i.e., the categorical probability
of selecting head ℎ when sampling an action for state s, with∑𝐻
ℎ=1 𝑝ℎ (s) = 1. Each head ℎ corresponds to an individual state-

conditionedGaussian distribution, i.e. a neural network that outputs
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(a) Baseline AWR (b) AWR
+ elite samples

(c) Naïve MoE (d) MoE
+ distance reg.

(e) SCOOT
(elite + MoE dist. reg. +

curriculum)

Figure 5: State-conditioned action means across the reward landscape, for each algorithm version. The colors of the means
indicate learned mixture component weights 𝑝ℎ (s), ranging from 0 (purple) to 1 (orange).

Figure 6: Evaluating algorithm versions in terms ofmean test
return (approximately equal to shot success rate). The curves
show means and standard deviations across 10 random seeds
and 2048 randomly sampled states per seed. Vertical dashed
lines indicate the stages of our training curriculum (Section
6.3).

a state-dependent mean 𝜇ℎ
𝜃
(s). We employ a global scalar variance

𝜎2 (shared across heads and states) which is learned together with
the neural network parameters.

Distance Regularization. As illustrated in Figure 5c, the MoE
policy is not optimal on its own, as the headmeans may all converge
to the same central reward modes, failing to explore the action
space fully. To encourage the policy heads to avoid overlap and
cover diverse parts of the state-action space, we add the following
Mahalanobis distance regularization term to the policy optimization

objective (Algorithm 1 Line 7):

Ldist (𝜃, s) = max ©«0, 1 − 1
𝑑

min
ℎ1≠ℎ2

| |𝜇ℎ1
𝜃
(s) − 𝜇ℎ2

𝜃
(s) | |

𝜎

ª®¬ (6)

where ℎ1 and ℎ2 enumerate the indices of Gaussian heads of the
MoE policy, and 𝑑 (a hyperparameter) is the minimum amount
of overlap to accrue penalty, i.e. the 𝑥-intercept of the decreasing
linear function clipped at 0.

Non-overlapping Initialization. The distance regularization may
be ineffective or unstable if the policy heads are initialized with
high overlap. Therefore, we initialize each policy head such that,
for all states, the action means are distinct and cover the whole
action space. Denoting head ℎ’s action mean as 𝜇ℎ , we adjust the
policy network’s final layer output zℎ as:

𝜇ℎ = 𝛼ℎzℎ + 𝛽ℎ (7)

where𝛼ℎ ∈ R is a scale parameter, and 𝛽ℎ ∈ R |a | is a shift parameter
corresponding to head ℎ. Both 𝛼ℎ and 𝛽ℎ are adapted through the
policy optimization. The shift parameters 𝛽1, · · · , 𝛽𝐻 are initialized
by a |a|-dimensional space-filling Sobol sequence [Sobol’ 1967] of
length 𝐻 , and 𝛼ℎ is initialized to a low value (0.001) so that initially,
𝜇ℎ ≈ 𝛽ℎ independent of zℎ .

Impact on Performance. As illustrated in Figure 6 figure 5d,
adding the distance regularization with the non-overlapping ini-
tialization improves results. The policy heads now cover the whole
action space, and the final policy return is higher, although the
single Gaussian policy (AWR + elite samples) learns faster initially.

6.3 Training Curriculum
With the features above, our initial experiments indicated two
common failure modes:
• Before the experience replay buffer is filled, initial convergence
often is random and leads to unrecoverable errors.
• Most of the MoE component weights may rapidly decay to zero,
leaving much of the state-action space underexplored. This can
cause results like Figure 5d, where the dominant head attempts
to model the highly discontinuous central reward ridge, leading
to poor actions in many states.
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(a) Before learning action variance (b) Before learning component weights (c) After learning component weights

Figure 7: SCOOT’s action samples and means throughout the learning curriculum. The colors of the means indicate learned
mixture component weights 𝑝ℎ (s), ranging from 0 (purple) to 1 (orange).

To prevent such failure modes, we implement curriculum learn-
ing [Bengio et al. 2009] with the following three stages:

(1) In the first stage (Figure 7a), only the action means are learned
while the action variance and the component weights are held
constant. This ensures that the experience replay buffer has
sufficient information for learning before substantial adaptation
occurs, while also primitively adapting towards local optima
that are discoverable early on.

(2) In the second stage (Figure 7b), the action variance is also al-
lowed to reduce from its initially high value, allowing the policy
heads to model the reward optima more accurately.

(3) Finally, in the third stage (Figure 7c), the state-conditioned
component weights are also learned. This effectively “shuts
down” policy heads that are not sufficiently close to any local
optimum, while redirecting the sampling budget to the policy
heads that are near local optima. The component weights are
hence learned to choose the best actions found for each state.

Impact on Performance. As illustrated in Figures 6, 7 and figure
5e, adding the curriculum improves the mean return and allows
the policy to correctly model the continuous ridges at the top and
bottom of the landscape. The policy correctly models most of the
high-reward regions at the end of the second stage (Figure 7b),
although the two central heads start to drift randomly when their
weights decay in the third stage (Figure 7c). The loss of modalities
appearing in Figure 7c, however, does not affect the performance
of the final policy, as it chooses its actions only from the active
components. One may prevent this modality loss by further regu-
larizing the learned component weights by, e.g., blending the 𝑝ℎ
values with uniform probability.

6.4 Implementation Details
We use PyTorch [Paszke et al. 2019] to implement the neural net-
works. The policy network is a multi-layered perceptron (MLP) of
hidden dimensions 128 × 64 with (ReLU) activations. This is identi-
cal to the architecture used in AWR [Peng et al. 2019b]. The final

actions are bounded in [−1, 1] with tanh transformations as im-
plemented in SAC [Haarnoja et al. 2018] (which AWR does not
use). The initial action variance is set to log𝜎 = −1. The value net-
work uses the same architecture minus the tanh transformations.
The state-conditioned categorical weights 𝑝1 (s), · · · , 𝑝ℎ (s) are also
computed by a similar MLP, whose final output is transformed into
a categorical distribution via softmax. We use RAdam [Liu et al.
2019] optimizer to train our networks. The elite sample selection
allows for a relatively aggressive learning rate of 1e-3 for the policy.
For the value network, the learning rate is 1e-5. Given that simulat-
ing each action (a billiards shot with 200 physics timesteps) is slow,
we restrict our iteration budget to 128 samples per iteration. The
experience replay buffer is a FIFO queue with a maximum size of
3200 samples, i.e., we use data from the past 25 iterations for updat-
ing the networks, which is also AWR’s default setting. We train the
networks for a single epoch per iteration with mini-batches of 256
samples. Full-batch updates are used when the number of samples
in the buffer is less than or equal to 256. The distance penalty weight
𝜆dist is set to 0.1 with the overlap limit 𝑑 = 1.0 to prevent action
means from approaching within one standard deviation from each
other.

As each billiards shot is simulated for 200 physics timesteps,
large-scale experiments and evaluations can be excessively slow.
Therefore, in the case of 1-dimensional actions and states, training
and evaluation are accelerated by using a pre-computed state-action
reward look-up table with ~8.7 million samples. The table is also
used to generate the reward landscape figures and the learning
curves of Figure 6, while the billiards figures and videos in Section
7 use the real simulator.

Stochastic actions are sampled from the mixture during training
tomaximize action precision andminimize noise without sacrificing
exploration. As multiple Gaussian heads may have similar learned
component weights corresponding to multiple reward peaks, the
policy generates each action for evaluation as the mean of the
Gaussian head sampled according to the 𝑝ℎ (s) values.
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7 RESULTS
Please refer to the supplementary video section for animated
results. Above, we have already validated the benefits of the pro-
posed SCOOT features, as summarized in Figures 5 and 6. In this
section, we showcase the resulting policy’s capability in producing
high-precision billiards shots and a promising direction in produc-
ing diverse shots leveraging the MoE. We also provide an initial
outlook toward higher-dimensional generalization of SCOOT.

Learning High-Precision Shots. Figure 8a showcases the capabil-
ity of a policy learned using SCOOT: we successfully discover a
control policy for 1-dimensional billiards shots, switching between
strategies as necessary. Given the limited capacity of the neural net-
work policy, we observe a keen bias towards continuous and more
rigid reward peaks. For example, Figure 7c shows that the central
reward peaks, initially modeled during the intermediate stages in
the curriculum, are no longer used after component weights are
learned. This corroborates our intuition that the agent’s actions de-
fault to risk-averse solution modes in the presence of high-precision
requirements. With sufficient rigidity and continuity, the agent can
exploit known solutions from other states to a large extent and thus
produce a high-return action for the current state. This also high-
lights the importance of sufficient exploration; we discover such
solution modes via SCOOT’s MoE policy, distance regularization,
and curriculum learning features. Policies trained without these
features tend to fail to discover these rigid and continuous reward
peaks consistently (Figure 5). The discovery of such reward peaks
explains the proposed features’ superiority in sample efficiency,
observed test returns, and sensitivity to initialization (Figure 6).

Discovering Diverse Shots. In our test problem, SCOOT can dis-
cover various local reward peaks across the landscape and converge
the action means towards them. For example, Figure 7b shows that
the 4-headed policy closely follows the shape of the 4 major reward
peaks of the billiards environment. Continuing to train the policy
from this state without optimizing component weights, we observe
that the policy converges towards these local peaks. Visualizing
the converged action means of the policy, we observe that this
corresponds to producing diverse shots, with each shot capturing a
unique strategy while scoring a high return. Figure 8b showcases
the capabilities of such a policy, which outputs a variety of shots
for each input state.

In our specific problem setup, there are 4 distinct strategies in
almost every state, which can be modeled with a MoE policy with 4
heads. In the general case, future work may explore techniques for
learning the number of viable strategies, e.g., by using a per-head
value network that could be queried during inference to predict the
return for the strategy corresponding to each head.

Scaling Up. To assess the generalization of our method, we use
SCOOT on a slightly higher-dimensional problem, where the cue
ball’s position varies in both 𝑥- and 𝑦-directions. The action is
parameterized as a = (𝑓𝑥 , 𝑓𝑦) (a 2-dimensional force vector). In-
creasing dimensionality makes it exponentially more difficult to
fill out the state-action space, making the lookup table acceleration
(Section6.4) infeasible due to the amount of memory required. To
this end, we instead implement a GPU-accelerated billiards simula-
tor using Brax [Freeman et al. 2021]. Simpler geometries are used

instead of a true mesh model of the pool table to reduce simulation
overhead. For training the agent for this environment, we set the
number of Gaussian heads 𝐻 = 8 to encourage the discovery of
more local peaks in the higher-dimensional state-action space.

Without further modifications, training for 72 hours on an
NVIDIA A100 Tensor Core GPU, SCOOT discovers a policy that
can perform reasonably well (Figure 9a, success rate around 75%),
although occasionally failing due to imprecise actions (Figure 9b).

It is evident that SCOOT iterations discover local reward peaks
and that the policy adapts to them, albeit not completely. For ex-
ample, most failure cases in Figure 9b are due to excessively strong
force or a slight misalignment in shot angles. Additional training
with the RAdam optimizer seems to increase performance gradu-
ally, but we observe that adaptation slows down to an infeasible
amount. This challenge may necessitate further modifications on
top of the ones proposed in this work, e.g., learning rate adaptation
or a PPO-style KL-divergence limit.

It is easy to increase the dimensionality of the problem further
by introducing multiple target balls and allowing their positions to
vary. So far, we have not yet achieved a solidly performing policy
in such problem variants. More experiments are needed, and we
conjecture that a compounded effect of the curse of dimensional-
ity, limited policy capacity, and the even more irregular reward
landscape due to additional collision possibilities may be at play. A
competent generalization to such high-dimensional variations of
billiards will remain an open challenge for researchers investigating
high-risk, high-precision motion control. However, we believe our
work can provide some useful building blocks.

8 CONCLUSION
We have proposed SCOOT, a novel DRL algorithm for learning to
perform high-precision and high-risk movement control tasks. As
SCOOT inherits the simplicity of AWR with only minor modifica-
tions, we hope our work will find use in various applications that
require highly precise movement control. Additionally, we have
demonstrated the capability of SCOOT to learn multiple alternative
action strategies. Inspired by this, we are currently working towards
applying and extending SCOOT to physically based character an-
imation tasks combining high skill with creative and surprising
movements.

We have evaluated SCOOT in the highly challenging problem
of learning billiard shots, albeit limited to relatively simple prob-
lem variants. However, even these variants turn out to be difficult
for commonly used DRL algorithms, demonstrating the merits of
SCOOT in unlocking potential avenues for investigating the under-
explored class of high-risk and high-precision motion control prob-
lems.
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(a) Visualization of high-precision shots. (b) Discovery of diverse solution modes.

Figure 8: Successful actions with (a) precision and (b) diversity are discovered across various states. The white lines show the
cue ball’s trajectory, and the red lines the target ball’s.

(a) Successful shots. (b) Failed shots.

Figure 9: (a) Successful and (b) failed shots by SCOOT in billiards with 2-dimensional state and action parameterization.
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