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ABSTRACT

Fibrous materials such as paper, nonwovens, textiles, nanocellulose based-biomaterials, polymer 

networks and composites are widely used versatile engineering materials. Deformations at the fiber 

network scale have direct role in their effective mechanical behavior. However, computational 

description of the deformations is a challenge due to their stochastic characteristics. In 

consideration to this issue, the current study presents a computational homogenization framework 

at the fiber network scale to investigate how the fiber properties affect the mechanical properties 

at material scale. Methodology is based on (I) geometrical, spatial and mechanical modelling of 

fibers and fiber-to-fiber interactions, (II) formation of fiber network solution domain, boundary 

nodes on the solution domain and control nodes of the domain bounding the solution domain. The 

boundary value problem is then defined at the fiber network scale and solved with the proposed 

framework using the Euclidean bipartite matching coupling the boundary nodes and the control 

nodes represented in the form of corner, edge and surface nodes. The computed results show that 

the framework is good at capturing the fibrous material characteristics at different scales and 

applicable to the solution domains generated with stochastic modelling or image-reconstruction 

methods resulting in non-conformal meshes with non-matching boundary node distributions.

Keywords: fibrous materials, nonwoven, nanocellulose, polymer network, computational 

homogenization, Euclidean bipartite matching.
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1. INTRODUCTION

Fibrous materials are versatile engineering materials that are used in a wide range of consumer and 

industrial products. These materials have notable properties for their mass production capabilities, 

lightweight, porous structure, high specific area and thermal properties. As illustrated in Figure 1, 

nonwoven fabrics, fiber mats and filters, sintered metallic fibers used as biomedical fabrics, 

hygiene products, apparel, filtration and insulation materials; felted or layered wood fibers used in 

paper and packaging products; and nanocellulose fibers used in regenerative medicine are 

prevalent examples of fibrous materials [1-5]. Mechanical characteristics of these materials are 

principally dependent on the mechanical, morphological and spatial parameters of the constituent 

fibers and their interactions—i.e. inter-fiber bonds [6, 7]. In order to investigate these parameters 

and provide the effective mechanical properties (of the material in focus) for deformation and 

manufacturing process simulations, bridging three different scales, which are fiber, fiber network 

and material scales, plays a crucial role [8-10]. It is noteworthy that the fiber network scale, in 

which the natural or artificial fibers are randomly or directionally aligned and bonded together 

through a chemical, mechanical and/or thermal process, form the main structural and physical 

foundations between the fiber and material scales. 

In the literature, various fiber network models in two- and three-dimensional space have been 

provided [11-14]. Due to lower computational costs, two-dimensional models in the transverse 

plane, for which the networks are generated by the sequential random deposition of fibers 

connected together at their intersections, have been used to determine the in-plane mechanical 

behavior of specimens with thickness of order of one tenth or less of average fiber length [6, 15-

17]. By means of these models, it is possible to directly compute the in-plane mechanical properties 

for the entire solution domain, which is computationally expensive; or to solve the boundary value 

problem (BVP) on the representative volume element (RVE), which is usually in the form of 

repetitive structural units representing the subscales of the material, resulting in the effective 

mechanical properties [18-20]. 

With increasing computational power, three-dimensional models, for which the fibers are 

deposited and bend on top of each other, have been of interest to determine the three-dimensional 
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characteristics [3, 7, 21, 22]. In addition to mimicking the in-situ fiber network structures, the 

three-dimensional models also provide better insight into fiber and fiber network scale properties. 

Similar to the computational homogenization techniques in two-dimensional models, RVE is often 

modelled as a repeating unit, on the boundaries of which the periodic boundary conditions are 

defined [23, 24]. For repeating units, mesh conformality of the RVE boundary domain is 

essential—i.e. the boundary nodes on the opposing surfaces, edges and vertices should match. 

Besides, the choice and application of boundary conditions in heterogeneous materials, especially 

in case of fibrous materials, affect the results [25]. 

Therefore, in order to investigate the RVE response and solve the BVP for inherently non-

conformal mesh—e.g. in case of reconstructed structural fiber network domain from image 

scanning tools or virtually generated domain based on statistical distributions— the present study 

proposes a three-dimensional fiber network modelling approach in the framework of 

computational homogenization. The main objective is to analyze how the fiber orientation 

distribution and fiber volume fraction affect the effective mechanical properties of fibrous 

materials. The boundary value problem (BVP) is thus defined at the fiber network scale, where the 

fiber network is taken to be the representative volume element (RVE) for the fibrous material. As 

a contribution to the previous computational efforts for such material systems, the boundary nodes 

of the RVE are linked to the control nodes of the domain bounding the RVE and BVP is solved on 

this domain instead of the RVE boundary domain, which is schematized in Figure 2 (and illustrated 

as Supplementary Materials). Here, the linking is achieved with the Euclidean bipartite matching 

technique aiming at minimizing the total distance between the control and boundary node sets. The 

boundary nodes are then kinematically coupled with the control nodes. Thereafter, periodic 

boundary conditions are enforced on the control nodes, rigid body rotations are eliminated and the 

BVP is solved in the computational homogenization framework based on the first order strain 

driven homogenization [26, 27]. The proposed solution technique is capable of bridging the scale-

based features of both statistically defined and image-reconstructed domains—e.g. through laser 

scanning confocal microscopy, micro-computed tomography (μCT), scanning electron 

microscopy (SEM), magnetic resonance imaging (MRI) to name a few—for which non-conformal 

mesh exists and the same nodal distribution on the opposing boundaries does not hold [28, 29]. In 

addition to the proposed solution technique, a geometry transfer algorithm written as Python script 
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is also provided, which is used to transfer the fiber geometry data directly from the technical 

computing software such as Mathematica, Matlab to the finite element analysis software—e.g. 

Abaqus. Therefore, it is possible to create and manipulate the mesh features and define finite 

element type and order by the pre-processing functionalities of the analysis software. This 

eliminates the difficult-to-handle data transferring through orphan mesh, with which fibers lack 

original geometry data created in the technical computing software.

2. METHODOLOGY

The present model follows three steps: (I) fiber formation by means of its geometrical, mechanical 

and spatial characteristics, (II) search for fiber intersections and fiber interaction assignments—

i.e. bonding properties—, (III) formation and computational homogenization of the fiber network 

in order to bridge the fiber and material scale properties.

2.1. Fiber network generation 

The geometrical model is designed for fibrous materials, the functionalities of which include the 

geometrical descriptions and labeling of individual fibers, their planar projections, fiber trimming 

and intersection search and labeling processes. A brief description of the model is given below (for 

more detailed information please see the authors’ previous article [1]).

In XYZ-Cartesian coordinate system, each individual fiber is described in terms of its spatial 

properties—i.e. centroid C(Xi, Yi, Zi) and i ∈ ℤ+, Azimuthal (in-plane) orientation θ and polar fiber 

orientation φ, and geometry—i.e. length l and cross-sectional properties including width w, height 

h, and wall thickness t. In addition to this, specimen is described as a rectangular prism with length 

L, width W and thickness T, which is composed of layers with thickness Tlayer as seen in Figure 3.

In order to define the spatial distribution of fibers, fiber centroids are first uniformly distributed. 

For avoiding the use of same fiber centroids and randomness in centroid picking, Monte Carlo 

simulation are carried out in an iterative manner. Thereafter, as depicted in the flowchart of Figure 

4, the fiber deposition process is carried out as a function of the abovementioned spatial and 
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geometric parameters for each layer till the predetermined fiber volume fraction , 
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satisfied.

During each deposition, intersection search process—i.e. contact detection—, is also implemented 

to find the adjacent fibers with the nearest neighboring algorithm provided previously by the 

authors [1]. The intersection process is essential in reforming the fibers, determination of the fibers 

in contact and solving the contact problem as shown in Figure 5.

2.2. Computational homogenization framework

The generated geometrical model is meshed with C3D8R 8-node hexahedral solid element with 

reduced integration by means of the built-in meshing capability of commercial finite element 

solver Abaqus [30]. For this purpose, Python scripting interface for Abaqus is implemented. First, 

all the fibers are created as part objects and then assigned as assembly instances using the 

translation and rotation functions, for which a sample script can be found in the Appendix. Here, 

the fibers are taken to be linear elastic with orthotropic material behavior while fiber intersections 

are assumed to be perfectly bonded, the intersection regions of which are illustrated in Figure 5. 

Abaqus/Explicit, which uses explicit time integration method calculating the nodal accelerations 

at every time step, is thereafter used to solve the problem.

As schematically illustrated in Figure 2, in order to solve the BVP at the representative volume 

element RVE scale, the boundary nodes p on the RVE boundaries  are first determined. Here, 

it is noteworthy that boundary nodes p are traced and stored during the network formation process, 

or can be also extracted—e.g. with Tetgen libraries—in case of using orphan mesh [31]. The 

boundary nodes p are thereafter matched with the control nodes q, which are discretized and 

represented in the form of corner, edge, and surface nodes on the boundaries of the domain  

bounding RVE. The matching is achieved through the Euclidean bipartite matching, for which 

 distance matrix n n
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is generated based on the Euclidean distance d of each (p, q) combination with n being the set 

length of p (or q). Then, the optimal permutation of matched nodes is discerned based on their total 

Euclidean distance T through the minimization problem [32, 33]

 (2) min ,T p q


 d

where  is the permutations that abide a one-to-one correspondence as depicted in Figure 2(b) 

(Link and couple). The problem expressed in Eq. (2) is solved with Kuhn–Munkres algorithm, 

details of which can be found in [34, 35]. As shown in Figure 2(a) (Match), after minimization and 

one-to-one matching, boundary nodes p are constrained to follow the degrees of freedom of the 

control nodes q (i.e. ), which allows to define the RVE boundary conditions over  as a p qu u
r r 

conformal boundary domain. Periodic boundary conditions are thereafter applied on , rigid 

body rotations are eliminated, and the BVP is solved.

In consideration to the convergence towards effective material properties, periodic boundary 

conditions are imposed over  in the first-order strain driven homogenization. As depicted in 

Figure 6, the macro-strain  is known a priori where the associated macro-stress  is computed Me Ms

through volume averaging of the stress field at the RVE scale [36]. 

Here, the macro-strain  for  is the given parameter and is used as the driving M
ije  , , ,i j X Y Z

parameter of the microscopic displacement field for the RVE so that

(3)m M .u r u  er r r

The first addend of Eq. (3) on the right-hand side represents the macroscopic displacement 

contribution, and the second represents the displacement fluctuation field  due to heterogeneities ur

within the RVE [26]. Here,  represents the position vector between two nodes and the overall rr

body is assumed to be composed of repeating rectangular prism bounding the RVEs. Continuity 
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conditions for the displacement field are satisfied at each adjacent boundary by taking the relative 

positions of the control node sets q, which eliminates .ur

In computational homogenization studies, the use of RVEs with periodic boundary conditions is a 

common practice, for which the corresponding corner, edge and surface nodes are matched as 

depicted in Figure 7, and suffices to represent the effective material deformation [27]. Following 

this common practice, periodic boundary conditions are applied onto the control nodes q of the 

domain  bounding the RVE. Here, it is important that the so-called “periodic offset” caused by 

the distance between matched nodes is inevitable.

In computational homogenization, Hill-Mandel principle gives the relationship between the micro- 

and material scales such that

, (4)M M m m1: : d





 s e s e

for which superscripts m and M stand for micro- and material scales. The symbol (:) denotes the 

inner product  for second-order tensors. By using the Gauss theorem, Eq. (4) can be : ij ija ba b

rewritten over the  as

, (5)M M m m1: dt u



 

  s e
r r

where  is the micro-scale traction vector at . By plugging the boundary periodicity into Eq. mt
 

(5),

(6) M M m M m1 1: d d ,t r t u
 

 
  

       s e e
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which can be rearranged into

. (7) M M m M m1 1: d : dt r t u
 

 
  

      s e e
r rr r

Here, the symbol  denotes the dyadic operator. The second integrand at the right-hand side 

vanishes in case of periodic boundary conditions. Hence, macro-scale stress  can be expressed Ms

as the volume average of the micro-scale stress  such thatms
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(8) M m m1 1d d ,t r
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where  is the volume of the rectangular prism bounding the RVE. Then, the given strains   Me

and the computed stresses  at the material scale can be combined. Eventually, by means of the Ms

least-squares minimization of six distinct deformation modes in three-dimensional space (three 

axial tension  and three shear  loading modes), the compliance is M M M, ,XX YY ZZe e e M M M, ,XY YZ ZXe e e MC

obtained as

(9)
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where i refers to the number of experiments [37, 38]. Under the assumption of material orthotropy, 

 for three-dimensional case is expressed asMC
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for which  are the elastic moduli,  are the shear moduli and , ,X Y ZE E E , ,YZ ZX XYG G G

 are the Poisson’s ratios defined in the global (specimen) XYZ-Cartesian , , , , ,XY YX XZ ZX YZ ZYv v v v v v

coordinate system (please, see Figure 3(b)). Here, it is also noteworthy that  is computed under MC

the assumption of small strains, for which the fiber bending is dominant mode resulting in non-

affine deformations [13].
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3. RESULTS AND DISCUSSIONS

3.1. Design of experiments and representative volume element (RVE) size

As previously described, fibers in the present investigations were selected to be linear elastic with 

orthotropic material properties. Due to complexities in three-dimensional characterization of single 

fiber measurements, the literature values for wood fibers were adapted as Ex=15000 MPa, 

Ey=Ez=5000 MPa, Gxy=Gxz=3000 MPa, Gyz=1080 MPa, vxy=vxz=0.066, vyz=0.39, for which the 

subscripts x, y and z refer to the axes of the local (fiber) xyz-Cartesian coordinate system (please, 

see Figure 3(a)) [39-42]. Fibers were assumed to be fully bonded and deformed under maximum 

macro-strain value of  to understand the effects of the Azimuthal orientation  Mmax 0.025ije 

variation Δθ and the volume fraction of fibers Vf. For these investigations, the constant fiber 

parameters were fiber length l=1.5 mm, width w=0.025 mm, height h=0.010 mm, wall thickness 

t=0.004 mm, specimen layer thickness was Tlayer=0.020 mm, and polar orientation was taken to be 

φ=0° because of the formation characteristics following the values from the literature [43].

As listed in Table 1, three different RVE sets (Sets 1-3), which are L×W×T = 2×2×0.006 mm3, 

L×W×T = 3×3×0.006 mm3 and L×W×T = 4×4×0.006 mm3 with ∆θ=±90° and Vf ≈0.20, were 

initially studied to determine the computationally effective RVE size to be used for the parametric 

investigations. Thereafter, in order to study the effects of Δθ and Vf on the number of fiber 

crossings per fiber and the effective elastic properties of the fibrous material, simulation 

experiments were carried out for each set (Sets 4-6 for Δθ and Sets 7-10 for Vf as tabulated in Table 

1). Due to individual fiber properties being assigned various values in the literature, the computed 

effective elastic properties were normalized with respect to Ex for the comparative analyses. So as 

to create two parameter statistical description (μ - mean value, σ - standard deviation), all the 

simulation sets were repeated three times. Due to large number of degrees of freedom in each 

simulation, parallel computations were carried out on CSC - IT Center for Science Taito (Finland) 

supercluster, through which Xeon E5-2680 v3 CPUs with 12 cores each running at 2.5GHz and 

64 GB RAM memory were allocated. 
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The normalized effective elastic properties listed in Table 2 indicate that the RVE solution domain 

size for the selected ranges has negligible effects. Taken this outcome and computational 

efficiency into account, the solution domain size was set to L×W×T = 2×2×0.006 mm3 for the 

simulations regarding the effects of ∆θ and Vf. 

3.2. Fiber orientation distribution and volume fraction

The fiber orientation distribution and volume fraction are principally inherited from the fiber 

deposition during the manufacturing process. For instance, the fiber alignment distribution in the 

machine and cross directions in case of paper formation is a scrutinized phenomenon, which 

provides the material orthotropic characteristics [44]. In consideration to this effect, three different 

Azimuthal orientation variation configurations Δθ = {±15°, ±45°, ±90°} were investigated, for 

which the Azimuthal orientation was taken to be θ=0°. Some of these configurations are depicted 

in Figure 8 for a better visual understanding.

Here, it is also noteworthy that continuous probability distribution P, which is expressed in terms 

of log-normal distribution due to positive and non-symmetric simulation results, was applied to 

investigate the effects of fiber parameters on the number of crossings per fiber ncpf as follows

. (11)

  
  

 

2

d cpf
2

d
cpf

cpf d

ln( )
exp

2
( , )

2

n

P n
n 














  
 
 
 

Here, π is the Pi number, exp refers to the exponential function, ln is the natural logarithm while 

 and  are the mean and standard deviation of the continuous probability distribution, which d d

are first order (linear) polynomial functions of the tested parameter—e.g. , Vf in the present 

study— and represented with variable ζ taking the form  and . Hence, it was possible d ( )  d ( ) 

to fit the simulation results by means of Eq. (11) and estimate the distribution for the investigated 

parameters. 

As seen in Figure 8 and Table 3, the probability distribution functions  indicate that cpf( , )P n 

the increase in Δθ results in more randomly oriented fibers. As a result of this, fibers build up more 
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crossings per fiber, thus increasing ncpf. Besides, increase in Δθ leads to a more even cpf( , )P n 

with lower peak percentages. Due to this increase, random directional properties are more 

emphasized, which results in a trend between the transverse (in-plane) isotropy and Δθ—e.g, 

highly directional material properties with μ(EX/Ex)= 0.281 and μ(EY/Ex)= 0.065 for Δθ= ±15 and 

isotropic properties with μ(EX/Ex)= 0.256 and μ(EY/Ex)= 0.256 for Δθ= ±90. In addition to this 

trend, there is an increase in GYZ and vXZ with Δθ while GXZ and vYZ decrease with Δθ. However, 

there is a remittent relationship between GXY, vXY and Δθ. The reason for these fluctuations is 

mainly due to the combined effects of Δθ and Vf variations. In addition, the effect of Δθ on EZ 

seems to be negligible showing the minimal contribution of Δθ on the out of plane deformation 

characteristics.

Following the Δθ investigations, fiber volume fraction Vf effects were analyzed for different 

configurations Vf ≈{0.18, 0.25, 0.27, 0.30} where Δθ was taken as ±90° for all the cases as 

represented in Table 1. The normalized results listed in Table 4 show that Vf has incontrovertible 

influence on the effective in-plane elastic moduli EX, EY and all three shear moduli GXY, GXZ, GYZ. 

This is also evident through the increase in ncpf shown in Figure 9. It is also noteworthy that the 

variations in  are reduced with Vf. This shows the fibers are more entangled and forming cpf( , )fP n V

more bonding—e.g. max(ncpf)=90 for Vf ≈0.18 while max(ncpf)=124 for Vf ≈0.30 — with uniform 

distribution, which contributes to the stiffness in the material scale. However, similar to the Δθ 

investigations, there is no clear influence of Vf on EZ. This may imply that the axial tensile loading 

along Z-axis is insensitive to the increase in Vf —i.e., the densification of the fiber network.

 

4. CONCLUSIONS

In the present study, a computational homogenization framework at the fiber network scale was 

provided to investigate the influence of fiber scale parameters on the effective mechanical 

properties at the material scale. The methodology was initiated with geometrical and mechanical 

formation of individual fibers and fiber-to-fiber interactions, which formed the fiber network 

solution domain. Thereafter, the domains were used as RVEs and BVPs were solved over the RVE 

boundaries by means of the detailed framework. For the BVPs, three axial tension  M M M, ,XX YY ZZe e e
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and three shear  loading modes were used to obtain the compliance . The case M M M, ,XY YZ ZXe e e MC

studies indicated the influence of Azimuthal (in-plane) orientation distributions Δθ on the material 

isotropy while the increase in fiber volume fraction Vf contributes to the material stiffness. It was 

observed that both investigated parameters have close relationship with the number of crossing per 

fiber ncpf. 

The present framework is believed to advance the analyses of fiber scale geometrical, spatial and 

mechanical parameters on the effective mechanical characteristics at the material scale. Especially, 

it establishes a multiscale modelling platform for fibrous materials, the solution domains of which 

can be generated with stochastic modelling tools or image-reconstruction methods resulting in 

non-conformal meshes with non-matching nodal distributions on the RVE boundaries. 

Nevertheless, a computational homogenization framework investigating several length scales will 

be a complement to the introduced methodology. Further studies including cyclic and compressive 

loading modes, constitutive material models with hardening and rate-dependency, and fiber-to-

fiber interaction with cohesive bonding models can be then evaluated for a complete package for 

process simulations and structural analyses.

ACKNOWLEDGMENTS

The authors wish to acknowledge CSC – IT Center for Science, Finland, for the computational 

resources.



13

REFERENCES

[1] Karakoc A, Hiltunen E, Paltakari J. Geometrical and spatial effects on fiber network 

connectivity. Composite Structures 2017; 168: 335-344. 

[2] Kulachenko A, Uesaka T. Direct simulations of fiber network deformation and failure. Mech 

Mater 2012; 51(0): 1-14.

[3] Iorga L, Pan Y, Pelegri A. Numerical characterization of material elastic properties for random 

fiber composites. J Mech Mater Struct 2008; 3(7): 1279-1298.

[4] Karakoç A. A fiber network model to understand the effects of fiber length and height on the 

deformation of fibrous materials. Research on Engineering Structures and Materials 2016; 2(2): 

51-57.

[5] Greca L, Lehtonen J, Tardy B, Rafiee M, Karakoç A, Mattos B, Rojas O. 3D bacterial cellulose 

biofabrication using superhydrophobized molds: Fundamentals and opportunities. Abstracts of 

papers of the American Chemical Society, 257.

[6] Sampson W. Modelling stochastic fibrous materials with Mathematica, London: Springer-

Verlag, 2009. 

[7] Lavrykov S, Lindström SB, Singh KM, Ramarao BV. 3D network simulations of paper 

structure. Nordic Pulp Paper Research Journal 2012; 27(2): 256-263. 

[8] Targhagh M. Simulation of the mechanical behaviour of low-density paper and an individual 

inter-fibre bond. MSc. Thesis, Vancouver: University of British Columbia, 2016. 

[9] Alava M, Niskanen K. The physics of paper. Reports on progress in physics 2006; 69: 669-

723.

[10] Curto JMR, Conceição ELT, Portugal ATG, Simões RMS. Three-dimensional modelling of 

fibrous materials and experimental validation. Materialwissenschaft und Werkstofftechnik 2011; 

42(5): 370-374.

[11] Provatas N, Haataja M, Asikainen J, Majaniemi S, Alava MJ, Nissila AT. Fiber deposition 

models in two and three spatial dimensions. Colloids and Surfaces A 2000; 165: 209-229.

[12] Bosco E, Peerlings R, Geers M. Asymptotic homogenization of hygro-thermo-mechanical 

properties of fibrous networks. International Journal of Solids and Structures 2017; 115–116: 180-

189.



14

[13] Berkache K, Deogekar S, Goda I, Picu RC, Ganghoffer J-F. Identification of equivalent 

couple-stress continuum models for planar random fibrous media. Continuum Mechanics and 

Thermodynamics 2019; 31: 1035.

[14] Rahali Y, Assidi M, Goda I, Zghal A, Ganghoffer J-F. Computation of the effective 

mechanical properties including nonclassical moduli of 2.5 D and 3D interlocks by 

micromechanical approaches. Composites Part B: Engineering 2016; 98: 194-212.

[15] Kahkonen S. Elasticity and stiffness evolution in random fibre networks, Licentiate Thesis, 

Jyvaskyla: University of Jyvaskyla, 2003.

[16] Berkache K, Deogekar S, Goda, Picu RC, Ganghoffer J-F. Construction of second gradient 

continuum models for random fibrous networks and analysis of size effects. Composite Structures 

2017; 181: 347-357.

[17] Berkache K, Deogekar S, Goda, Picu RC, Ganghoffer J-F. Homogenized elastic response of 

random fiber networks based on strain gradient continuum models. Mathematics and Mechanics 

of Solids 2019; 24: 3880-3896.

[18] Farukh F, Demirci E, Ali H, Acar M, Pourdeyhimi B, Silberschmidt V. Nonwovens 

modelling: a review of finite-element strategies. The Journal of The Textile Institute 2015; 4: 1-8.

[19] Bronkhorst CA. Modelling paper as a two-dimensional elastic-plastic stochastic network. 

International Journal of Solids and Structures 2003; 40: 5441-5454.

[20] Chen N, Silberstein M. A micromechanics-based damage model for non-woven fiber 

networks. International Journal of Solids and Structures 2019; 160: 18-31.

[21] Pan Y. Stiffness and progressive damage analysis on random chopped fiber composite using 

FEM. PhD Thesis, New Brunswick, New Jersey: Rutgers, The State University of New Jersey, 

2010.

[22] Jin BC. 3-D numerical simulation and analysis of complex fiber geometry RaFC materials 

with high volume fraction and high aspect ratio based on Abaqus Python. PhD Thesis, New 

Brunswick, New Jersey: Rutgers, The State University of New Jersey, 2011. 

[23] Persson J, Isaksson P. A mechanical particle model for analyzing rapid deformations and 

fracture in 3D fiber materials with ability to handle length effects. International Journal of Solids 

and Structures 2014; 51: 2244-2251.

[24] Li Y, Stapleton S, Reese S, Simon J. Anisotropic elastic-plastic deformation of paper: Out-

of-plane model. International Journal of Solids and Structures 2018; 130: 172-182. 



15

[25] Inglis H, Geubelle P, Matouš K. Boundary condition effects on multiscale analysis of damage 

localization. Philosophical Magazine 2008; 88(16): 2373-2397. 

[26] Geers M, Kouznetsova V, Brekelmans W. Multi-scale computational homogenization: Trends 

and challenges. Journal of Computational and Applied Mathematics 2010; 234(7): 2175-2182. 

[27] Karakoç A. Sensitivity analysis on the effective stiffness properties of 3-D orthotropic 

honeycomb cores. International Journal for Computational Methods in Engineering Science and 

Mechanics 2018; 19(1): 22-30. 

[28] Nguyen V, Béchet E, Geuzaine C, Noels L. Imposing periodic boundary condition on 

arbitrary meshes by polynomial interpolation. Computational Materials Science 2012; 55: 390-

406.

[29] Nguyen V, Noels L. Computational homogenization of cellular materials. International 

Journal of Solids and Structures 2014; 51(11-12): 2183-2203. 

[30] Hibbitt, Karlsson and Sorensen, ABAQUS: Theory Manual, Providence, R.I.: Hibbitt, 

Karlsson & Sorensen, 1992. 

[31] Si H. TetGen, A Delaunay-based quality tetrahedral mesh generator. ACM Trans. on 

Mathematical Software 2015; 41(2): 36 pages. 

[32] Karakoc A, Taciroglu E. Optimal automated path planning for infinitesimal and real-sized 

particle assemblies. AIMS Materials Science 2017; 4(4): 847-855.

[33] Karakoc A, Keles O. A predictive failure framework for brittle porous materials via machine 

learning and geometric matching methods. Journal of Materials Science 2019, 

doi:10.1007/s10853-019-04339-1.   

[34] Rendl F. On the Euclidean assignment problem. Journal of Computational and Applied 

Mathematics 1988; 23(3): 257-265.

[35] Hung M, Rom W. Solving the Assignment Problem by Relaxation. Operations Research 

1980; 28(4): 969-982.

[36] Hernández J, Oliver J, Huespe A, Caicedo M, Cante JC. High-performance model reduction 

techniques in computational multiscale homogenization. Computer Methods in Applied 

Mechanics and Engineering 2014; 276: 149-189. 

[37] Karakoç A, Tukiainen P, Freund J, Hughes M. Experiments on the effective compliance in 

the radial–tangential plane of Norway spruce. Composite Structures 2013; 102: 287-293. 



16

[38] Sjolund J, Karakoç A, Freund J. Accuracy of regular wood cell structure model. Mechanics 

of Materials 2014; 76: 35-44.

[39] Neagu R, Gamstedt E, Lindström M. Influence of wood-fibre hygroexpansion on the 

dimensional instability of fibre mats and composites. Composites Part A: Applied Science and 

Manufacturing 2005; 36(6): 772-788.

[40] K. Persson. Micromechanical modelling of wood and fibre properties. PhD Thesis, Lund: 

Lund University, Department of Mechanics and Materials, 2000.

[41] Jäger A, Bader T, Hofstetter K, Eberhardsteiner J. The relation between indentation modulus, 

microfibril angle, and elastic properties of wood cell walls. Composites Part A: Applied Science 

and Manufacturing 2011; 42(6): 677-85.

[42] Sedighi-Gilani M, Navi P. Experimental observations and micromechanical modeling of 

successive-damaging phenomenon in wood cells’ tensile behavior. Wood science and technology 

2007; 41(1): 69-85.

[43] Niskanen K. Paper Physics 1998. Finland: Fapet Oy.

[44] Cox HL. The elasticity and strength of paper and other fibrous materials. British Jounal of 

Applied Physics 1952; 3: 72-79.



17

APPENDIX

An example Python script for direct data transfer to Abaqus finite element solver: Fiber 

part creation and assembly formation

from abaqus import*

from part import*

from material import*

from section import*

from assembly import*

from step import*

from interaction import*

from load import*

from mesh import *

from job import *

from sketch import *

from visualization import *

from connectorBehavior import *

#PART#

#FIBER CENTERLINE FORMATION#

mdb.models['Model'].ConstrainedSketch(name='__sweep__', sheetSize=1.0)

mdb.models['Model'].sketches['__sweep__'].Line(point1=(CX1, CY1),point2=(CX2, CY2))

mdb.models['Model'].sketches['__sweep__'].Line(point1=(CX2, CY2),point2=(CX3, CY3))

mdb.models['Model'].sketches['__sweep__'].Line(point1=(CX3, CY3),point2=(CX4, CY4))

…….

…….

mdb.models['Model'].ConstrainedSketch(name='__profile__', sheetSize=1.0, transform=(0.0, 

0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0))

#FIBER OUTER BORDER FORMATION#
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mdb.models['Model'].sketches['__profile__'].rectangle(point1=(OX1, OY1), point2=(OX2, 

OY2))

#FIBER HOLE BORDER FORMATION#

mdb.models['Model'].sketches['__profile__'].rectangle(point1=(HX1, HY1), point2=(HX2, 

HY2))

# PART FORMATION#

mdb.models['Model'].Part(dimensionality=THREE_D,name='Part-1', 

type=DEFORMABLE_BODY)

mdb.models['Model'].parts['Part-

1'].BaseSolidSweep(path=mdb.models['Model'].sketches['__sweep__'],sketch=mdb.models['Mo

del'].sketches['__profile__'])

del mdb.models['Model'].sketches['__profile__']

del mdb.models['Model'].sketches['__sweep__']

#ASSEMBLY#

#ASSEMBLY INSTANCE FORMATION#

#ONE SHOULD OBTAIN (1) TRANSLATION VECTOR, (2) PIVOT POINT FOR 

ROTATION—E.G. FIRST POINT OF FIBER CENTERLINE, (3) AZIMUTHAL (IN-PLANE) 

ORIENTATION ANGLE OF EACH FIBER FROM TECHNICAL COMPUTING SOFTWARE 

IN ADVANCE#

mdb.models['Model'].rootAssembly.DatumCsysByDefault(CARTESIAN)

mdb.models['Model'].rootAssembly.Instance(dependent=ON,name='Part-1-

1',part=mdb.models['Model'].parts['Part-1'])

mdb.models['Model'].rootAssembly.rotate(angle=90.0,axisDirection=(1.0,0.0,0.0),axisPoint=(0.0

,0.0,0.0),instanceList=('Part-1-1',))

mdb.models['Model'].rootAssembly.translate(instanceList=('Part-1-1',),vector=(TX, TY, TZ))

mdb.models['Model'].rootAssembly.rotate(angle=θZ,axisDirection=(0.0,0.0,1.0),axisPoint=(PX, 

PY, PZ), instanceList=('Part-1-1',))
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List of Tables

Table 1: Design of experiments. The geometrical and spatial parameters are as follows: L, W, T 

are specimen length, width and thickness, respectively; ∆θ is the Azimuthal orientation variation 

and Vf is the fiber volume fraction in the confined specimen space. Here, μ and σ refer to the mean 

value and standard deviation, respectively.

Description Set L 

(mm)

W 

(mm)

T 

(mm)

∆θ

 (º)

Vf 

 (set) 

(-)

Vf

 (computed) 

(-) (μ, σ)

Number of 

fibers

(-) (μ, σ)

1 2.0 2.0 0.006 ±90 0.20 0.206, 0.004 276, 8

2 3.0 3.0 0.006 ±90 0.20 0.204, 0.004 541, 4
RVE

Size
3 4.0 4.0 0.006 ±90 0.20 0.208, 0.001 937, 5

4 2.0 2.0 0.006 ±15 0.28 0.283, 0.011 344, 13

5 2.0 2.0 0.006 ±45 0.28 0.281, 0.007 372, 13

Azimuthal 

orientation 

variation

∆θ (º) 6 2.0 2.0 0.006 ±90 0.28 0.273, 0.005 367, 12

7 2.0 2.0 0.006 ±90 0.18 0.182, 0.001 245, 3

8 2.0 2.0 0.006 ±90 0.25 0.249, 0.003 303, 2

9 2.0 2.0 0.006 ±90 0.27 0.273, 0.005 367, 12

Volume

Fraction

Vf (-)

10 2.0 2.0 0.006 ±90 0.30 0.304, 0.004 402, 5
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Table 2: RVE size and normalized effective elastic properties. Here, μ and σ are the mean value 

and standard deviation, respectively. Approximate CPU times for the simulations are based on the 

Xeon E5-2680 v3 CPUs with 12 cores each running at 2.5GHz and 64 GB RAM memory 

configuration. Here, Azimuthal orientation variation and volume fractions are taken as ∆θ=±90° 

and Vf ≈0.20, respectively.

Set X

x

E
E

(-)

(μ, σ)

 Y

x

E
E

(-)

(μ, σ)

 
x

ZE
E

(-)

(μ, σ)

 
x

XYG
E

(-)

(μ, σ)

 
x

XZG
E

(-)

(μ, σ)

 
x

YZG
E

(-)

(μ, σ)

vXY

(-)

(μ, σ)

vXZ

(-)

(μ, σ)

vYZ

(-)

(μ, σ)

CPU time

(sec)

0.196 0.198 0.043 0.045 0.014 0.014 0.096 0.095 0.0191
(L=2 mm,
W=2 mm) 0.006 0.003 0.002 0.001 0.001 0.000 0.003 0.005 0.002

~ 5400

0.197 0.197 0.039 0.044 0.014 0.014 0.090 0.089 0.0172
(L=3 mm,
W=3 mm) 0.005 0.003 0.001 0.001 0.000 0.000 0.003 0.003 0.001

~ 7200

0.206 0.206 0.029 0.046 0.014 0.014 0.091 0.085 0.0123
(L=4 mm,
W=4 mm) 0.001 0.002 0.002 0.001 0.001 0.001 0.002 0.007 0.002

~ 10800
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Table 3: The maximum values for the number of crossing per fiber ncpf, and normalized effective 

elastic properties with Azimuthal orientation variation Δθ. Here, μ and σ refer to the mean value 

and standard deviation, respectively. Here, volume fraction is set to be Vf ≈0.28.

Set max(ncpf) X

x

E
E

(-)

(μ, σ)

 Y

x

E
E

(-)

(μ, σ)

 
x

ZE
E

(-)

(μ, σ)

 
x

XYG
E

(-)

(μ, σ)

 
x

XZG
E

(-)

(μ, σ)

 
x

YZG
E

(-)

(μ, σ)

vXY

(-)

(μ, σ)

vXZ

(-)

(μ, σ)

vYZ

(-)

(μ, σ)

0.281 0.065 0.017 0.048 0.028 0.011 0.138 0.011 0.2034
(∆θ=±15°)

58 0.011 0.006 0.001 0.001 0.001 0.001 0.011 0.004 0.011

0.269 0.226 0.050 0.059 0.024 0.014 0.107 0.031

0.005

0.071

0.005
5

(∆θ=±45°)
104

0.001 0.002 0.002 0.002 0.001 0.001 0.018 0.005 0.005
0.256 0.256 0.040 0.057 0.017 0.018 0.110 0.101

0.013

0.016

0.002
6

(∆θ=±90°)
112

0.006 0.006 0.002 0.001 0.001 0.001 0.002 0.013 0.002

Table 4: The maximum values for the number of crossing per fiber ncpf, and normalized effective 

elastic properties with the fiber volume fraction Vf. Here, μ and σ refer to the mean value and 

standard deviation, respectively. Azimuthal orientation variation is set as ∆θ=±90°.

Set max(ncpf) X

x

E
E

(-)

(μ, σ)

 Y

x

E
E

(-)

(μ, σ)

 
x

ZE
E

(-)

(μ, σ)

 
x

XYG
E

(-)

(μ, σ)

 
x

XZG
E

(-)

(μ, σ)

 
x

YZG
E

(-)

(μ, σ)

vXY

(-)

(μ, σ)

vXZ

(-)

(μ, σ)

vYZ

(-)

(μ, σ)

0.174 0.175 0.038 0.039 0.012 0.014 0.098 0.093

0.001

0.020

0.001
7

(Vf ≈0.18)
90

0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.001
0.241 0.241 0.023 0.050 0.016 0.016 0.115 0.221

0.059

0.020

0.002
8

(Vf ≈0.25)
108

0.002 0.003 0.003 0.001 0.001 0.001 0.006 0.059 0.002
0.256 0.256 0.040 0.057 0.017 0.018 0.110 0.101

0.013

0.016

0.002
9

(Vf ≈0.27)
112

0.006 0.006 0.002 0.001 0.001 0.001 0.002 0.013 0.002
0.285 0.284 0.023 0.062 0.020 0.020 0.124 0.137

0.032

0.011

0.002
10

(Vf ≈0.30)
124

0.006 0.006 0.002 0.001 0.001 0.001 0.003 0.032 0.002
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List of Figures

Figure 1: Fibrous materials and their heterogeneous nature: (a) various engineering applications, 

nonwoven car panel, fiber mat for gas diffusion layers and bacterial nanocellulose scaffold, and 

their microscope images, (b) material, fiber network and fiber scales definition for kraft paper.

(b)

(a)

Material scale

Fiber network scale

Fiber scale
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Figure 2. The schematic illustration of the present framework: (a) flow chart for the computational 

homogenization framework, (b) representative volume element (RVE) boundary domain 

represented with , domain  bounding RVE, boundary nodes p on  and control nodes q   

comprising of vertices, edge and surface nodes on , (c) elaboration of linking and kinematic 

coupling phenomenon between control and boundary nodes.

Representative 
volume 
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Boundary nodes p 
forming the RVE 

boundary domain  

Control nodes q 
forming the domain 

 bounding RVE 

(b) (c)

(a)

Obtain 
the boundary nodes p.  

Link and couple:
Generate control node set q. 

Minimize the total distance and set 
kinematic coupling between control 

nodes q and boundary nodes p.

Match:
 Match the control nodes 
q in the form of corner, 
edge and surface nodes

Assign material properties, 
boundary conditions over 

the control nodes and 
run the simulation
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Figure 3. Fiber profile and distribution: (a) fiber spatial properties in global (specimen) XYZ-

Cartesian coordinate system and geometrical properties in local (fiber) xyz-Cartesian coordinate 

system, (b) layered structure of specimen in global XYZ-Cartesian coordinate system.
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Figure 4. Fiber deposition process: (a) flow chart of the algorithm; (b) schematic illustration of the 

fiber orientations during the deposition.
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Figure 5. Schematic representation of fiber network representing individual fibers with (a) material 

direction definitions, (b) intersecting fibers, (c) contact regions and (d) concept of number of 

crossings per fiber ncpf. Here, blue dots represent the crossings.
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Figure 6. Strain driven homogenization with imposed macroscopic strain  and computed stress Me

. Here, Ω and ∂Ω represent the volume and boundary of continuum, and and  represent Ms  

the volume and boundary of the domain (in the form of rectangular prism) bounding the RVE.

Figure 7. Illustration of control node sets q on used in the periodic boundary condition 

equations for an RVE. The symbols on the right-hand sides of the nodes show the matching sets 

for the periodicity.


Me 
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Figure 8: Representation of fiber orientation variation Δθ effect on the number of crossing per 

fiber ncpf as continuous probability distribution: (a) Δθ=±15°, (b) Δθ=±45°, (c) Δθ=±90°. Depicted 

solution domains show the fiber alignment based on the designated Δθ where Vf ≈0.28.

(b)

(c)
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Figure 9: Effect of fiber volume fraction Vf on the number of crossing per fiber (a) Vf ≈18%, (b) 

Vf ≈30%. Here, Azimuthal orientation variation was set as Δθ=±90°.
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