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Abstract—This paper proposes an observer-based volts-per-
hertz (V/Hz) control method for induction motors. The proposed
method consists of a state-feedback control law and a flux
observer, both of which are designed to be inherently sensorless.
The gains can be selected using simple closed-form expressions,
resulting in a locally stable and passive system in the whole
feasible operating range. Unstable regions and heuristic tuning
of conventional V/Hz control are thus avoided. Compared to
sensorless field-oriented control, no speed controller or separate
field-weakening method is needed, the full inverter voltage can
be utilized, and the sensitivity to parameter errors is reduced.

Index Terms—Induction machine, observer, scalar control,
sensorless, stability, volts-per-hertz (V/Hz) control

I. INTRODUCTION

Volts-per-hertz (V/Hz) control of induction motors may
suffer from the stability problems at low speeds under heavy
loads as well as at mediums speeds under low loads [1], [2].
To reduce these unstable regions and to increase damping,
conventional V/Hz control methods include a compensator
based on the measured stator current [2]–[4], as exemplified
in Fig. 1(a). The stability and control performance depends
on the compensator, whose structure is typically heuristic and
tuning is based on trial-and-error methods. Parametrization of
the V/Hz curve including the stator resistance voltage drop
(RI) compensation can also be cumbersome. Conventional
V/Hz control methods cannot completely remove the unstable
regions, even if perfect RI compensation is assumed [2].

Contrary to V/Hz control, sensorless field-oriented control
methods are based on the dynamic motor model. If the flux
observer is well designed and if the motor parameters are
known, the local stability in the whole feasible operating
range—referred to as the complete stability—can be achieved
[5], [6]. However, in many applications, the mechanical sub-
system is unknown and its identification is impractical, which
complicates tuning of the speed controller. Sensorless field-
oriented control can also be sensitive to parameter errors. For
operating at high speeds, a specific field-weakening algorithm
is needed. Typically, the full inverter voltage is not available
in the steady state, since the current controller needs some
voltage reserve.

This work was supported in part by ABB Oy and in part by the Academy
of Finland Centre of Excellence in High-Speed Electromechanical Energy
Conversion Systems.
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Fig. 1. V/Hz control: (a) conventional; (b) proposed. In (a), C(s) is a lead-
lag compensator resulting from parallel connection of RI compensation and
high-pass filtering for damping improvement, and τ̂ ′m is a torque estimate
(cf. Appendix A). In (b), the state feedback is defined in (5) [or (6)] and the
observer in (11). In both, F (s) is the high-pass filter (8).

This paper proposes an observer-based V/Hz control, shown
in Fig. 1(b), which aims to combine the best features of V/Hz
control and sensorless field-oriented control. The proposed
method consists of a state-feedback control law and a flux
observer, both of which are designed to be inherently sensor-
less, enabling the local stability and passivity in every feasible
operating point. As compared to conventional V/Hz control,
the heuristic compensator is replaced with the observer. As
compared to sensorless field-oriented control, neither speed
controller nor separate field-weakening method is needed, the
full inverter voltage can be utilized, and the sensitivity to the
parameter errors is reduced.
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Fig. 2. Equivalent circuit of the induction motor in stator coordinates (where
vectors are marked with the superscript s).

II. MOTOR MODEL

The stator current is represented by a column vector is =
[isd, isq]T, where isd and isq are the d- and q-axis components,
respectively, and the superscript T marks the transpose. Other
vector quantities are represented similarly. Furthermore, the
identity matrix I = [ 1 0

0 1 ], the orthogonal rotation matrix J =
[ 0 −11 0 ], and the zero matrix 0 = [ 0 0

0 0 ] are used in the following
equations.

A. Nonlinear Dynamic Model

The induction motor is modeled using the standard inverse-
Γ model [7], whose equivalent circuit is shown in Fig. 2. With
the stator current is and the rotor flux linkage ψR as the
state variables, the corresponding nonlinear state equations in
a coordinate system rotating at the angular speed ωs are

Lσ
dis
dt

= −(RσI + ωsLσJ)is + (αI− ωmJ)ψR + us (1a)

dψR

dt
= RRis − [αI + (ωs − ωm)J]ψR (1b)

where Rσ = Rs +RR is the total resistance and α = RR/LM

is the inverse rotor time constant. In addition to ωs, the stator
voltage us and the electrical angular speed ωm are the input
variables of this nonlinear system. The stator flux linkage ψs

and the electromagnetic torque τm are selected as the output
variables, i.e.,

ψs = Lσis +ψR (1c)

τm = iTs JψR (1d)

where per-unit (p.u.) quantities are assumed in the torque
equation. It can be seen that the torque is nonlinear in the
state variables.

A rigid mechanical system is governed by

Jm
dωm

dt
= τm − τL (2)

where Jm is the total moment of inertia and τL is the load
torque. For simplicity, this mechanical system is used as an
example in the following analysis, but the stability results are
valid for any passive mechanical systems, including resonant
mechanics.

B. Steady-State Operating Point

The nonlinear model (1) can be linearized about the operat-
ing point in order to analyze its local stability, cf. Appendix B.

The first step in this linearization process is to solve the steady-
state operating point by substituting d/dt = 0. As an example,
the stator current in the steady state is obtained from (1b),

is0 =
αI + ωr0J

RR
ψR0 (3)

where ωr0 = ωs0 − ωm0 is the angular slip frequency and
the operating-point quantities are marked with the subscript 0.
Further, applying (1c) and (3) yields the steady-state relation
between the rotor and stator fluxes,

ψR0 =
RR

Lσ
(ωrbI + ωr0J)−1ψs0 (4)

where ωrb = (1/LM + 1/Lσ)RR is the breakdown slip fre-
quency. Other steady-state relations can be obtained similarly.

III. CONTROL SYSTEM

Fig. 1(b) shows the proposed control system. Its core
consists of a state-feedback control law and a reduced-order
observer, both of which are designed to be inherently sen-
sorless. These two blocks make it possible to stabilize and
passivate the motor in its whole feasible operating range.
Furthermore, the damping of the mechanical system can be
increased using additional feedback from the electromagnetic
torque estimate τ̂m through a high-pass filter F (s). The control
system is described in detail in the following.

A. State-Feedback Control

The voltage reference for the inverter can be calculated as

us,ref = Rsis + ωsJψs,ref +K(ψs,ref − ψ̂s) (5)

where ωs is the stator angular frequency signal, ψs,ref =
[ψs,ref , 0]T is an external stator flux reference (that can be
kept constant), ψ̂s is the stator flux estimate provided by an
observer, and K is a 2 × 2 gain matrix. This control law is
a special case of state-feedback control. Since no rotor speed
(or its estimate) appears in the control law, it is inherently
sensorless [8].

The control law (5) can be rewritten in an alternative form
that has some practical merits. Since the reduced-order flux
observer is used, ψ̂s = ψ̂R + Lσis holds. Therefore, (5) can
be equivalently presented as

us,ref = Rsis + ωsJψs,ref + LσK(is,ref − is) (6a)

is,ref =
ψs,ref − ψ̂R

Lσ
(6b)

where is,ref is an intermediate stator current reference. This
intermediate signal can be saturated in order to limit the stator
current.

B. Stator Frequency

The internal stator frequency reference can be selected as

ωs = ωs,ref − kω(τ̂m − τ̂mf) (7a)

where ωs,ref is an external rate-limited stator frequency refer-
ence, τ̂m is the torque estimate, and kω is a positive gain for



increasing the damping. The signal τ̂mf is a low-pass-filtered
torque estimate,

dτ̂mf

dt
= αf (τ̂m − τ̂mf) (7b)

where αf is the bandwidth of the filter. Equivalently, the stator
frequency signal can be expressed as

ωs = ωs,ref −
kωs

s+ αf︸ ︷︷ ︸
F (s)

τ̂m (8)

where s = d/dt is the differential operator and the operator
F (s) can be recognized as a high-pass filter.

Optionally, a slip compensation scheme can be easily in-
tegrated into the proposed method. In this case, the stator
frequency reference ωs,ref is the sum of an external speed ref-
erence ωm,ref and a low-pass-filtered slip frequency estimate,

ωs,ref = ωm,ref +
αr

s+ αr
ω̂r (9)

where αr is the bandwidth of the low-pass filter. The instan-
taneous slip frequency estimate is obtained from the observed
quantities as

ω̂r =
RRτ̂m

‖ψ̂R‖2
(10)

If the slip compensation is enabled, the complete stability
of the proposed method may not be guaranteed, since the
resultant filter consisting of (8)–(10) is generally not passive,
unlike the high-pass filter in (8). However, if the bandwidth
αr is low, the slip compensation does not affect the stability.

C. Reduced-Order Flux Observer

To be able to apply state-feedback control in (5), the stator
(or rotor) flux linkage has to be estimated. The simplest option
is to use a reduced-order flux observer [9]. Based on (1b), the
reduced-order flux observer can be formulated as [6]

dψ̂R

dt
= us,ref − (RsI + ωsLσJ)is

− Lσ
dis
dt
− ωsJψ̂R +Koe (11a)

whereKo is a 2×2 observer gain matrix. The output equations
are

ψ̂s = ψ̂R + Lσis (11b)

τ̂m = iTs Jψ̂R (11c)

The correction vector obtained from (1a) is

e = Lσ
dis
dt

+ (RσI + ωsLσJ)is − (αI− ω̂mJ) ψ̂R − us,ref

(11d)
where ω̂m is the speed estimate. The speed can be estimated
by integrating the component of the correction vector e
orthogonal to the rotor flux estimate, i.e., [5]

dω̂m

dt
= αo

ψ̂
T

RJe

‖ψ̂R‖2
(11e)
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Fig. 3. Linearized closed-loop system resulting from the proposed control
system. The flux estimation error ∆ψ̃s is decoupled from the mechanical
dynamics. The transfer function G(s) and the high-pass filter F (s) defined
in (8) are passive. Therefore, the whole closed-loop system is passive (and
stable) for any passive mechanical subsystems.

where αo is the speed-estimation bandwidth.
As special cases, Ko = 0 yields the voltage model and

Ko = I yields the current model. The flux observer in (11a)
becomes inherently sensorless if the observer gain fulfills the
condition KoJψ̂R = 02,1, i.e., the speed-dependent term in
(11d) disappears. A general inherently sensorless stabilizing
gain, allowing arbitrary pole placement for the linearized
estimation-error dynamics, is available [6]. Here, its special
case is used

Ko =
2σo(αI + ω̂mJ)

α2 + ω̂2
m

ψ̂Rψ̂
T

R

‖ψ̂R‖2
(12)

where σo the desired exponential decay rate of the estimation
error. The speed estimate ω̂m is needed only in the observer
gain (12). If the stability at low speeds in the regenerating
mode is not required, the observer gain can be simplified by
replacing ω̂m with ωs,ref , making the speed estimation (11e)
unnecessary.1

IV. ANALYSIS

The local stability and passivity of the proposed control
method, shown in Fig. 1(b), are analyzed by means of small-
signal linearization. For simplicity, the inverter is assumed to
be ideal, us = us,ref , and parameter errors are omitted. The
small-signal deviation of the stator current about the operating
point is denoted by ∆is = is − is0 and other small-signal
variables are marked similarly. With no loss of generality, the
signals and systems are expressed in the Laplace domain in
the following analysis. The derivation of the following transfer
functions are presented in detail in Appendix B.

A. Stator Flux Dynamics

State-feedback control (5) allows to shape the closed-loop
stator-flux dynamics, ∆ψs(s) = Gc(s)∆ψs,ref(s). For conve-

1For inherently sensorless gains, the speed estimator in (11e) is identical
with the expression dω̂m/dt = αo (ω̂s − ω̂r − ω̂m), where ω̂s is the angular
speed of the rotor flux estimate. The estimator (11e) is independent of
coordinates and simple to implement, since the correction vector e is already
available.



nience, the gain matrix of the form K = σcI + (ωd − ωs0)J
is considered, yielding

Gc(s) =
(σcs+ σ2

c + ω2
d)I + ωdsJ

(s+ σc)
2

+ ω2
d

(13)

where σc is the exponential decay rate and ωd is the damped
natural frequency, respectively. It can be seen that the poles
s = −σc ± jωd can be placed arbitrarily by means of the
two gains σc and ωd. Furthermore, the stator-flux dynamics
in (13) are decoupled from the rotor-flux dynamics, which
indicates that the harmful coupling between the stator and rotor
electrical dynamics, appearing in conventional V/Hz control
[2], is avoided. The dynamics in (13) also reveal that the motor
can be magnetized without any special algorithms, simply
using a constant stator flux reference.

B. Mechanical Dynamics

Fig. 3 shows a block diagram of the resulting closed-loop
mechanical dynamics. The transfer functions are presented in
detail in Appendix B. It is also shown there that the separation
principle holds for the linearized system, which allows the
control and observer dynamics to be designed separately. The
transfer function from ∆ωδ(s) = ∆ωs(s) − ∆ωm(s) to the
electromagnetic torque ∆τm(s) is

G(s) =
∆τm(s)

∆ωδ(s)
=
ψ2
R0

RR

ωrbs+ ω2
rb − ω2

r0

(s+ ωrb)2 + ω2
r0

(14)

where ψR0 = ‖ψR0‖ is the magnitude of the operating-point
rotor flux. It can be noticed that the poles s = −ωrb± jωr0 of
(14) match with the open-loop poles of the rotor-flux dynamics
driven by the stator flux [10].2 These poles are stable, but they
cannot be affected by means of the state-feedback control law
(5). However, the damping of the poles can be increased via
the stator frequency, as will be presented subsequently.

It is easy to show that Re{G(jω)} > 0 holds for all ω if
|ωr0| < ωrb and ψR0 > 0. Consequently, the transfer function
G(s) is strictly passive in the whole feasible operating region.
Its feedback interconnection with any passive mechanical
subsystem remains passive, which indicates robustness for
unknown mechanical subsystems. This complete passivity is
a highly desirable property that cannot be achieved using
conventional V/Hz control [2].

Next, the effect of the damping loop via the high-pass filter
F (s) is considered. As shown in Appendix B, the torque
estimation error is decoupled from the mechanical dynamics.
Furthermore, the high-pass filter F (s) defined in (8) is passive.
Therefore, the complete passivity (and stability) of the whole
interconnected system shown in Fig. 3 is guaranteed for any
passive mechanics [11].

To better understand the effect of the damping loop, a static
gain F (s) can be considered. In this special case, the feedback
interconnection of (14) and F (s) = kω results in the system,

2Some readers might be familiar with the stator transient time constant
T ′s = Rs/Lσ and the rotor transient time constant T ′r = 1/ωrb [10]. As a
special case, choosing σc = Rs/Lσ results in the decoupled dynamics, where
the decay rates correspond to the inverses of these transient time constants.

TABLE I
DATA OF THE 2.2-KW FOUR-POLE INDUCTION MOTOR

Rated values
Voltage (line-to-neutral, peak value)

√
2/3·400 V 1 p.u.

Current (peak value)
√

2·5 A 1 p.u.
Frequency 50 Hz 1 p.u.
Speed 1 430 r/min 0.95 p.u.
Torque 14.6 Nm 0.66 p.u.

Parameters
Stator resistance Rs 3.7 Ω 0.080 p.u.
Rotor resistance RR 2.1 Ω 0.045 p.u.
Leakage inductance Lσ 21 mH 0.143 p.u.
Magnetizing inductance LM 224 mH 1.524 p.u.
Total inertia Jm 0.0155 kgm2 67.1 p.u.

whose denominator is (s+ωrb)2 +ω2
r0 +kω(ωrbs+ω2

rb +ω2
r0)

and numerator remains the same as in (14). It can be seen that
the damping is increased due to the term kωωrbs. In practice,
the high-pass filter according to (8) is preferred over the static
gain to avoid the steady-state speed error.

C. Design Guidelines

The state-feedback gain matrix in the control law (5) could
be chosen as K = σcI− ωs0J, resulting in Gc(s) = σc/(s+
σc)I, where the the d- and q-axes dynamics are decoupled.
However, this decoupling is unnecessary, and a simpler choice

K = σcI (15)

is adopted here, where σc approximately corresponds to the
closed-loop bandwidth. Since the natural frequency is not
altered, the robustness against parameter errors is slightly
better than in the case of the dq-decoupled design.

The decay rate for the observer gain in (12) can be sched-
uled as

σo = ζ∞|ωs|+ α/2 (16)

where ζ∞ is the desired damping ratio at high speeds. At zero
stator frequency ωs0 = 0, the poles are located at s = 0 and
s = −α, which allows magnetizing and starting the motor
in a stable manner. If both poles were placed at s = 0, the
system would be unstable in the starting condition, which is
a typical problem in conventional V/Hz control as well as in
sensorless control if the observer gain is not well designed.
At high speeds, the choice (16) results in the poles located
at s = −(ζ∞ ± j

√
1− ζ2∞)|ωs0|. Studying the pole locations

and the resulting observer equations in more detail reveals that
the choice (16) makes the observer dynamics to vary from
the current-model-type dynamics (for the magnitude of the
estimate) to well-damped voltage-model-type dynamics as the
frequency increases from zero.

V. RESULTS

The proposed observer-based V/Hz control method is stud-
ied by means of simulations and experiments. A 2.2-kW four-
pole induction motor is used as an example motor. Its rated
values and parameters are given in Table I.
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Fig. 4. Simulation results: (a) open-loop V/Hz control; (b) conventional V/Hz control with RI compensation and current-feedback-based compensator; (c)
proposed observer-based V/Hz control. The speed reference is ramped: 0→ 1 p.u.→ −1 p.u.→ 0. The load torque increases stepwise from zero to its rated
value (0.66 p.u.) in the beginning of the acceleration at t = 0.5 s and decreases stepwise back to zero at t = 3.5 s.

The variant (6) of the proposed control law is used. The
state-feedback gain is selected according to (15) with σc =
2π · 20 rad/s. The bandwidth of the high-pass filter F (s) is
αf = 2π · 1 rad/s and the damping gain is kω = 3 (Nm·s)−1.
The design parameters for the observer are ζ∞ = 0.7 and
αo = 2π · 40 rad/s. It is to be noted that the choice of these
design parameters is not critical, i.e., they could be varied in
a wide range. The slip compensation is disabled.

A. Simulations

The proposed observer-based V/Hz control is studied with
simulations by comparing it to conventional V/Hz control.
Fig. 4 shows simulation results for three different controllers:

(a) Open-loop V/Hz control [Fig. 1(a), with C(s) = 0 and
F (s) = 0];

(b) Conventional V/Hz control [Fig. 1(a), parametrized as
described in Appendix A].

(c) Proposed observer-based V/Hz control [Fig. 1(b)].

In Fig. 4, the frequency reference is ramped from zero to
the rated frequency, then reversed, and finally ramped back to
zero. The load torque increases stepwise from zero to its rated
value (0.66 p.u.) in the beginning of the acceleration. When
the frequency reference finally reaches zero at the end of the
sequence, the load torque decreases stepwise to zero.

Fig. 4(a) shows results for open-loop V/Hz control. During
almost the whole sequence, the system is either unstable or
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Fig. 5. Experimental results for the proposed observer-based V/Hz control,
corresponding to the simulation results shown in Fig. 4(c).

poorly damped. Fig. 4(b) shows results for conventional V/Hz
control with RI compensation (perfectly parameterized) and
current-feedback-based compensator. It can be seen that the
system is unstable in the beginning of the acceleration (due to
the flux collapse) as well as at the end of the sequence (due
to the flux surge). Signs of instability can also be seen while
crossing the zero frequency in the middle of the sequence. The
noise in the currents at the frequency of 1 p.u. originates from
the overmodulation, as can be also seen from the waveform us
of the voltage magnitude. The waveform udc/

√
3 of the scaled

DC-link voltage shows the limit of the linear modulation
region.

Fig. 4(c) shows simulation results for proposed observer-
based V/Hz control. As expected, the system is stable and
well damped. The magnetization is fast and well damped,
corresponding to the desired stator-flux dynamics.

B. Experiments

The experiments were conducted on the proposed control
method using a dSPACE MicroLabBox prototyping unit. The
same design parameters were used as in the simulations. The
switching frequency was 4 kHz, and the inverter nonlinearities
were compensated for using a current feed-forward method
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Fig. 6. Experimental results showing field-weakening operation. The stator
frequency reference is ramped: 0 → 2 p.u. → 0. No load torque is applied.

[12]. The rotor speed was measured using a resolver for
monitoring purposes.

Fig. 5 shows results corresponding to the simulation se-
quence in Fig. 4(c). It can be seen that the measurement
results match with the simulations results well. It is to be
noted that the chosen sequence is particularly difficult for
speed sensorless control methods due to the stepwise change
of load torque at zero speed and slow speed reversal while
loaded.

Fig. 6 shows experimental results of the field-weakening op-
eration. The frequency reference is ramped from zero to 2 p.u
and the load torque is zero. The control method automatically
handles field-weakening when the maximum inverter voltage
is reached (even if the constant flux reference ψs,ref = 1 p.u. is
used). The sequence also shows that the motor is magnetized
in a stable manner in the beginning of the sequence. After
t = 5 s, the DC-link voltage rises due to regenerative braking
during deceleration. A braking chopper limits the DC-link
voltage from rising excessively.

Fig. 7 shows experimental results where the frequency
reference is first ramped from zero to 0.5 p.u. and then the
load torque is increased stepwise from zero to its rated value
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Fig. 7. Experimental results showing the acceleration from 0 to 0.5 p.u. as
well as the rated positive and negative load torque steps.

and back to zero, followed by a similar load torque step with
negative sign. It can be seen that the response is well damped.

VI. CONCLUSIONS

The proposed observer-based V/Hz control has a simple
structure, closely resembling conventional V/Hz control. The
proposed methods contains no speed controller, which simpli-
fies the tuning of the control system. Furthermore, field weak-
ening is inherent to the method without a separate algorithm.
The method also allows full utilization of the inverter voltage
since no voltage margin is needed. The method is completely
stable and passive, and, consequently, robust against unknown
mechanics. As compared to heuristic V/Hz control structures,
a trial-and-error process in tuning can be reduced since all the
design parameters have a clear physical meaning.

APPENDIX A
CONVENTIONAL V/HZ CONTROL

Fig. 1(a) shows a conventional V/Hz control system. The
voltage reference is

us,ref = ωsJψs,ref +C(s)is (17)

where the compensator C(s) is described by a 2× 2 transfer-
function matrix. Typically, this compensator consists of paral-
lel connection of RI compensation and high-pass filtering in
order to improve damping in the mid-speed region [2], [4].
An example compensator is constructed as

C(s) =
α1

s+ α1
RsI︸ ︷︷ ︸

RI compensation

+
s

s+ α2
kuLσωsJ︸ ︷︷ ︸

Damping

(18)

where ku is a positive gain, and α1 and α2 are low- and
high-pass filter bandwidths, respectively. The torque estimate
is based on the measured current and the flux reference,

τ̂ ′m = iTs Jψs,ref (19)

Alternatively, the damping via the stator frequency could be
implemented based on the estimated slip frequency [2].

For the simulations of this paper, the compensator C(s)
is parametrized with ku = 1 and α1 = α2 = 0.1ωrb. The
bandwidth of the high-pass filter F (s) is αf = 2π ·1 rad/s and
the damping gain is kω = 3 (Nm·s)−1.

APPENDIX B
LINEARIZED MODEL

Motor Model: Linearizing the induction motor model in (1)
yields [2]

d∆x

dt
=

[
−Rσ

Lσ
I− ωs0J

1
Lσ

(αI− ωm0J)

RRI −αI− ωr0J

]
︸ ︷︷ ︸

A

∆x

+

[
1
Lσ

I

0

]
︸ ︷︷ ︸

B

∆us +

[
−Jis0
−JψR0

]
∆ωs −

[
1
Lσ

JψR0

−JψR0

]
︸ ︷︷ ︸

b

∆ωm

(20a)

where ∆x = [∆iTs ,∆ψ
T
R]T is the state vector. The linearized

output equations are

∆ψs =
[
LσI I

]︸ ︷︷ ︸
C

∆x (20b)

∆τm =
[
−ψT

R0J iTs0J
]︸ ︷︷ ︸

cT

∆x (20c)

The operating-point stator current appearing in the linearized
model can be written as a function of the rotor flux and the
slip frequency using (3).

State-Feedback Control: Accurate parameter estimates will
be assumed. The control law (5) is linearized, resulting in

∆us = −Kc∆x+K∆ψ̃R +N∆ψs,ref + Jψs0∆ωs (21)

where ∆ψ̃R = ∆ψR − ∆ψ̂R is the flux estimation error,
Kc = [LσK −RsI,K] is the state-feedback gain matrix and
N = ωs0J + K is the reference-feedforward gain matrix.
Inserting (21) into (20) results in the closed-loop system

d∆x

dt
= Ac∆x+BK∆ψ̃R +BN∆ψs,ref + b∆ωδ (22)



where Ac = A − BKc and ∆ωδ = ∆ωs − ∆ωm. As
will be shown subsequently, the separation principle holds for
the linearized control and observer dynamics. Therefore, the
transfer functions (13) and (14), respectively, can be calculated
using the state-space matrices as

Gc(s) = C(sI4 −Ac)
−1BN (23a)

G(s) = cT(sI4 −Ac)
−1b (23b)

Furthermore, the control characteristic polynomial is Dc(s) =
det(sI4 −Ac) = [(s+ σc)

2 + ω2
d][(s+ ωrb)2 + ω2

r0].
Reduced-Order Flux Observer: The reduced-order observer

(11) is linearized. Using (20), the resulting dynamics can be
expressed as [6]

d∆ψ̃R

dt
= − [ωs0J +Ko (αI− ωm0J)]︸ ︷︷ ︸

Ao

∆ψ̃R

+KoJψR0︸ ︷︷ ︸
bo

∆ω̃m (24a)

d∆ω̂m

dt
=
αoψ

T
R0J (αI− ωm0J)

ψ2
R0︸ ︷︷ ︸
aT

o

∆ψ̃R + αo∆ω̃m (24b)

∆ψ̃s = ∆ψ̃R (24c)

∆τ̃m = iTs0J∆ψ̃R (24d)

where ∆ω̃m = ∆ωm−∆ω̂m. The observer gain, corresponding
to (12), resulting from the linearization procedure is

Ko =
2σo(αI + ωm0J)

α2 + ω2
m0

ψR0ψ
T
R0

ψ2
R0

(25)

Since bo = 02,1 holds for this gain, the flux and torque
estimation dynamics are decoupled from the speed estimate as
well as from the speed input ∆ωm. The observer characteristic
polynomial is Do(s) = (s2 + 2σos + ω2

s0)(s + αo). It is
also to be noted that the speed estimate ω̂m appearing in the
observer gain (12) introduces no coupling in the linearized
model since the operating-point estimation errors are zero
under the assumption of accurate parameter estimates.

Separation Principle: To show the validity of the separation
principle, the closed-loop system including the observer is
also presented. As mentioned, bo = 02,1 holds for inherently
sensorless observers. Combining the control and observer
dynamics yields

d∆z

dt
=

Ac BK 04,1

02,4 Ao 02,1

01,4 aT
o −αo


︸ ︷︷ ︸

At

∆z +

BN0
01,2

∆ψs,ref

+

 b
02,1

0

∆ωδ +

04,1

02,1

αo

∆ωm (26a)

where ∆z = [∆xT,∆ψ̃
T

R,∆ω̂m]T is the augmented state
vector. As an example, applying (20) and (24), the following
linearized output equations are obtained

∆ψ̂s =
[
C −I 02,1

]
∆z (26b)

∆τ̂m =
[
cT −iTs0J 0

]
∆z (26c)

The resulting transfer functions from the inputs to these
estimates are the same as those without the observer dynamics.
Due to the zero blocks of At, the separation principle holds
as expected, i.e., the characteristic polynomial is Dt(s) =
det(sI7 −At) = Dc(s)Do(s).
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