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Otto refrigerator based on a superconducting qubit: Classical and quantum performance

B. Karimi and J. P. Pekola
Low Temperature Laboratory, Department of Applied Physics, Aalto University School of Science, P.O. Box 13500, 00076 Aalto, Finland

(Received 9 October 2016; published 9 November 2016)

We analyze a quantum Otto refrigerator based on a superconducting qubit coupled to two LC resonators,
each including a resistor acting as a reservoir. We find various operation regimes: nearly adiabatic (low driving
frequency), ideal Otto cycle (intermediate frequency), and nonadiabatic coherent regime (high frequency). In
the nearly adiabatic regime, the cooling power is quadratic in frequency, and we find a substantially enhanced
coefficient of performance ε, as compared to that of an ideal Otto cycle. Quantum coherent effects lead invariably
to a decrease in both cooling power and ε as compared to purely classical dynamics. In the nonadiabatic regime
we observe strong coherent oscillations of the cooling power as a function of frequency. We investigate various
driving wave forms: Compared to the standard sinusoidal drive, a truncated trapezoidal drive with optimized rise
and dwell times yields higher cooling power and efficiency.

DOI: 10.1103/PhysRevB.94.184503

I. INTRODUCTION

Dynamical control of open systems within the framework
of quantum thermodynamics is gaining increased attention.
Several theoretical proposals and a few experimental ones have
recently been put forward for quantum heat engines [1–9]
and refrigerators [10–13]. Most of the proposed engines are
candidates to work in both classical and quantum regimes,
but understanding the influence of quantum dynamics on their
performance calls for more research [9,11]. Different quantum
systems, such as single atoms and superconducting circuits, are
to be employed as a working substance in quantum engines,
often in the form of two-level systems or harmonic oscillators.

The basic Otto cycle consists of adiabatic expansion,
rejection of heat at constant volume, adiabatic compression,
and heat extraction at constant volume. This paper, discussing
quantitatively the performance of a quantum Otto refrigerator
based on a superconducting qubit, is organized as follows.
In Sec. II we present the design of the refrigerator coupled
to two reservoirs [12]. Using a standard quantum master
equation, we analyze in Sec. III its power in various driving
frequency regimes. We present an expansion of the density
matrix at low frequencies and find expressions for heat flux
between the reservoirs with explicit classical and quantum
contributions. Section IV is devoted to a discussion of different
driving wave forms that yield improved performance beyond
that based on the obvious sinusoidal protocol. In Sec. V, we
study the coefficient of performance of the Otto refrigerator
and the effect of quantum dynamics on it. Owing to the rapid
progress in superconducting qubit technology, this setup is
fully feasible for experimental implementation, which will be
briefly discussed in Sec. VI.

II. DESCRIPTION OF THE SYSTEM AND
THERMODYNAMIC CYCLE

The studied quantum Otto refrigerator is schematically
illustrated in Fig. 1(a). The superconducting qubit in the
middle consists of a loop interrupted by Josephson junctions.
It is coupled to two resonators via mutual inductances M1

and M2 on the left and right, and a bias circuit on the top
controls the flux � through the loop with q ≡ δ�/�0. Here,
δ� ≡ � − �0/2 and �0 = h/2e is the superconducting flux

quantum. Each resonator is a series RLC circuit. Resistors
RC and RH, in general, with different inverse temperatures,
β1 = (kBTC)−1 and β2 = (kBTH)−1, are the cold and hot baths,
respectively. Strictly speaking, “hot” and “cold” refer here
to the resonance frequencies of the two LC circuits, “cold”
(“hot”) being that with lower (higher) frequency ω2 (ω1). In
general, the two temperatures can take arbitrary values. In
this paper we present inductive coupling of the qubit to the
resonators, but this can be replaced by capacitive coupling
when more appropriate.

The thermodynamic cycle of this refrigerator is sketched
in Fig. 1(b) and it consists of four legs labeled A–D with
the following ideal properties. (A) Isentropic expansion (q =
0 → q = 1

2 ): The qubit is isolated from the two baths as it
is not in resonance with either of the two LC circuits, and
its population is determined by the temperature of the cold
resistor RC. (B) Thermalization with the hot bath: The qubit
is coupled to the hot resistor RH at q = 1

2 and the energy
flows from the qubit to the resistor. (C) Isentropic compression
(q = 1

2 → q = 0): The qubit is in thermal equilibrium with the
hot bath but decoupled from both the baths during the ramp.

FIG. 1. (a) Scheme of the quantum refrigerator presented.
(b) Thermodynamic Otto cycle of the refrigerator. (c) Configuration
of the two-level energies of the qubit under sinusoidal driving depicted
on top of the diagram.
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(D) Thermalization with the cold bath: The system is brought
back to the initial thermal state in equilibrium with the cold
resistor at q = 0. Energy in this process flows from the cold
resistor to the qubit. The cycle as a whole can also be viewed
as periodic alternating control of the Purcell effect of the qubit
[14] with the two resonators. The Hamiltonian of the whole
setup is given by

H = HRH + HRC + HcH + HcC + HQ, (1)

where HRH and HRC are the Hamiltonians of the two reservoirs,
HQ that of the qubit, and HcH and HcC represent the coupling
between the qubit and the corresponding reservoir. Our
analysis applies to a generic superconducting qubit [15]:
For instance, in transmon [16] and flux qubits [17], the
two-level system is formed of Josephson junctions for which
EJ /EC � 1. Here, EJ is the Josephson coupling energy of
the junctions and EC is the Cooper pair charging energy. The
Hamiltonian of the qubit is given by

HQ = −E0(�σx + qσz), (2)

where σx and σz are the Pauli matrices, and E0 is the overall
energy scale of the qubit, such that the level spacing between
the instantaneous eigenstates (ground state |g〉, excited state
|e〉) is given by E = 2E0

√
q2 + �2. The maximum and

minimum level separations at q = 1
2 and q = 0 are denoted by

E1 = �ω1 and E2 = �ω2, respectively, and � = E2/(2E0).
Referring to the common transmon and flux qubits, the
parameters in Eq. (2) attain values E0 ∼ EJ and � ∼ EC/EJ .

The transition rates between the two levels of the qubit due
to the two baths are given by

	↓,↑,j = E2
0M

2
j

�2�2
0

�2

q2 + �2
SI,j (±E/�), (3)

where SI,j (ω) = |{Rj [1 + Q2
j ( ω

ωLC,j
− ωLC,j

ω
)
2
]}|−2

SV,j (ω) is

the unsymmetrized noise spectrum. Here, ωLC,j = 1/
√

LjCj

and Qj = √
Lj/Cj/Rj are the bare resonance angular fre-

quency and the quality factor of circuit j , and SV,j (ω) =
2Rj�ω/(1 − e−βj �ω) denotes the voltage noise of the resistor.
The + and − signs refer to the relaxation (↓) and excitation (↑)
of the qubit, respectively. For more details, see the Appendix.

For quantitative analysis, we consider the standard master
equation for the time t evolution of the qubit density matrix
ρ(t) in the instantaneous eigenbasis [18,19]. Ignoring pure
dephasing, due to the intentionally large thermalization rate,
we find the components of ρ(t) as

ρ̇gg = − �

q2 + �2
q̇ Re[ρgee

iφ(t)] − 	�ρgg + 	↓,

ρ̇ge = �

q2 + �2
q̇

(
ρgg − 1

2

)
e−iφ(t) − 1

2
	�ρge, (4)

where q̇ is the ramp rate, φ(t) = ∫ t

0 E(t ′)dt ′/�, 	� = 	�,1 +
	�,2, 	↓ = 	↓,1 + 	↓,2, and 	�,j = 	↑,j + 	↓,j , for j = 1,2.

The expression of power to the resistor j from the qubit is
given by

Pj = E(t)(ρee	↓,j − ρgg	↑,j ),

= E(t)(	↓,j − ρgg	�,j ), (5)

FIG. 2. The powers to the hot and cold reservoirs as a function of
(dimensionless) frequency  with chosen parameters (kBTC/E0 =
kBTH/E0 = 0.3, � = 0.3, ωLC,1 = 2E0

√
1
4 + �2/�, and ωLC,2 =

2E0�/�). Different operation regimes are shown separately in
the plots. (a) Quadratic dependence of the two powers on  at
low frequencies with two methods (analytical and fully numerical
methods). The rising parabolas are for �1 and the descending ones
for �2. (b) Nearly ideal Otto cycle at an intermediate frequency.
The solid brown line illustrates the cooling power of an ideal
Otto cycle while the other three lines are numeric cooling power
when g = g1 = g2 = 1 (solid blue line), 0.3 (dashed line), and 0.1
(dotted-dashed line). Inset of (b): The nonadiabatic regime at high
frequencies associated with coherent oscillations for �1 (red lines)
and �2 (black lines) with different values of Q ≡ Q1 = Q2. From
top to bottom, Q = 10, 30, and 100.

where ρee(t) = 1 − ρgg(t). The details of deriving Eq. (5) are
presented in the Appendix. The difference between the heating
power P1 to reservoir RH , and the cooling power −P2 of
reservoir RC , i.e., P1 + P2 equals ideally (that is with no other
losses) the power that is taken from the source of the magnetic
flux acting on the qubit.

III. DIFFERENT OPERATION REGIMES

We identify the main operation regimes of the Otto
refrigerator in three different frequency f ranges: nearly
adiabatic regime at low frequencies, ideal Otto cycle in the
intermediate frequency regime, and nonadiabatic coherent
regime at high frequencies. In Fig. 2 we illustrate these
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regimes by presenting the powers to the two reservoirs in
dimensionless form, �j ≡ Pj/(E2

0/�), j = 1,2, as a function
of  = 2π�f/E0, the dimensionless frequency of the drive,
for chosen parameters. We assume periodic driving q(u) in
(dimensionless) time u = 2πf t . The powers are averaged over
a cycle in steady state under periodic driving. Below we detail
the properties of the refrigerator in these three regimes.

A. Nearly adiabatic regime

Figure 2(a) shows the cooling and heating powers of the
refrigerator at low frequencies . We present below results
for both cooling power and efficiency in the nearly adiabatic
frequency range. In order to obtain ρ(t), we can here write it
as an expansion in  as

ρ = ρ(0) +
∞∑

k=1

δρ(k), (6)

where ρ(0) is the density matrix at a given constant q, and
δρ(k) is the kth-order correction to it. The expression for power

averaged over a cycle is given by

Pj = f

∫ 1/f

0
dtE(t)(	↓,j − 	�,jρgg), (7)

and for k � 1, the correction to powers can be written as

P
(k)
j = −f

∫ 1/f

0
dtE(t)δρ(k)

gg 	�,j . (8)

To find ρ(0) in Eq. (6), we set ρ̇gg , ρ̇ge, and q̇ in Eq. (4) equal
to zero and obtain

ρ(0)
gg = 	↓/	� and ρ(0)

ge = 0. (9)

For equal temperature βj = β of the two reservoirs
j = 1,2, 	↓/	� = 	↓,j /	�,j = (1 + e−βE)−1, and the

power vanishes in the zeroth order, P
(0)
j = f

∫ 1/f

0 dtE(t)
(	↓,j − 	�,jρ

(0)
gg ) = 0, as one would expect for fully adiabatic

driving. In general, for arbitrary temperatures, we find the
zeroth-order heat flux between the two resistors, P (0) ≡ P

(0)
2 =

−P
(0)
1 , as an average over a “static” cycle as

P (0) =
(

�2g1g2

π

)(
E2

0

�

)∫ 2π

0
du

(1 − e−β2�ω)−1(eβ1�ω − 1)−1 − (1 − e−β1�ω)−1(eβ2�ω − 1)−1

g1
[
1 + Q2

2

(
ω

ωLC,2
− ωLC,2

ω

)2]2
coth

(
β1�ω

2

) + g2
[
1 + Q2

1

(
ω

ωLC,1
− ωLC,1

ω

)2]2
coth

(
β2�ω

2

) , (10)

where gj = 4E2
0M2

j

��2
0Rj

. P (0) does not depend on frequency and it

indeed vanishes when β1 = β2. This is the heat flux that tends
to counterbalance the dynamic pumping of heat in the Otto
cycle, when the two temperatures are unequal. Yet due to large
quality factor of the resonators, Q1,Q2 � 1, this contribution
is typically small.

We iterate the solution in the first order, with the result

δρ(1)
gg = −ρ̇(0)

gg /	� (11)

and

δρ(1)
ge = �

q2 + �2

dq

du

ξ↓ − ξ↑
ξ�

e−iφ

ξ� − i4
√

q2 + �2
. (12)

We have defined the dimensionless rates as ξi = �

E0
	i . Equa-

tion (12) presents the quantum effects in the lowest order in
. Irrespective of the wave form, we have P

(1)
j = 0 (see the

Appendix for details). The first nonvanishing contribution to
the powers comes from the second-order diagonal element

δρ(2)
gg =

d2ρ
(0)
gg

du2

ξ 2
�

−
dρ

(0)
gg

du

dξ�

du

ξ 3
�

− �

q2 + �2

dq

du

1

ξ�

Re
(
δρ(1)

ge eiφ
)
.

(13)

The third term of Eq. (13) is the pure quantum correction of
ρgg . In dimensionless form, we have then

�
(2)
j = �j

2. (14)

We can separate the classical contribution �j,CL and the
quantum correction δ�j,Q of �j , such that �j = �j,CL +

δ�j,Q, where

�j,CL =− 1

π

∫ 2π

0
du

√
q2 + �2

×
(

d2ρeq,gg

du2

ξ 2
�

−
( dρeq,gg

du

)(
dξ�

du

)
ξ 3
�

)
ξ�,j (15)

and

δ�j,Q = 1

π

∫ 2π

0
du

�2

(q2 + �2)3/2

(
dq

du

)2

× (ξ↓ − ξ↑)ξ�,j

ξ�

[
ξ 2
� + 16(q2 + �2)

] . (16)

We observe that based on Eq. (14), the energy transferred in a
cycle reads Pj/f = 2π�jhf . Yet the dimensionless prefactor
2π�j is system dependent, in particular, it depends inversely
on the coupling g. This dependence is vivid in Fig. 2(b) if one
zooms the very low  regime for different values of g.

In the quadratic regime, the total powers on the two resistors
j can be written for arbitrary temperatures as

�j = (−1)j�(0) + �j
2. (17)

The results of the fully numerical calculation are shown
together with the semianalytic quadratic result �j

2 in
Fig. 2(a) for the equal temperature case. The two results are
nearly indistinguishable.

It is interesting to note that the coherent effects via δ�j,Q

increase the dissipation unconditionally. This is because the
integrand of the quantum correction in Eq. (16) is strictly
non-negative; in particular, all the rates ξi are positive and,
moreover, ξ↓ > ξ↑.
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B. Intermediate frequencies (Otto cycle)

In the intermediate regime, as shown in Fig. 2(b), the
cooling power −P2 is approximately linear in frequency with
a slope given below in Eq. (18). This behavior corresponds
to the ideal Otto cycle. To find the powers P1,P2, we assume
that the qubit thermalizes at both q = 0 and q = 1

2 , and that
the population of the qubit does not change between the
two extremes of the cycle. At q = 1

2 , the qubit population
is ρgg = 1/(1 + e−β2�ω2 ). When brought to q = 0, ρgg ideally
attains the value ρgg = 1/(1 + e−β1�ω1 ) when interacting with
RC. In this process energy is transferred from resistor RC to the
qubit, ideally with power −P2, and from the qubit to resistor
RH with power P1 given by [12]

P1 = +�ω1

2

[
tanh

(
β1�ω1

2

)
− tanh

(
β2�ω2

2

)]
f,

P2 = −�ω2

2

[
tanh

(
β1�ω1

2

)
− tanh

(
β2�ω2

2

)]
f. (18)

These powers depend critically on the energy separation at
q = 0. We maximize the cooling power −P2 of Eq. (18) with
respect to ω2 keeping other parameters constant, obtaining

tanh(β2E0�) + β2E0�

cosh2(β2E0�)
− tanh

(
β1E0

√
1

4
+ �2

)
= 0. (19)

We assume that the gap at q = 1
2 is large enough such that

we can set tanh (β1E0

√
1
4 + �2) � 1. This yields the equation

2x − e−2x − 1 = 0 for x = β2E0�, with x = 0.6392 . . . as
the solution. Numerically obtained powers to the two resistors
as a function of � and g ≡ g1 = g2 (inset) are shown in
Fig. 3 for typical parameters. These figures are plotted for

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

1, 
2  

(x
 1

03 )

0.01 0.1 1 10
-1

0

1

2

1, 
2  

(x
 1

04 )

g

FIG. 3. Dimensionless powers �i as a function of � and g (inset).
The blue lines show the powers for Q = Q1 = Q2 = 10, red for 30,
and black for 100. The green lines display powers for the ideal Otto
cycle and the arrow points to the optimal value of � in an ideal Otto
cycle. The parameters are kBTC/E0 = kBTH/E0 = 0.3,  = 0.01,
and g = g1 = g2 = 1, and for the inset kBTC/E0 = kBTH/E0 = 0.3,
 = 0.01, and � = 0.3.

different quality factors of the RLC circuits. The vertical arrow
indicates the optimal point x = 0.6392 . . . obtained above. It is
vivid that the maximum value of cooling power shifts towards
higher values of � and g when increasing Q, and for Q = 100,
the powers are very close to those of the ideal Otto cycle
[Eq. (18)] at this value of frequency ( = 0.01).

C. Nonadiabatic coherent regime

At high frequencies coherent oscillations of the qubit are
reflected in the powers as seen in the inset of Fig. 2(b).
The oscillatory regime essentially spans frequencies from
E2/(2π�) to E1/(2π�). In this frequency range, the population
of the qubit in the adiabatic legs of the cycle does not remain
constant due to driving-induced coherent oscillations. At still
higher frequencies, both powers are positive (dissipative) and
almost constant. Lower Q means more dissipation in general,
explaining the relative results of �j in the figure for different
quality factors. One needs to bear in mind, however, that our
analysis based on instantaneous eigenstates is not rigorous at
these high frequencies [20,21] that may also exceed the bath
correlation time in practice.

IV. DIFFERENT DRIVING WAVE FORMS

In assessing the influence of the driving wave form on the
cooling power and efficiency of the refrigerator, we apply
sinusoidal q(u) = 1

4 (1 + cos u), trapezoidal (specifically with
a symmetric form consisting of rising sections of 20% of the
cycle time each, and plateaus of 30% duration each), and trun-
cated trapezoidal q(u) = 1

4 [1 + tanh(a cos u)/ tanh a], specif-
ically with a = 2. These rising times and the particular value
of a yield nearly optimal performance under the conditions of
our numerical simulations for the two latter wave forms. See
the inset of Fig. 4(a) for the illustration of the three protocols.

The obtained dimensionless powers �1 and �2 as a
function of frequency are displayed in Fig. 4. The data in
Figs. 4(a) and 4(b) are for equal and unequal temperatures
of the two reservoirs, β1 = β2 and 2β1 = β2, respectively.
At equal temperatures we can obtain higher cooling power
with trapezoidal and truncated trapezoidal drives than with
sinusoidal drive, while in the case of unequal temperatures, the
highest values of cooling power are obtained with truncated
trapezoidal drive. The inferior performance of the sinusoidal
drive stems from the short available thermalization times at
q = 0, 1

2 , whereas the large dissipation �1 with the trapezoidal
drive is likely to originate from the abrupt changes of the slope
of this wave form [19].

V. EFFICIENCY OF THE OTTO REFRIGERATOR

The efficiency of a refrigerator is defined by the coefficient
of performance ε as

ε = −Q2/W, (20)

where Q2 = ∫
dtQ̇2(t) is the heat deposited to the cold

bath in a steady state cycle (the integral is extended over
such a cycle), and W is the work done to achieve this.
If we ignore the parasitic losses in producing the flux
drive of the qubit (which can be made arbitrarily small in
principle), we have W = ∫

dt[Q̇1(t) + Q̇2(t)]. We have then
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FIG. 4. The variation of powers �1 (ascending curves) and �2

(descending curves) as a function of frequency in the intermediate
regime. Black lines display powers for sinusoidal drive, light brown
for trapezoidal drive, blue for truncated trapezoidal drive, and dark
brown for ideal Otto cycle (for �2), with g = g1 = g2 = 1 and
Q = Q1 = Q2 = 30. (a) Equal temperature of the two reservoirs
(kBTC/E0 = kBTH/E0 = 0.3) and � = 0.3. (b) Different bath tem-
peratures (kBTH/E0 = 2kBTC/E0 = 0.3) and � = 0.12. Inset in (a):
The considered driving wave forms; sinusoidal, trapezoidal, and
truncated trapezoidal.

ε = −Q2/(Q1 + Q2). There are two reference values to be
considered. One is the Carnot efficiency of a refrigerator, given
by εC = 1/(TH/TC − 1), which cannot be exceeded. Another
one is the ideal ε of the Otto refrigerator, which turns out to be

εideal = 1

ω1/ω2 − 1
, (21)

according to Eqs. (18). Based on our result of Eq. (14), we
introduce εp for a quadratic low frequency regime given by

εp = 1

�1/|�2| − 1
(22)

for the equal temperature case. Numerical results on ε as
a function of  for different wave forms are presented by
solid lines in Fig. 5. It is evident in Fig. 5(a) that at equal
temperatures β ≡ β1 = β2, the truncated trapezoidal drive has
the highest efficiency among the three driving protocols at
low frequencies, but all of them are, somewhat surprisingly,
higher than εideal shown by the dashed-dotted horizontal line.
Naturally, the Carnot efficiency exceeds all other efficiencies
in the figure: in Fig. 5(a) εC = ∞, and in Fig. 5(b) εC = 1.
Thus we see that our system reaches high efficiency at low
frequencies, which is consistent with the general expectations
of thermodynamics towards the adiabatic limit. The dashed
lines illustrate the semianalytic result of εp for different drives.
These results are fully consistent with numerical ones at
low frequency. For unequal bath temperatures, β2 = 2β1, in
Fig. 5(b), we have a similar hierarchy among the three wave
forms, but with these parameters the (abrupt) trapezoidal drive
does not even reach the efficiency of the ideal Otto cycle at
any frequency. The rising part at low frequencies is due to
the finite P (0) at unequal temperatures. For reference, the
results ignoring quantum effects, solving the corresponding
rate equation ρ̇gg = 	↓ − 	�ρgg with truncated trapezoidal

1E-5 1E-4 0.001 0.01 0.1

1.0

1.2

1.4

1.6

1.8

2.0

0.00 0.02 0.04

0.24

0.27

0.30

0.33

(b)

sinusoidal

truncated 
trapezoid

trapezoid

classical 
(truncated 
trapezoid)

(a)

sinusoidal

truncated 
trapezoid

trapezoid

classical 
(truncated trapezoid)

FIG. 5. Dependence of the coefficient of performance ε on
frequency for different drives as indicated by the names with
arrows. Dotted-dashed lines correspond to ideal efficiency of the Otto
refrigerator εideal, with Q = Q1 = Q2 = 30 and g = g1 = g2 = 1 for
both panels. The horizontal dashed lines represent analytical results
of efficiency for different drives in the low frequency regime based
on Eq. (22). The parameters are (a) kBTH/E0 = kBTC/E0 = 0.3 and
� = 0.3, (b) kBTH/E0 = 0.3, kBTC/E0 = 0.15, and � = 0.12.

drive, are shown in Figs. 5(a) and 5(b) by the red line. These
results lie above any other curve, which is consistent with
what we obtained for the quantum correction of �j in the
quadratic low frequency regime. That is, the numerical result
supports the observation that quantum corrections decrease the
efficiency of the quantum Otto refrigerator, in agreement with
the general linear response results in Ref. [11].

VI. EXPERIMENTAL FEASIBILITY

Finally, we make a few remarks about the experimental
parameters. The energy scale of a typical superconducting
qubit is of order E0/kB ∼ 1 K [15]. With realistic mutual
inductances Mi , values for coupling up to gi ∼ 1 can be
achieved with proper design [12]. The quality factors in the
range presented in this paper can also be achieved, since a
typical

√
L/C impedance is of order 102 , and a metallic

resistor can have values in the range of ∼1 . With these
values, the presented numerical graphs are feasible, and the
power E2

0/� ∼ 1 pW and frequency E0/2π� ∼ 1 GHz scales
should lead to experimentally observable heat fluxes (several
fW) [22] at feasible operation frequencies (100 MHz) [15].

In conclusion, we have investigated theoretically quantum
Otto refrigerator using a generic superconducting qubit.
Explicit expressions for quadratic dependence of power on
low frequencies were obtained. We show that the quantum
dynamics inevitably decreases, as compared to the corre-
sponding fully classical case, both the cooling power and
the efficiency of the refrigerator, but it leads to interesting
oscillatory behavior of power versus frequency. Different
driving wave forms were studied, and we found that the
coefficient of performance ε can exceed that of the ideal Otto
refrigerator at low frequencies.
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APPENDIX

We present here the derivation of the expressions for the
transition rates and power to each resistor due to its coupling to
the qubit [Eq. (5)] and calculation of the (vanishing) first-order
contributions �

(1)
j [Eq. (8) for k = 1].

1. Transition rates and powers

The golden rule transition rates between the instantaneous
eigenstates due to the baths [resistors j in Fig. 1(a)] are given
by

	↓,↑,j = 1

�2

∣∣∣∣〈g|∂H

∂�
|e〉

∣∣∣∣
2

M2
j SI,j (±E/�), (A1)

where the ± signs correspond to relaxation and excitation, re-
spectively, and SI,j (±ω) is the unsymmetrized noise spectrum
of the qubit which is

SI,j (ω) =
∫

eiωt 〈δIj (t)δIj (0)〉dt

= |Rj + i[ωLj − 1/(ωCj )]|−2SV,j (ω)

= | Re[Yj (ω)]|2SV,j (ω). (A2)

Here, SV,j (ω) = 2Rj�ω/(1 − e−βj �ω) is the voltage
noise of the resistor alone, and Re[Yj (ω)] =
{Rj [1 + Q2

j ( ω
ωLC,j

− ωLC,j

ω
)
2
]}−1

is the real part of admittance

of circuit j , ωLC,j = 1/
√

LjCj , and Qj = √
Lj/Cj/Rj .

By using Eq. (2) for the Hamiltonian of the qubit, we have
∂H
∂�

= −E0σz

�0
, and in order to calculate 〈g|σz|e〉, we consider the

eigenvectors of the Hamiltonian, |g〉 = [cos(θ/2) sin(θ/2)]
and |e〉 = [− sin(θ/2) cos(θ/2)]. Here, the angle θ is given
by tan θ = �/q. Then for Eq. (A1) we have

	↓,↑,j = E2
0M

2
j

�2�2
0

�2

q2 + �2
SI,j (±E/�). (A3)

Equation (A3) yields the transition rates for a generic su-
perconducting qubit with the Hamiltonian (2). For instance,
in the flux qubit, the factor E0/�0 equals Ip, the persistent
circulating current in the qubit loop [12]. In order to evaluate
powers Pj , we first calculate the operator for the heat current

from the resistors to the qubit as

ḢQ = − i

�
[HQ,HcC + HcH]. (A4)

By inserting HcC = E0
�0

M1δI1(t)σz and HcH = E0
�0

M2δI2(t)σz

in Eq. (A4) and with [σi,σj ] = 2iεijkσk , we have

ḢQ = 2
E2

0�

��0
[M1δI1(t) + M2δI2(t)]σy. (A5)

Now, in the interaction picture, with operators OI (t) =
eiHQt/�Oe−iHQt/�, we have the expectation value of the
operator −ḢQ, i.e., the heat deposited to the two resistors
by the qubit in linear response (Kubo formula) as

P = −〈ḢQ〉 = i

�

∫ t

−∞
dt ′〈[ḢQ,I (t),Hc(t ′)]〉, (A6)

where Hc = HcC,I + HcH,I . Substituting the
expressions 〈g|σz|e〉 = �/

√
q2 + �2, 〈g|σy |e〉 = i,

〈g|σy |g〉 = 〈e|σy |e〉 = 0, 〈g|eiHQt/�σyσze
−iHQt ′/�|g〉 =

〈e|eiHQt ′/�σzσye
−iHQt/�|e〉 = ie−iω(t−t ′)�/

√
q2 + �2, and

〈e|eiHQt/�σyσze
−iHQt ′/�|e〉 = 〈g|eiHQt ′/�σzσye

−iHQt/�|g〉 =
−ieiω(t−t ′)�/

√
q2 + �2 in Eq. (A6), we have P = P1 + P2,

where

Pj = E(t)(ρee	↓,j − ρgg	↑,j ). (A7)

2. Vanishing first-order contribution to powers

The first order in  contribution to the powers can be written
as

P
(1)
j = −f

∫ 1/f

0
dtE(t)δρ(1)

gg 	�,j

= E0

π

∫ 2π

0
du

√
q2 + �2ρ̇(0)

gg

	�,j

	�

, (A8)

with the help of Eq. (11). Here, u = 2πf t . By inserting ρ̇(0)
gg =

dρ
(0)
gg

du

E0
�

 in Eq. (A8) we have

�
(1)
j = P

(1)
j

E2
0/�

= 1

π

∫ 2π

0
du

√
q2 + �2

dρ(0)
gg

du

	�,j

	�

. (A9)

With a change of integration variable from u to q and using
du = 1

dq/du
dq, Eq. (A9) becomes

�
(1)
j = 1

π

∫ qf

qi

dq
√

q2 + �2
dρ(0)

gg

du

	�,j

	�

. (A10)

In cyclic operation, the initial and final values of q are equal,
qi = qf , and irrespective of the wave form, we have �

(1)
j = 0.
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