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UNCERTAINTY QUANTIFICATION AND REDUCTION USING 
SENSITIVITY ANALYSIS AND HESSIAN DERIVATIVES 

Josefina Sánchez1, Kevin Otto1 

1Aalto University 
Espoo, Finland 

ABSTRACT 
We study the use of Hessian interaction terms to quickly identify 
design variables that reduce variability of system performance. 
To start we quantify the uncertainty and compute the variance 
decomposition to determine noise variables that contribute most, 
all at an initial design. Minimizing the uncertainty is next sought, 
though probabilistic optimization becomes computationally 
difficult, whether by including distribution parameters as an 
objective function or through robust design of experiments. 
Instead, we consider determining the more easily computed 
Hessian interaction matrix terms of the variance-contributing 
noise variables and the variables of any proposed design change. 
We also relate the Hessian term coefficients to subtractions in 
Sobol indices and reduction in response variance. Design 
variable changes that can reduce variability are thereby 
identified quickly as those with large Hessian terms against noise 
variables. Furthermore, the Jacobian terms of these design 
changes can indicate which design variables can shift the mean 
response, to maintain a desired nominal performance target. 
Using a combination of easily computed Hessian and Jacobian 
terms, design changes can be proposed to reduce variability 
while maintaining a targeted nominal. Lastly, we then re-
compute the uncertainty and variance decomposition at the more 
robust design configuration to verify the reduction in variability. 
This workflow therefore makes use of UQ/SA methods and 
computes design changes that reduce uncertainty with a minimal 
4 runs per design change. An example is shown on a Stirling 
engine design where the top four variance-contributing 
tolerances are matched with two design changes identified 
through Hessian terms, and a new design found with 20% less 
variance.  

Keywords: Robust Design, Simulation Based Design, Systems 
Engineering, Uncertainty Analysis, Uncertainty Modeling. 

NOMENCLATURE 
𝑑 Design variable 
𝐻 Hessian cross term 
𝐽 Jacobian term 

ℎ Range of a noise variable used in the Hessian 
𝑘 Range of a design variable used in the Hessian 
𝑛 Noise variable 
RDM Robust Design Method 
SA Sensitivity Analysis 
𝑆 Main effect Sobol index 
𝑇𝑆  Total effect Sobol index 
UQ Uncertainty Quantification 
𝑉 Contribution to variance from the ith noise variable 

𝜎௬
ଶ Response Variance

𝑦 Response 

1. INTRODUCTION
Parametric robust design as a method to reduce uncertainty has 
been well researched and developed into what has become the 
standard experimental Robust Design Method (RDM), making 
use of design-of-experiments to reduce the performance 
variability of a design due to multiple causes [1]. RDM is more 
than a statistical experiment, it involves a multiple step workflow 
including identifying possible sources of variability, quantifying 
their relative contribution with experiments, generating ideas for 
design changes that may promote variation reduction, and then 
quantifying the ability of design changes to reduce this 
variability through a further set of experiments. 

Unfortunately, executing RDM remains a complex task for 
many industries, which has impeded adoption of RDM [2]. This 
is particularly evident when used in conjunction with simulation 
tools, which have prohibitively long manual setup times and long 
execution times. While automation can help reduce the burden 
[3-4], means are needed to more quickly identify potential design 
changes that can reduce variability arising from different 
contributing noise variables. Given that, generally at least thirty 
runs are needed to create a reasonable histogram of a 
distribution, repeating this for different design configuration 
alternatives is prohibitive. Computer based design of 
experiments, with surrogate models or otherwise, can improve 
upon this in a more structured exploration of the design space, 
but often require dozens of runs for a few design variables each 
with several runs over the noise variables.   
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We explore using rapidly computed Hessian second 
derivative terms to rank potential design changes. We also 
combine this with computed Jacobian first derivative terms to 
enable reshifting the mean to remain on target while reducing 
variation. We find that the variation reduction impact of any 
design change due to any causal noise variable can be estimated 
in 4 runs.   

Next, we review related works. Then, we outline a workflow 
and derive the calculations to (1) identify contributing noise 
variables, (2) rank design changes using a hessian derived 
calculation, (3) construct variance and mean prediction 
equations, (4) compute a best set of design changes that 
minimize variance subject to a nominal target constraint, and (5) 
verify the variation reduction at a new design configuration. We 
demonstrate the work using an open source data project, a 
Stirling engine design [1].  

1.1 Related Work 
Robust design was introduced by Taguchi as an experimental 
method to study the effect of different input noise variables on 
performance variability, and how these can be reduced through 
design variable selections [5-6]. Arvidsson and Gremyr [1] 
provide a review of experimental RDM research. Executing 
RDM early in design is needed to reduce the risk of non-
compliance as a design goes in production [7]. Wu and Hamada 
[8] highlight noise and design variable interactions and design of 
experimental arrays meant to highlight such terms. Montgomery 
[9] further derives the response variance as a Hessian interaction 
terms as is used here.   

On the other hand, in recent years the need for RDM has 
increased, since systems are now increasingly design-optimized 
for higher performance, higher efficiency, and lower cost; see for 
example Arena et al [10] for a discussion on trends in defense 
system programs. Optimizing a system can unfortunately and 
unknowingly result in tighter design margins to achieve higher 
performance, leading to costly production problems [11]. 
Systems designed with tighter margins are inherently more prone 
to variability problems [7]. In summary, using modern design 
optimization methods has increased the need for clarifying and 
understanding how much performance variability there will be 
in a design, to compare the variability distribution against the 
targeted design margin and thereby quantify the future 
manufacturing quality risks.   

In the past decades, another body of work has been 
developed to explore the use of computer-based experiments 
with various forms of higher discrepancy experimental sampling 
enabled with computer experiments over traditional design-of-
experiments. Uncertainty Quantification (UQ) and Sensitivity 
Analysis (SA) have grown rapidly over the last several years as 
an interdisciplinary field [12]. Uncertainty quantification 
provides the means to quantify the expected variability in a new 
design before observing it in production. Sensitivity analysis 
provides the means to decompose the variation into major 
contributors, to identify which tolerances and noises variables 
are the major contributors [13]. Main effect and Total effect 
Sobol sensitivity indices quantify the percent contribution of 

noise variables to the variance of the computed performance 
response uncertainty. Sobol indices typically require large 
samples and so surrogate models are used [14]. Pandas and 
Hinken studied expressing response variance as an expansion 
using Hessian terms [15], similar to a surrogate model of 
variance. We here look for design variables to reduce variance. 

Using this UQ/SA approach, a design concept’s variabilities 
can be assessed against design margins for risk of not meeting 
requirements. There are many examples in the literature of 
implementing Latin Hypercube and Quasi-Monte-Carlo 
methods for higher discrepancy resolution of robustness 
optimization against design problems [12]. These generally 
apply optimization search of an objective function computed 
based on uncertainty. Surrogate models of the mean and variance 
as functions of design variables can be fit. This requires samples 
of noise variable combinations at the design variable 
combinations and unfortunately can quickly lead to sampling 
plans with hundreds to thousands of runs.  

For responses computed through computational expensive 
simulations, quasi Monte Carlo sequence sampling is effective, 
such as Sobol or Halton sequences. Unlike Latin Hypercube 
sampling, any initial sample can be sequentially incremented 
with follow-on samples of the sequence. This enables one to start 
with a small sample and determine how well a surrogate model 
can fit, and increase until a sufficient fit is achieved, thereby 
needing a minimal number of runs needed to compute the 
uncertainty and variance decomposition sensitivity analysis.  

Nevertheless, these uncertainty propagation methods 
generally remain “black-box” simulators in nature, as they 
require large numbers of evaluations for quantifying uncertainty 
of the response. Combined with uncertainty optimization, it 
becomes computationally expensive for even moderate 
dimensional problems. There are limited attempts to interrogate 
the simulation model locally for improved understanding of the 
causes of the uncertainty or the selection of suitable design 
variables with which to explore optimizing (reducing) the 
variability. We particularly consider identifying which causes of 
variation (noise variables) contribute to response variation as 
well r whose variation effect can be mitigated by changing 
particular design variables.   

2. ROBUSTNESS OPTIMIZATION ESTIMATION
It becomes important for computationally expensive simulations 
to construct sampling strategies that can capture the influence of 
design changes on response variability efficiently. One way to 
reduce sampling is to first identify the most contributing noise 
variables (from the initial UQ/SA), and then study how that can 
change with potential design changes. We then consider using 
Hessian second derivative values to prioritize design variables 
for optimization based upon their ability reduce the contribution 
of selected noise variables. Next, we expand this to consider the 
impact on the average response, to enable constraints on any 
mean shift. However, first, we define terminology on the basis of 
uncertainty quantification and sensitivity analysis. 
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2.1 Uncertainty Quantification and Sensitivity Analysis 
Typically, one would consider perming an analysis on 
minimizing variability only after first quantifying the uncertainty 
(UQ) as a histogram of a distribution on the response of interest. 
Often, one would also decompose this uncertainty into a Pareto 
chart of noise variables contributors as a global sensitivity 
analysis (GSA).   

We consider here where an initial uncertainty quantification 
was computed. That is, for a selection of noise variables, a 
sample was generated and at each sample point the response 
evaluated, resulting in a histogram of response values. A 
distribution function with statistics against distribution 
parameters is fit, for example, a normal distribution function 
with mean and variance statistics. No matter the distribution, we 
consider variance 𝜎௬

ଶ as a statistic of interest on the response 𝑦.
We also then consider the global sensitivity analysis of the 

total response variance 𝜎௬
ଶ. Following Saltelli et al [10], we

decompose the total response variance into variance contributors 
of the noise variables 𝑛, where 

(1)

and 𝑉 is the main effect response variance contribution of 𝑛 and 
the others are higher order effects. We further consider the 
normalized main and total effect Sobol indices 𝑆 and 𝑇𝑆  as 

(2)

(3)

Note that 𝑆 indicates the main effect contribution of 𝑛 and 𝑇𝑆  
the total effect including all interactions, and are percentage 
contributions of the total response variation 𝜎௬

ଶ. This UQ/SA
analysis forms the first step of a proposed robust design variation 
reduction workflow. With this, the initial design concept 
variability is quantified (𝜎௬

ଶ) and the noise variables which
contribute most are identified (those with large 𝑆). We now seek 
to find design variables that can reduce the impact of noise 
variables with large impact.   

2.2 Hessian Interaction Terms 
To study the impact of changes to different design variables, we 
consider the Hessian interaction matrix terms of the variance-
contributing noise variables and the design variables of any 
proposed design changes. Hessian terms will show the influence 
that design variable changes have over the uncertainty 
contribution of noise variables. To see this, consider a Taylor 
Series expansion of the response at the current nominal, 

(4)

Typically, we compute this only for the large noise variables 
contributors 𝑛. Now consider a design variable 𝑑 for any 
proposed design change. We could make the change and 
recompute the uncertainty quantification or similar. However, if 
𝑑 changes the UQ, it must be because 𝑑 changed the impact of 

the contributing 𝑛. That is, the sensitivity term 
ఋ

ఋ
 changed. 

Therefore, a non-zero Hessian term indicates a 𝑑 can change the 
noise variable’s variability influence on the response: 

(5)

Hence, to quickly compute how effective any design variable is 
at reducing response variability, one can compute the Hessian 
cross terms of design and noise variables denoted by 

(6)

and search which design variables 𝑑 cause a significant change 

to the sensitivity term 
ఋ

ఋ . 

Using a central finite-difference approximation, Hessian 
cross terms can be numerically computed as the interaction term 
change in response value: 

(7)

The numerator is expressed in units of the response, and can be 
interpreted in engineering terms as the amount of variation 
change possible by making the design variable shift from 𝑑ି to 
𝑑ା , due to the noise variable variation range of 𝑛ି to 𝑛ା.   

From the engineering perspective, it is easier to interpret 𝐻  
with the sign of 𝐻  only indicating the directionality of the 
design change. That is, we seek the sign result that if 𝐻  is 
positive, an increase in d would result in an increase in the 
response variation. To enable this, apply the absolute values over 
the noise variable, 

Eq. (7) represents the change in response variation range of 
a noise variables due to the change of a design variable, with a 
positive value indicating variability increase with a design 
variable increase.  More easily expressed as 

(8)

which expresses the change of variance in terms of increasing 𝑑.  
Consider scaling 𝐻 by the range of the standard deviation 

of the noise factor and by a shift in design variable by 𝛿. Then 

𝜎௬
ଶ =  𝑉



+  𝑉భమ

భழమ

+ ⋯ +  𝑉భ⋯ಿ

భழమழ⋯ழே

, 

𝑆 =  
𝑉

𝜎௬
ଶ

, 

𝑇𝑆 = 𝑆 + (𝑆ଵ + 𝑆ଶ + ⋯ )
+ (𝑆ଵଶ + 𝑆ଵଷ + ⋯ ) + ⋯

+  𝑆భ....ே

భழ....ழே

 . 

𝑦 = 𝑓(𝑑, 𝑛) = 𝑦 +
𝛿𝑓

𝛿𝑛
(𝑛 − 𝑛). 

𝛿

𝛿𝑑

𝛿

𝛿𝑛
𝑓(𝑑, 𝑛) ≠ 0. 

𝐻 =
𝜕

𝜕𝑑

𝜕𝑓

𝜕𝑛
=

𝜕ଶ𝑓

𝜕𝑑𝜕𝑛
 , 

𝐻

=
ቀ𝑓൫𝑑ା, 𝑛ା൯ − 𝑓൫𝑑ା, 𝑛ି൯ቁ − ቀ𝑓൫𝑑ି, 𝑛ା൯ − 𝑓൫𝑑ି, 𝑛ି൯ቁ

4ℎ  ℎ

𝐻

=
ห𝑓൫𝑑ା, 𝑛ା൯ − 𝑓൫𝑑ା, 𝑛ି൯ห − ห𝑓൫𝑑ି, 𝑛ା൯ − 𝑓(𝑑ି, 𝑛ି)ห

4ℎ  ℎ
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(9)

large negative ൫∆𝜎௬൯
ଶ
 indicates making a 𝛿 change to nominal

design variable 𝑑
 toward 𝑑ା will reduce noise variable 𝑛

contribution to response variance, whereas a large positive 

൫∆𝜎௬൯
ଶ
 indicates making a 𝛿 change toward 𝑑ି will reduce

noise variable 𝑛 contribution to response variance.   

Dividing ൫∆𝜎௬൯
ଶ
 by the UQ total power variance 𝜎௬

ଶ

results in the expected change in a noise variable’s Sobol index 
𝑆 by a design variable 𝑑 changes. Therefore, the expected 
change in a noise variable’s Sobol index ∆𝑆  by making a design 
change from nominal is computed as 

(10)

A positive value of ∆𝑆 indicates changing to 𝑑ା increases 𝑆 

by ∆𝑆 (a possibly negative amount) and that changing to 𝑑ି 
decreases 𝑆 by ∆𝑆 (again a possibly negative amount). Thus, 
whatever the sign of ∆𝑆  is, you would change 𝑑 in the opposite 
direction to achieve a reduction in 𝑆.  

The impact of any one ∆𝑆  change to a Sobol index does 
not simply scale 𝜎୷

ଶ since ∆𝑆 = (𝜎୬ୣ୵ − 𝜎୭୪ୢ)ଶ/𝜎୭୪ୢ
ଶ , but rather 

can be computed as 

(11)

Further, the overall change in response variance due to multiple 
design variables changed in the direction of reducing variance is 
the sum over the noise variable contributors and design changes 

(12)

The four Hessian values 𝐻  can also be plotted to visualize 
interaction impact on response variance due to design and noise 
variable changes. The interaction plots will show impact of 
design change over noise contribution if the lines are non-
parallel.  

2.3 Jacobian Mean Shift Term 
The design changes suggested by the Hessian calculations can 
result not only in variance reduction, but also in mean shift. 
Often this is undesirable, as the nominal performance 𝑦ത is 
targeted. In this case the Jacobian can similarly be used to 
compute means shifts, to shift the mean back to target while 
reducing the variation. 

Again consider a Taylor Series expansion of the response at 
the current nominal 𝑛,   

(13)

When changing a design variable 𝑑 to reduce variation, the 
Jacobian can indicate how much the mean will shift. Further, we 
can use a variable  𝑑 which has no influence on the Hessian to 
shift back the mean to its original value. Here, 

(14)

where 𝑁 is the number of runs done in the Hessian analysis, 
where half are at 𝑑ା and half are at 𝑑ି. Eq. (14) computes the 
half-effect of moving from the nominal center to either of the end 
points 𝑑ା or 𝑑ି.  

The overall change in response mean is then approximately 
a linear summation of the design variable changes, 

(15)

where again ∆𝑑 is the amount of change to 𝑑 in a new design 
configuration considered.   

In combination with the variation reduction as computed by 
Eq. (9) and the mean shift as computed by Eq. (14), one can 
select design variable changes to reduce the variation while 
constraining the mean to a target. Design variables that reduce 
variation can be determined and set using Eq. (12). The 
associated mean shift from those changes can be computed using 
Eq. (15), and different design variables changed to shift the mean 
back to the desired target for the mean. In this way, variation can 
be minimized. Furthermore, the reasons for the variation 
reduction are made explicit. The identified design variables that 
can reduce the impact of identified noise variables will be clear, 
rather than a black box experimental optimization approach.   

2.4 Workflow 
The previous sections derived the necessary mathematics for 
using Hessian and Jacobian terms to reduce variation. We now 
present a five-step workflow to execute this practically. First, we 

൫∆𝜎௬൯
ଶ

= 𝜎
ଶห𝐻𝛿ห൫𝐻𝛿൯.

∆𝑆 =
𝜎

ଶ

𝜎௬
ଶ

ห𝐻𝛿ห൫𝐻𝛿൯, 

∆𝜎௬
ଶ

𝜎௬
ଶ

= ቆ1 +
∆𝑆

ห∆𝑆ห
ටห∆𝑆หቇ

ଶ

− 1. 

𝜎௬,୬ୣ୵
ଶ = 𝜎௬,୭୪ୢ

ଶ ቌ1 − ඨห∆𝑆ห



ቍ

ଶ

. 

𝑦 = 𝑓(𝑑, 𝑛) = 𝑦 +
𝜕𝑓

𝜕𝑛
(𝑛 − 𝑛) +

𝜕𝑓

𝜕𝑑
(𝑑 − 𝑑). 

𝐽 =
1

2

𝜕𝑓

𝜕𝑑
≈

∑ 𝑦ௗೕୀௗశ

𝑁
−

∑ 𝑦ௗೕୀௗష

𝑁
 

∆�̅�(𝑑) = (𝐽)∆𝑑



, 

FIGURE 1: 4 STEP WORKFLOW USING HESSIANS AND 
JACOBIAN TERMS. 

1.  Compute UQ/SA of original design

2. Compute Hessian + Jacobian terms

3. Construct variance and mean equations from
Hessian + Jacobian

4. Optimization of variance subject to mean target

5. Compute UQ/SA of new design
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quantify response uncertainty and identify input noise variables 
with large sensitivity contribution. Then an interaction term 
Hessian matrix calculation is performed to quickly screen design 
variables for their variation reduction capability against these 
contributing sources of variation. Each proposed design variable 
needs only 4 runs to determine if it can reduce the variation 
contribution of a noise variable, per Eq. (12), and the impact on 
the mean shift determined per Eq. (15). Having identified design 
variables to change and by how much, a new design is computed 
as a constrained optimization, using the summation of variation 
reductions predicted by the Hessian analysis and keeping the 
nominal constrained on target through the summation of 
Jacobian terms. Lastly, an uncertainty quantification at the new 
design computes the variation reduction. This is outlined in 
Figure 1.  

The first step in the workflow is to compute uncertainty 
quantification and sensitivity analysis. We apply the open source 
toolchain developed by Sanchez et al. [3]. The Python based 
toolchain is developed to screen causal variables, and then apply 
quasi-Monte-Carlo uncertainty quantification sampling and 
global sensitivity analysis to quantify engine power variability 
and identify input noise variables with the largest sensitivity 
contribution. There are several computational tasks scripted to 
first construct UQ samples: run a standalone simulation code to 
compute response values at each UQ sample point, best-fit a 
surrogate model to the UQ sample points, and finally perform a 
GSA with the surrogate model by generating a large number of 
Saltelli sample points to compute Sobol indices. The results are 
the sensitivity contribution of each input noise variable. The 
GSA indicated which input parameters are the largest 
contributors to the response variance.  

Next in Step 2 we compute Hessian and Jacobian terms to 
reduce the sensitivity of the high contributing noise variables 𝑛 
by considering design changes 𝑑. For each high contributing 
noise variables 𝑛, each design change 𝑑 is considered by 
computing the Hessian term Eq. (8) and Jacobian term Eq. (14). 
This is only 4 runs for every noise and design variable 
combination.   

Next in Step 3 we assemble an overall variation reduction 
equation as the sum of terms Eq. (12). We also assemble an 
overall mean shift equation as the sum of terms Eq. (15). Then 
in Step 4 we can use these two equations to find the changes to 
the design variables that minimize the variation subject to the 
mean fixed to a target.   

Lastly in Step 5, we recompute the UQ/SA at the new values 
of the design variables. This confirms the variation reduction and 
the targeting of the mean response.   

3. EXAMPLE STIRLING ENGINE
In previous work, [3-4] workflows were developed applying 
uncertainty quantification and sensitivity analysis methods to 
identify root causes of manufacturing quality problems and in 
[16] a workflow was developed using design of experiments to 
achieve robustness improvement. Here we build on these 
previous works to now consider the greater insight and fewer 
runs offered by the Hessian approach.  

In these previous works, we introduced the example of a 
miniature Stirling engine case study. At Aalto University 
students fabricated, assembled, and tested Stirling engines as 
part of the senior level machine design course. Students 
measured the speed at which the crank shaft rotates when there 
is no torque load applied, the no-load speed. The no-load speed 
tests demonstrated 25% variation in speed across the fabricated 
engines, due to variations in fabrication. This outcome exposed 
the high sensitivity of the Stirling engine to manufacturing and 
assembly variations. Here we follow the 5 step approach of 
Figure 1 to explore if the variability of the design could be 
reduced through parametric design changes. We compare the 
insight and speed of the approach with earlier RDM results 
which made use of design of experiments, and show this 
approach offers more insight to causes and mitigations with less 
computation.   

3.1 Step 1 UQ/SA 
Following Figure 1, the first step of the workflow is to quantify 
the uncertainty at the original design and determine noise 
variable contributors through a sensitivity analysis. We used the 
toolchain developed in [3], which creates UQ samples using 

FIGURE 2: UNCERTAINTY OF ENGINE POWER AT 
NOMINAL DESIGN. 

FIGURE 3: SOBOL SENSITIVITY ANALYSIS OF THE 
MODEL COMPUTED POWER VARIABILITY AT NOMINAL 
DESIGN. 
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Latin Hypercube sampling and runs an external Matlab code to 
compute the engine power at each point. Figure 2 shows the 
histogram of the thermodynamic power response. The average 
power is 1.64 W with a standard deviation of ±0.09 W.  

Next, a surrogate model is fit through the UQ sample points 
for use in the sensitivity analysis. A vast selection of machine 
learning methods are available in the Python code library scikit-
learn [17] and used in our toolchain. Here we applied Kernel 
Ridge Regression with a cross-validated grid search routine 
implemented for hyperparameter tuning. The resulting surrogate 
model matched the simulation with r2 = 0.98 on the test data. 
With this surrogate model, Saltelli samples were generated and 
Sobol indices computed. Figure 3 shows the resulting variance 
contribution to the power variability by each noise variable alone 
and by higher order interactions. 

The sensitivity analysis indicates variation of the clearance 
volume and swept volume of compression chamber, the power 
piston diameter and variation of the swept volume of the 
expansion piston as the largest contributors to power variability. 

3.2 Unconstrained Minimization 
The second step in the workflow is to construct interaction in 
Hessian terms to quickly compute the effect of any design 
change has on reducing contributions to response variability. 
First, design variables are selected. We make use of input 
volumetric variables compounded from dimensional geometry 
of the engine. Clearance and swept volumes from compression 
and expansion sides (𝑉 , 𝑉௦௪ , 𝑉 , 𝑉௦௪) were selected as 
design variable 𝑑. From the GSA the largest contributors to 
engine power variability were (∆𝑉 , ∆𝑉௦௪ , ∆𝑉௦௪ , ∆𝑑) and so 
used as noise variables 𝑛. We defined ±4𝜎 ranges for the noise 
variables and a reasonable ±20% range of optimization for the 
design variables. 

The Hessian cross terms are constructed in terms of the 4 
noise variables and 4 design variables, 16 combinations 
requiring a total of 64 runs. Table 1 shows how changing a 
design variable from -20% to +20% results in the tabulated 8 
thermodynamic power range (W), using Eq. (8). It shows, for 
example, that when changing the design variable 𝑉  +20%, the 
variability in thermodynamic power due to the manufacturing 
variation ∆𝑉 will go down by ±0.01 W, a significant reduction 
of the ±0.09 W standard deviation. Table 1 also shows that the 
contribution to thermodynamic power variation due to ∆𝑉௦௪  and 
∆𝑉௦௪  are not significantly affected by any of the proposed 
design changes, since rows 2 and 3 all have small terms.  

Improved understanding is provided by normalizing the 
results of Table 1 into percentages as Sobol indices, using 
Eq. (2). Table 2 shows the impact on a noise variable’s Sobol 
index 𝑆 by changing a design variable by 20%. These are the 
additive changes to each main effect Sobol index. Note these are 
not multipliers on the total variance and do not show how much 
the total variance is percentage reduced. Rather, Eq.s (11) and 
(12) are needed, with results shown in Table 3.   

The interaction impact on response variance indicates 
making an increase of 20% to the nominal 𝑉  will reduce the 

contribution of ∆𝑉 variance by 21% whereas making an 
decrease of 20% to the nominal 𝑉௦௪  will reduce the contribution 
of ∆𝑉 variance by 22%. Overall, Eq. (12) indicates that in 
combination making the two design changes together will show 
a 39% power variance reduction, all due to the input noise 
variation on ∆𝑉 alone, and a 43% reduction due to all four 
input noise variations. Note that no design changes had any 
impact on the thermodynamic power variation caused by ∆𝑉௦௪  
or ∆𝑉௦௪  input noise variations, rows 2 and 3 are near zero. This 
Hessian approach provides insight into how and why design 
changes reduce response variation. 

Figure 4 shows the Hessian calculation results graphically 
as a matrix plot. Each matrix column is a design variable and 
each matrix row is a noise variable. Each plot therefore has a 
design variable x-axis with thermodynamic power as the y-axis, 
and two lines of the response with the noise variable high and 
low. Therefore, parallel lines indicate no impact of a design 
change over a noise contribution, and highly non-parallel lines 
show a strong ability of the design variable to reduce the impact 
of the noise variable. Design variable values are sought which 
bring the two lines together. The upper left plot indicates a large 
change to design variable 𝑉  will reduce ∆𝑉 variability 

TABLE 1: HESSIAN INTERACTION. 

TABLE 2: INTERACTION IMPACT ON SOBOL INDICES. 

TABLE 3: INTERACTION IMPACT ON VARIANCE. 

Design

( , )

N
oi
se

-1.21 0.35 -0.03 1.13 -4.68

-0.03 -0.06 0.00 0.26 -0.47

-0.04 0.13 0.00 0.00 -0.04

-0.93 0.28 -0.03 0.88 -3.63

All -1.49 0.53 -0.04 1.58 -6.08

(%)
Design

( , )

N
oi
se

-20.8 12.2 -3.7 22.4 -38.6

-3.4 -5.0 -0.6 10.5 -13.2

-4.1 7.2 -0.7 -0.6 -4.1

-18.4 10.8 -3.2 19.7 -34.5

All -27.9 14.0 -4.1 23.6 -43.2
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contribution to Power. The upper right plot indicates a large 
change to design variable Vswc will have no impact on Vclc 
Variability contribution to Power.  

Having identified new design values for Vclc and Vswc, we 
proceed to compute UQ/SA at the new design. Figure 5 shows 
the uncertainty of engine power at new design configuration. The 
standard deviation went down from ±0.09W to ±0.06W, 
indicating a (squared) variance reduction by 49%, similar as the 
Hessian reduction predicted 43% given by Eq. (12).  

Next, we continue with Step 4 of the workflow and 
recompute a sensitivity analysis to confirm total response 
variance contributions. Figure 6 shows how the power variance 
was reduced, and that it was due to the Vclc noise variable 
contribution being reduced. This is as expected from the Hessian 
analysis which showed the design changes only mitigate the 
impact of the Vclc noise contribution. 

3.3 Constrained Variation Reduction 
Although a 49% reduction on variance was achieved at the new 
design, the mean power was shifted down to 1.21W from 1.64W. 
To constrain the mean power from shifting, the Jacobian terms 
can be used to shift back the mean closer to the mean at nominal 
design. We therefore revert back to Step 2 of the workflow and 
following Eq. (14) we computed the change in power 𝐽 due to 
changes in design variable 𝑑. This is shown in Table 4. As can 
been seen, we would expect the average power to shift down by 
0.45W with the 20% design changes to Vclc and Vswe.  

Similar to Figure 4, one can create variable plots of the 
power response values versus each design variable. Figure 7 
shows how average power changes when each design variable 
changes by ±20%. The Hessian calculation showed that design 
variables Vclc and Vswe influence on variance response, 
whereas design variable Vswc and Vcle do not. Changing design 

variables Vclc by -20% and Vswe by +20%, as suggested by the 
Hessian calculations, will cause not only a reduction in response 
variance but also a shift in response mean. Hence, Vswc and 
Vcle can be changed to compensate and shift back average 
power.   

3.4 Optimization 
The fourth step in the workflow is to solve an optimization to 
calculate the amount of change required for each design variable 
to produce the same response as the nominal design variables but 
with a reduced standard deviation. The objective function was 
set to minimize variation and constraints were added to maintain 
an average power change of cero and a design space from -20% 
to 20%.  

Eq. (12) for the power variance and the Jacobian derived 
Eq. (15) can be simultaneously solved in a constrained 
optimization 

(16)

The result is a new design configuration shown in Table 4. The 
solution showed an expected 13% reduction in variance with no 
change in mean. Notice the solution drove Vclc large and Vswe 
small, as before. However, the solution did not drive Vswe by 
+20%, but rather by 7%. This is because of the associated mean 
shift. The term Vswc can shift the mean but does not change the 
variation, and it was changed to +20%, accounting for 
approximately +0.25W increase in mean. This restricts the extent 
of the Vswe shift.   

Find 𝑑∗ = arg min
ௗ

𝜎
ଶ 

Subjected to ∆�̅� ≥ 0 
−0.2 ≤ ∆𝑑 ≤ 0.2 

FIGURE 4: INTERACTION HESSIAN GRAPHS. 
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3.5 UQ at New Design 
To confirm a variation reduction and a mean power similar to the 
nominal design, we proceed with Step 5 to quantify uncertainty 
at the new design. Figure 8 shows the standard deviation and 
mean power of the new design. The new design configuration 
shows a standard deviation of ±0.078W and an average power of 
1.63W. This result shows a (squared) reduction of 20% in 
variance and no change in average power in relation to nominal 
design. This actual is in agreement with the variation reduction 
predicted with the Hessian terms of 13%.   

4. DISCUSSION: VALIDATION WITH UNCERTANTY
OPTIMIZATION

The approach successfully computed a new design with less 
variability, and successfully found a new design with less 
variability constrained to target the nominal average power.  
Further, the approach made use of only 48 runs to quantify the 
impact potential of 4 design variable changes on the 
contributions of 3 significantly contributing noise variables.  
Insight was provided that only one of the three most contributing 
noise variables can be impacted by the proposed design changes.  

The results can be compared against a more comprehensive 
exploration of the design and noise space using robust 

optimization. In earlier work [13] a full RDM design of 
experiments was undertaken, using 100 sample points over the 
design space with 40 sample points used in a UQ to cover the 
noise space. This resulted in 4000 runs total. At each design 
space point, the 40 points UQ was executed and the mean and 
variance of the power computed. To these, two statistics 
computed at each point in the design space, and surrogate models 
were fit. Then a Pareto optimization was solved to show the best 
combinations of mean and variance of power over the ±20% 
domain of the design variables. This is shown in Figure 9.   

As can be seen, the Hessian approach solved the problem 
well despite using much less runs than a traditional RDM design 
of experiments approach. The unconstrained Hessian solution 
when varying only two design variables by 20% is shown, which 
approaches the unconstrained solution over all four variables.  
The constrained solution found by the Hessian approach 
generated the same design variable combination solution as the 
full RDM approach, though the predicted variance was not as 
precise.   

Overall, we find the Hessian approach to variation reduction 
exploration intuitive and insightful. It allows one to quickly 
screen design variables for their ability to reduce response 
variance, and with a clear indicator of how the design variable is 
doing this, in terms of interaction contributions of significant 
noise variables.   

5. CONCLUSION
The traditional and well researched robust design methodology 
(RDM) makes use of design of experiments to identify design 
changes that can reduce performance variability. Such 
optimization of uncertainty becomes computationally difficult, 

FIGURE 5: UNCERTAINTY OF ENGINE POWER AT NEW 
DESIGN CONFIGURATION. 

FIGURE 6: SOBOL SENSITIVITY ANALYSIS OF THE 
MODEL COMPUTED POWER VARIABILITY AT NEW 
DESIGN. 

TABLE 4: JACOBIAN MEAN SHIFTS FROM NOMINAL. 

FIGURE 7: MAIN EFFECT JACOBIAN GRAPHS. 

∆P (W) Vclc Vswc Vcle Vswe

-0.31 0.49 -0.05 0.60
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whether through direct optimization of quantified uncertainty as 
an objective function or through Taguchi robust design of 
experiments.  

Here we made use of the more easily computed Hessian 
interaction matrix elements of the variance-contributing noise 
variables and the variables of any proposed design changes. 
Design variable changes with large Hessian terms against noise 
variables are design changes that can reduce variability. Further, 
the Jacobian terms of these design changes can indicate which 
design variables can shift the mean response, to maintain a 
desired performance target. Using a combination of the more 
easily computed Hessian and Jacobian terms, design changes can 
be proposed to reduce variability while maintaining a targeted 
nominal.  

We relate here the Hessian predicted reductions to the 
associated reductions in Sobol indices that indicate the 
percentage contribution of noise variables. We also relate these 
to the percentage reduction expected in the response variance.  
This allows for rapid interpretation of the impact of different 
design variable changes in a UQ/SA optimization workflow.   

The most basic industrial RDM workflow is to estimate the 
variance of a design concept, then propose design changes and 
then estimate the reduced variance after making the design 
changes. We applied this workflow to computational practice 
through uncertainty quantification and sensitivity analysis as a 
first and last step. An example was shown on a Stirling engine 
design where the impact of the top three variance-contributing 
tolerances were studied for variation reduction. The approach 

quickly identified two significant design variables, and found a 
new design with 20% less variance and no change in nominal 
average power. Overall we find this Hessian based RDM 
approach useful for classes of problems with high computational 
burdens.   
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