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Artificial Intelligence for Radiation Oncology
Applications Using Public Datasets
Kareem A. Wahid,* Enrico Glerean,y,z Jaakko Sahlsten,z Joel Jaskari,z Kimmo Kaski,z

Mohamed A. Naser,* Renjie He,* Abdallah S.R. Mohamed,* and Clifton D. Fuller*

Artificial intelligence (AI) has exceptional potential to positively impact the field of radia-
tion oncology. However, large curated datasets - often involving imaging data and corre-
sponding annotations - are required to develop radiation oncology AI models.
Importantly, the recent establishment of Findable, Accessible, Interoperable, Reusable
(FAIR) principles for scientific data management have enabled an increasing number of
radiation oncology related datasets to be disseminated through data repositories,
thereby acting as a rich source of data for AI model building. This manuscript reviews the
current and future state of radiation oncology data dissemination, with a particular
emphasis on published imaging datasets, AI data challenges, and associated infrastruc-
ture. Moreover, we provide historical context of FAIR data dissemination protocols, diffi-
culties in the current distribution of radiation oncology data, and recommendations
regarding data dissemination for eventual utilization in AI models. Through FAIR princi-
ples and standardized approaches to data dissemination, radiation oncology AI research
has nothing to lose and everything to gain.
Semin Radiat Oncol 32:400−414� 2022 The Author(s). Published by Elsevier Inc. This is an
open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/
)

Introduction

The rise of artificial intelligence (AI) and machine learning
in recent years has seen an explosion in technical

approaches to statistical modeling, driven mostly by innova-
tion on large datasets in the computational science commu-
nity. These groundbreaking efforts have benefitted
immensely from the availability of large-scale highly anno-
tated datasets, such as the ImageNet visual recognition task
dataset,1 or the Modified National Institute of Standards and

Technology (MNIST) handwriting dataset.2 These datasets
have allowed researchers to train and benchmark AI algo-
rithms using transparent and comparable methods through a
known corpus with defined properties at large-scale, thereby
substantially accelerating AI growth. In fact, some have pur-
ported that the modern AI age can be traced to the convolu-
tional neural network AlexNet winning the ImageNet
challenge in 2012;3 clearly, this task could not have been
accomplished without the careful construction and curation
of the ImageNet platform several years earlier.4 During the
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same interval, the “Big Cancer Data” era was arguably initi-
ated by the availability of large-scale public cancer databases.
Specifically, The Cancer Genome Atlas (TCGA) has had a
transformative effect on oncologic research.5 Crucial for the
oncologic imaging community, and consequently the radia-
tion oncology community, a subsidiary effort, The Cancer
Imaging Archive (TCIA),6 was originally developed as a
repository for matched image data from TCGA cases; how-
ever, TCIA has become a leader in its own right for distribut-
ing reliable and high-quality datasets independent of TCGA.
Subsequently, radiation oncology has now entered a new era
for AI applications due to an increasing deluge of data
afforded by resources such as TCIA. In the following sec-
tions, we review and discuss the role of data sharing in the
radiation oncology ecosystem, important regulatory and eth-
ical considerations, and contemporary databases available for
public investigation.

FAIR Data Publication as a
Normative Component of Modern
Scientific Dissemination and
Knowledge Generation as a
Coherent Process
Importantly, the availability of big data on its own does
not ensure the development of robust, reproducible, and
clinically impactful datasets. This is particularly true in
medical domains such as radiation oncology, where data
can be scarce, heterogeneous, and often non-standardized.7

To ensure the usefulness of large datasets and foster data
re-usability, it is fundamental to follow the Findable,
Accessible, Interoperable, Reusable (FAIR) principles for
scientific data management.8 These principles emphasize
machine-actionability, that is, the capacity of computa-
tional systems to find, access, interoperate, and reuse data
with minimal human intervention. To foster the wide-
spread implementation of FAIR scientific principles in
day-to-day scientific workflows, several steps can and
should be taken by practitioners of open-science practices
in the radiation oncology community. These practices
should include the utilization of study preregistration,
manuscript preregistration, open-access journals, and
code/data sharing (Fig. 1). We briefly review these compo-
nents here; an in-depth discussion on these concepts can
be found in greater detail in Fuller et al.9

Scientific research is often plagued by widespread biases,
for example, “p-hacking” (repeat measurements leading to
significant findings),10 among others.11 Study preregistration
serves as a tool to potentially reduce these pitfalls.12 The con-
cept of preregistration involves specifying details of a
research plan on a registry, such as through the Open Sci-
ence Framework,13 before performing the research study.
Notably, the practice of preregistration has been shown to
increase analytical rigor and increase the publication of null
findings.14

After study completion, the utilization of preprints, a
manuscript that precedes formal peer review, allows for
rapid dissemination of study findings to the general pub-
lic.15 Drawing inspiration from the well-known physics
preprint server arXiv, in 2019 a clinical medicine preprint
repository, medRxiv, was established.16 Since its incep-
tion, medRxiv has quickly become a leading figure in
medically related preprint dissemination.17 The benefits
of publishing preprints for radiation oncology are numer-
ous, chief among which include near-immediate distribu-
tion of scientific findings, ease of use, circumvention of
journal politics and dominant narratives, and complete
access by the general public. Naturally, the use of pre-
prints raises the potential for faulty analysis. However,
these concerns seem minor compared to the relative ben-
efit of rapid dissemination of information which could
then be verified through indicators of internal validity
and wider scientific community evaluation. Closely
related to concepts regarding preprints is the use of
open-access options for scientific manuscripts. By allow-
ing wider distribution of scientific findings, open-access
options may lead to a greater return on investment for
scientific innovation.18 As of 2008, the National Institutes
of Health (NIH) has mandated publicly funded research
be made available through PubMed Central.19 Moreover,
as of 2021, the Plan S initiative will require that all EU-
funded efforts be published through open access journals
or platforms.20 These geopolitical pushes highlight the
importance of open access models for manuscript dissem-
ination and will likely be a core staple of future radiation
oncology research.

Finally, data and code accessibility, which are particularly
germane to AI-driven analyses in radiation oncology, form a
more recently established central tenant for disseminating
scientific information. An in-depth discussion of data reposi-
tories is described in other sections of this review (see “NCI
Policy, Vision, and Supported Repositories” and “TCIA as a
Model for Effective FAIR Data in Oncology”). Moreover, the
need for structured data and corresponding annotations has
prompted the rise of journals dedicated to publishing data
and/or corresponding records explaining dataset contents,
termed “data descriptors”.21 Examples of journals pub-
lishing data descriptors include Medical Physics and
Nature Scientific Data.22 Finally, code repositories, such
as GitHub, have allowed for the rapid and dynamic
development of code related to scientific studies in the
medical domain, and fostered community engagement for
future developments.23

While the current components of scientific dissemina-
tion remain relatively independent, in the future, one
could envision a modular framework where automated
processes link these components in an integrated fashion
(Fig. 2). Corresponding checklists ensuring proper com-
pletion of steps could allow for the routine integration of
these components in scientific workflows. Through these
processes, the quality of scientific dissemination would
increase, which could have great potential for advances
in radiation oncology research.
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Figure 2 Proposed transparent modular scientific dissemination process, using metadata or digital object identifier
(DOI) to link individual processes. Reprinted from Fuller et al.9 (Color version of figure is available online.)

Figure 1 Graphical representation of current independent steps in scientific dissemination process. Reprinted from
Fuller et al.9 (Color version of figure is available online.)
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Annotation/Ontology
Considerations for Public Datasets
Broadly, there are two main types of data relevant to AI
model development using public datasets in radiation oncol-
ogy - image data formats and image annotation formats. The
majority of hospital picture archiving and communication
system infrastructure stores medical images in Digital Imag-
ing and Communications in Medicine (DICOM) format,
which is the recognized international standard for image
data storage.24 For ease of distribution, DICOM data is often
transformed into Neuroimaging Informatics Technology Ini-
tiative format, which is increasingly seen as a standard for
reproducible imaging research.25 While image data is often
standardized and distributed relatively easily due to estab-
lished nomenclature and customs, unfortunately, image
annotations are not often stored in a single common for-
mat.26 For example, image annotations can be stored in pic-
ture archiving and communication system and other systems
as DICOM presentation state objects which may vary from
vendor to vendor. The recently developed DICOM struc-
tured reporting (DICOM-SR) standard has allowed to some-
what combat this lack of standardization in annotation but
there still remains problems with intersite variability of anno-
tation templates.27 For non-graphic annotations, the annota-
tion and image markup format was recently developed and
incorporated into DICOM-SR.28 Within radiation oncology,
the DICOM radiotherapy (DICOM-RT) standard has allowed
for a systematic characterization of radiotherapy-related
data.29 However, DICOM-RT was not developed with AI/
machine-learning applications in mind, thus annotations
derived from these files can at times be challenging to incor-
porate directly into models; community-driven undertakings
have developed some solutions to these problems.30,31 Thus,
ongoing efforts will be needed to reach a consensus on the
best practices to standardize image annotation data for radia-
tion oncology applications.

Outside of file objects and corresponding metadata stan-
dardization, there are additional considerations for radiation
oncology annotation data that are crucial for public distribu-
tion. Specifically, nomenclature conventions can often vary
across institutions. For example, nomenclature for target/
non-target structures is often highly variable (Table 1). Sub-
sequently, standardized nomenclatures applied to targets,

normal tissue structures, and treatment planning concepts
and metrics would allow for the more facile integration of
radiation oncology data for standardized distribution and
use in AI models. Therefore, from 2015-2018, the American
Association of Physicists in Medicine (AAPM) collated a
group of experts in imaging, radiation oncology, and
machine learning (Task Group 263), to provide radiation
oncology nomenclature guidelines for use in clinical trials,
data-pooling initiatives, population-based studies, and rou-
tine clinical care.32,33 Among the many accomplishments of
AAPM Task Group 263, the group was able to standardize:
(1) structure names across image processing and treatment
planning system platforms, (2) nomenclature for dosimetric
data, (3) templates for clinical trial groups, and (4) formal-
isms for nomenclature schema which could accommodate
the addition of other structures defined in the future.
Through these guidelines, annotation processes for radiation
oncology datasets and corresponding public data deposition
should be more easily standardized for use in reproducible
and robust research applications.

International Differences in Privacy
Guidelines
In research integrity and ethics, it is accepted across public,
health, and research institutions around the world that the
privacy of the study participants must always be respected
and never compromised to avoid concrete risks such as iden-
tity theft, blackmailing, or any other possible adverse conse-
quences that a subject might face if their identity is disclosed
with the data. Institutional review boards and ethical com-
mittees ensure that scientific research follows the highest
standards to protect the safety of human subjects. However,
ethics is not law, and while the ethical review process is com-
parable across countries, the legal principles and interpreta-
tion of data protection vary considerably and even deter
FAIR data reuse. Currently in the USA, the Health Insurance
Portability and Accountability Act (HIPAA) advises the
removal of 18 pieces of protected health information (PHI)
when sharing de-identified data34 (Table 2). By removing
this PHI, human subject data in the USA can be considered
“anonymous” or at least “anonymous enough” so that their
data is considered to not fall under HIPAA and can then be

Table 1 Example of Variations in Standardized Nomenclatures Reported for Non-Target Structures by 16 Institutions

Structure Number of
Institutions

Examples

Left optic nerve 12 Lt Optic Nerve, OPTICN_L, OPTNRV_L, optic_nrv_l, L_optic_nerve,
OPTIC_NRV_L, OpticNerve_L, LOPTIC, OpticNerve_L, Lef Optic Nerve,
ON_L

Left lung 12 Lt Lung, Lung_L, LUNG_L, lung_l, L_lung, LLUNG, L Lung
Both lungs 12 Lungs, LUNGs, LUNG_TOTAL, lung_total, combined_lung, LUNG, LUNGS,

Lung,BilatLung, Lung_Both
8th Cranial nerve 7 CN_VIII, cn_viii, CN8, CN_8
Right external iliac artery 2 A_ILIAC_E_R, a_iliac_e_r

Data adapted from American Association of Physicists in Medicine Task Group 263 Report.33
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easily reused for scientific research. However, concerns have
been raised regarding the potential for intricate biomedical
data that could be used for re-identification purposes, for
example, brain fingerprinting35 and sophisticated algorith-
mic methods for re-identifying supposedly anonymous indi-
viduals. With these concerns in mind, the European
Commission has worked on the General Data Protection
Regulation (GDPR) which was unveiled in May 2018.
GDPR's main goal is to protect data subjects by ensuring that
organizations respect and protect the personal data associ-
ated with an individual. While GDPR’s main goal is aligned
with research ethics to enable full data protection of the data
subject, its strict guidelines have however been perceived at
times by the scientific community as an impediment to sci-
entific progress.36,37 The current conundrum of having FAIR
data that should also adhere to GDPR is potentially solvable
with improved techniques for de-identification as well as
other approaches like differential privacy and federated
analysis.38

Considerations for Anonymization,
De-identification and Privacy-
Enhancement (e.g., “De-facing”) for
Public Datasets
Chief among concerns for utilizing patient-derived medical
data in public datasets is proper anonymization and de-iden-
tification of PHI. The terms de-identification and anonymiza-
tion, when applied to medical data can encompass a wide

array of definitions, and at times can be vague, inconsistent,
or even contradictory.39 Often, data are said to be anony-
mized when PHI has been completely removed such that the
data can no longer be associated with an individual in any
manner, while de-identification refers to the general removal
of PHI.40 More technical definitions include de-identification
referring to rule-based techniques to remove PHI, with ano-
nymization referring to statistical/probabilistic techniques to
remove PHI.39 For the purposes of this review, we will refer
to the terms de-identification and anonymization inter-
changeably.

For obvious pieces of medical information, such as
patient name, medical record number, date of birth, and
other demographics, the anonymization process is often
straightforward in removing this data or meta-data from
associated files. DICOM formatted files typically contain
metadata that links images to information regarding
patient demographics and image acquisition parameters,
among other information.41 In cases where meta-data is
available in DICOM or similar files, these data can be
stripped using commonly available tools, such as the
Radiological Society of North America Clinical Trial Pro-
cessor,42 though care should still be taken to ensure all
data has been properly modified. Moreover, PHI may be
“burned” into existing images, such as when considering
radiographs directly scanned into electronic medical
records. These embedded pieces of information can often
be removed using optical character recognition techni-
ques or similar methods; however, they can provide addi-
tional challenges in ensuring the full removal of text-
based PHI.43

Table 2 HIPAA Data Elements That Encompass the “Safe Harbor”Method

Data Element Description

Name -
Address All geographic subdivisions smaller than a state, including street address, city,

county, precinct, ZIP code, and their equivalent geocodes, except for the initial 3
digits of the ZIP code if, according to the current publicly available data from the
Bureau of the Census:
(1) The geographic unit formed by combining all ZIP codes with the same 3 initial
digits contains more than 20,000 people; and
(2) The initial 3 digits of a ZIP code for all such geographic units containing 20,000
or fewer people is changed to 000.

Dates related to individual birth date, admission date, discharge date, death date, and all ages over 89 and all
elements of dates (including year) indicative of such age, except that such ages
and elements may be aggregated into a single category of age 90 or older

Telephone numbers -
Fax numbers -
E-mail address -
Social security number -
Medical record number -
Health plan beneficiary number -
Account number -
Certificate or license number -
Vehicle/other device serial number That is, license plate numbers
Device identifiers/serial numbers -
Universal resource locators That is, web URLs
Internet Protocol address -
Biometric identifiers Including finger- and voice- prints
Photographic image Full-face photographs and any comparable images
Misc. Any other characteristic that could uniquely identify the individual
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Perhaps the subject of most controversy within the
domain of publicly releasing patient medical image data con-
cerns imaging data that contains readily identifiable facial
features. HIPAA references “full-face photographs and any
comparable images” as a part of PHI. This raises specific con-
cerns for high-resolution images where the intricacies of
facial features can be reconstructed (i.e., CT scans, MRI, etc.)
to generate similar “comparable” visualizations of a patient’s
face with relative ease. Several studies have shown the poten-
tial danger in releasing unaltered medical images containing
facial features as they can often be easily recognized by
humans or machines.44−46 For example, using facial recogni-
tion software paired to MRI-derived facial reconstructions,
83% of research participants were able to be identified from
their MRI scan.46 Within the realm of radiation oncology,
perhaps the avenue where the greatest amount of concern
for facial identification is in the generation of public medical
imaging datasets of head and neck cancer. While brain
images are often processed such that obvious facial features
are removed (i.e., skull stripping), these crude pre-process-
ing techniques will likely remove important information for
building predictive models with head and neck cancer imag-
ing data, prohibiting their use in data resharing strategies.
“De-facing” tools, where voxels that correspond to the areas
of the patient’s facial features are either removed or altered
are one solution. However, they encounter the problem of
information loss in important areas needed for predictive
modeling or treatment planning. While several studies have
investigated the effects of de-facing for applications in neuro-
imaging,47−50 to our knowledge only one study has investi-
gated the effects of de-facing tools for radiation oncology
applications in head and neck cancer.51 As an example use
case, we demonstrate organs at risk are obscured with 4
state-of-the-art de-facing tools49,52−54 (Fig. 3), which would
have obvious downstream consequences for analysis. Impor-
tantly, Sahlsten et al. highlight that the specific selection of
de-facing methods has a significant impact on the radiother-
apy organs at risk for AI algorithmic development, in some
cases rendering structures completely unusable.51 While
existing tools are seemingly unsatisfactory, future de-facing
approaches based on deep learning may be a promising
solution.55

NCI Policy, Vision, and Supported
Repositories
Broadly, the sharing of biomedical data generated through
research studies allows the scientific community to expedite
the translation of findings into knowledge, products, and
procedures to improve health.56 As of 2003, the NIH has
implemented a Data Sharing Policy which encourages data
to “be made as widely and freely available as possible while
safeguarding the privacy of participants, and protecting con-
fidential and proprietary data.” Specifically, investigators
were required to specify data sharing protocols within NIH
grant applications. These protocols for data sharing could be
accomplished through the use of data archives, data

enclaves, or under the auspices of the principal investigator.
Congruent with the increasing ability to generate, store,
share, and combine data, in 2015 the NIH initiated a more
comprehensive data sharing policy in tandem with efforts to
modernize data sharing infrastructure in its Plan for Increas-
ing Access to Scientific Publications and Digital Scientific
Data from NIH Funded Scientific Research.57 Effective in
2023, the NIH has issued a new Final NIH Policy for Data
Management and Sharing which will require NIH funded
researchers to prospectively submit a plan detailing how sci-
entific data and metadata will be managed and shared taking
into account potential restrictions or limitations58; this plan
will replace the 2003 NIH Data Sharing Policy. These poli-
cies underscore the importance of data stewardship and
management for nationally-funded research, and have influ-
enced data sharing practices to funders of radiation oncology
research, particularly the National Cancer Institute (NCI).

Within the Final NIH Policy for Data Management and Shar-
ing, detailed documentation has been provided to help research-
ers select specific repositories for data deposition (“Selecting a
Repository for Data Resulting from NIH-Supported Research”).
Ideally, where applicable, data should be deposited in discipline
or data-type specific repositories. The NIH has provided a list of
approved specific repositories at https://www.nlm.nih.gov/
NIHbmic/domain_specific_repositories.html; a subset of radia-
tion oncology related repositories is shown in Table 3. For an in-
depth discussion on one specific NIH-approved data repository
particularly salient for radiation oncology applications, we refer
the reader to the section of our review titled “TCIA as a Model
for Effective FAIR Data in Oncology”. When no appropriate dis-
ciplinary or data-type specific repositories are available, the NIH
recommends the use of generalist or institutional repositories.
For example, Figshare is an appropriate and well-established
generalist repository that can permanently store datasets and
assigns DOIs to all published research items.59

Driven by improvements and innovations in cloud-
computing paradigms for use in big data research, the
NCI has created the Cancer Research Data Commons
(CRDC) as a component of a national cancer data ecosys-
tem.60 The NCI CRDC includes cloud-based domain-spe-
cific data repositories and analysis-focused cloud resources
to facilitate collaborative and standardized research practi-
ces using diverse data types. Within the CRDC, several
data repositories have been established, such as the Geno-
mic Data Commons61 and the Imaging Data Commons.62

As opposed to previously described data repositories, the
cloud-based infrastructure of the CRDC allows researchers
to utilize data in real-time without the need for local
downloading of data files. Moreover, through these data
repositories, disparate data sources (imaging, genomic,
proteomic, clinical trial, etc.) can be combined and investi-
gated with compute resources provided by cloud environ-
ments, thereby providing researchers with the ability to
perform robust harmonized analysis. An example of the
IDC user portal interface is shown in Figure 4. The inte-
grated analysis capabilities provided by infrastructure such
as CRDC will likely have a significant impact on radiation
oncology research in coming years.
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TCIA as a Model for Effective FAIR
Data in Oncology
TCIA is a recently developed service that de-identifies and
hosts various medical imaging datasets and supporting data
for public distribution. Launched in 2011 with funding from
the NCI,6 this integrated database has offered the imaging
community large volumes of curated data for exploratory
image analysis, computational model development, and

model validation.63 Provided human data originates from
various sources, ranging from small-scale calibration studies
to large-scale clinical trials. These imaging data have been
crucial to developing contemporary medical AI models and
catapulted TCIA as a de-facto leader of medical image data
dissemination (Fig. 5). It stands to reason that TCIA will con-
tinue to provide much-needed high-quality datasets for clini-
cal decision support tool development in the coming years,
particularly for radiation oncology.

Figure 3 Comparison of MRI de-facing tools. We tested the performance of 4 state-of-the-art tools for face de-identifi-
cation. On the top row, the original T2-weighted MRI with tissue annotations (lymph node levels, glands) are shown
in blue. Masks that each tool automatically creates to remove facial structures from the image volume are shown in
green. These tools are popular within the neuroimaging community and were designed for defacing MRIs while pre-
serving brain structures. In many cases, tissues of interest for radiation oncology applications are obscured or removed
through the use of these tools. (Color version of figure is available online.)
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Table 3 Current National Institute of Health (NIH)-Supported Domain-Specific Data Repositories Related to Radiation Oncol-
ogy Research

Repository Description

The cancer imaging
archive (TCIA)

TCIA is a service which de-identifies and hosts a large archive of medical images of cancer accessi-
ble for public download. The data are organized as “Collections”, typically patients related by a
common disease (e.g., lung cancer), image modality (MRI, CT, etc.) or research focus. DICOM is
the primary file format used by TCIA for image storage. Supporting data related to the images
such as patient outcomes, treatment details, genomics, pathology, and expert analyses are also
provided when available.

Metabolomics work-
bench (MetWB)

The Metabolomics Program's Data Repository and Coordinating Center (DRCC), housed at the
San Diego Supercomputer Center (SDSC), University of California, San Diego, has developed
the Metabolomics Workbench. MetWB will serve as a national and international repository for
metabolomics data and metadata and will provide analysis tools and access to metabolite
standards, protocols, tutorials, training, and more.

Cancer nanotechnology
laboratory
(caNanoLab)

caNanoLab is a data sharing portal designed to facilitate information sharing in the biomedical
nanotechnology research community to expedite and validate the use of nanotechnology in bio-
medicine. caNanoLab provides support for the annotation of nanomaterials with characteriza-
tions resulting from physico-chemical, in vitro, and in vivo assays and the sharing of these
characterizations and associated nanotechnology protocols in a secure fashion.

Genomic data
commons (GDC)

The mission of the GDC is to provide the cancer research community with a unified data reposi-
tory that enables data sharing across cancer genomic studies in support of precision medicine.
The GDC contains clinical, biospecimen, and molecular data from several cancer research
programs.

Proteomic data
commons (PDC)

The Proteomic Data Commons hosts mass spectra and process data from cancer proteomic
experiments. Many datasets have corresponding genomic and/or imaging data available in
other nodes of the Cancer Research Data Commons.

The pediatric genomic
data inventory (PGDI)

PGDI is an open-access resource for identifying and locating genomic datasets that can be used
to further the understanding of childhood cancers and develop better treatment protocols for
sick children. This resource lists ongoing and completed molecular characterization projects of
pediatric cancer cohorts from the United States and other countries, along with some basic
details and reference metadata. To contribute data to the PGDI, researchers need to create a
secure submitter account through the PGDI Contributor Application at https://ocg.cancer.gov/
programs/target/pgdi/contributor-application. The PGDI catalog will be continually updated as
new information is deposited by the research community.

FaceBase FaceBase is a NIDCR-funded data hub that hosts variety of data generated through dental, oral,
and craniofacial research using model organisms and humans. The data offer spotlights high-
throughput genetic, molecular, biological, imaging and computational techniques, as well as the
database of 3D Facial Norms, developmental atlases and the Ontology of Craniofacial Develop-
ment and Malformation (OCDM), Human Genome Analysis Interface (HGAI) and other
resources.

ClinicalTrials.gov ClinicalTrials.gov is a registry and results database of publicly and privately supported clinical
studies of human participants conducted around the world.

Repositories and descriptions were derived from NIH Data Sharing Repositories online page (https://www.nlm.nih.gov/NIHbmic/domain_spe
cific_repositories.html) on February 20, 2022.

Figure 4 Example of imaging data commons (IDC) portal user interface. Reprinted from Fedorov et al.62 (Color
version of figure is available online.)

Seminars in Radiation Oncology 407

https://ocg.cancer.gov/programs/target/pgdi/contributor-application
https://ocg.cancer.gov/programs/target/pgdi/contributor-application
https://www.nlm.nih.gov/NIHbmic/domain_specific_repositories.html
https://www.nlm.nih.gov/NIHbmic/domain_specific_repositories.html


The overarching structure of the TCIA is stratified into
individual collections defined by a common disease (e.g.,
brain cancer, head-neck cancer, lung cancer), imaging
modality (e.g., MRI, CT, PET, histopathology), and/or
research focus. Collections are assigned persistent digital
object identifiers (DOIs), thereby allowing researchers to ref-
erence and acquire datasets.64 DOIs contain “Primary Data”,
that is, radiological or pathological images, which can be
coupled to supporting data (demographics, clinical out-
comes, annotations, genomic information, etc.). Before pub-
lication, datasets are rigorously curated to ensure acceptable
image quality and data integrity. Currently, TCIA utilizes the
Posda open-source framework65 to aid in the curation pro-
cess and remove any identifying information in metadata.
Collection contents are described through “wiki pages”,
which also list relevant publications and instructions for data
use. Increasingly, focused “data descriptors,” in-depth manu-
scripts detailing individual datasets, such as those published
through Nature Scientific Data,22 are also generated for
TCIA collections to engender greater transparency in data
generation, collection protocols, and intended use-cases. For
end-users, TCIA provides web interfaces and software
(National Biomedical Imaging Archive Data Retriever) to eas-
ily retrieve and catalog collections on local computing infra-
structure.

TCIA data is most often available through standardized
imaging formats such as DICOM.24 Importantly, TCIA
has formed a corpus for not only raw imaging data, but
also corresponding supporting data, such as region of
interest segmentations through DICOM radiotherapy
structure set (RTSTRUCT) files and clinical outcome
data. Therefore, TCIA houses a rich stream of informa-
tion for supervised machine learning segmentation and
classification models. For radiation oncology applications,
DICOM radiotherapy plan (RTPLAN) and DICOM radio-
therapy dose (RTDOSE) are often also included in collec-
tions which can be used for model development germane
to radiation therapy planning. A list of currently available
TCIA collections that include RTPLAN and/or RTDOSE
data is shown in Table 4. Currently, most collections
with corresponding radiotherapy planning data corre-
spond to head and neck cancer. Importantly, this subset
of data comes with additional important considerations
for re-use (discussed more in the “Considerations for
Anonymization, De-identification and Privacy-Enhance-
ment (e.g., “De-facing”) for Public Datasets” section). As
TCIA continues to engender straightforward integration
of community contributions, the number of collections
that include radiotherapy-related data is expected to con-
tinue to rapidly increase over time.

Figure 5 Publications over time related to the cancer imaging archive (TCIA) databases. Graph generated from TCIA
website (https://www.cancerimagingarchive.net/publications/) on February 18, 2022. (Color version of figure is avail-
able online.)
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Examples of Published “Challenges”
Using Public Datasets
Data “challenges,” that is, competitions where datasets are
publicly provided to interested participants to solve a specific
problem, have been a staple in developing modern-day cut-
ting-edge AI algorithms. For example, the ImageNet Large
Scale Visual Recognition Challenge, a competition where
participants are tasked with classifying photographic images
of common objects, was the impetus for the rise of deep
learning approaches for computer vision applications.66 A
similar trend has emerged in the medical domain, particu-
larly for medical imaging, where anonymized data is pro-
vided to challenge participants to solve important healthcare
problems.67,68 The field of radiation oncology, which is
heavily centered on image-based workflows, is no exception
to this increasing trend, with several radiotherapy-related
data challenges emerging in recent years. Here, we summa-
rize a few key data challenges that have been particularly
impactful for radiation oncology applications.

In 2016, inspired by the up-and-coming trend of radio-
mics, i.e., the use of quantitative features derived from medical
imaging,69 the University of Texas MD Anderson Cancer Cen-
ter and the Medical Image Computing and Computer Assisted
Intervention Society organized two public radiomics chal-
lenges in the head and neck radiation oncology domain.70

Through the Kaggle InClass commercial educationally-ori-
ented platform,71 the organizers tasked participants to develop
predictive models to: (1) classify patients based on human
papillomavirus (HPV) status, and (2) predict local tumor
recurrence status. A large number of contrast-enhanced CT
images of oropharyngeal cancer patients and corresponding
clinical data72 were provided to participants to build models
to solve the 2 tasks through evaluation of independent test
data (Fig. 6). The majority of participants used pre-defined
radiomic features extracted from images in combination with
machine learning models to solve the 2 challenges. Many par-
ticipants also utilized the provided clinical data in constructing
their models. Interestingly, the winner of the HPV classifica-
tion challenge only utilized radiomic features, while the

winner of the recurrence prediction challenge only utilized
clinical features. While the challenge has not been renewed
for additional iterations, these important results highlighted
the difficulty of integrating imaging and clinical data not only
for designing data challenges in radiation oncology but also
for eventual downstream model implementation.

In 2019, the AAPM hosted a 2-part competition, titled the
“RT-MAC” challenge, for auto-segmentation of radiotherapy-
related structures using MRI scans.73 Participants were
tasked with developing algorithms to segment parotid
glands, submandibular glands, and various lymph node lev-
els (Fig. 7). The challenge used a relatively limited number
of training cases (n = 35), but participants were still able to
generate segmentation results of reasonable quality on the
independent pre-AAPM challenge test set (n = 10) and online
challenge test set (n = 10). These datasets have become pub-
licly available in their entirety through TCIA,73 allowing for
the community to continue improving upon methods for
radiotherapy planning segmentation. Moreover, given the
rapidly increasing interest in MRI-guided radiotherapy,74 it
is foreseeable that analogous datasets could be released in
the near future to aid in adaptive radiotherapy auto-segmen-
tation applications.

More recently, the HEad and neCK TumOR (HECKTOR)
challenge was established to benchmark the utility of compu-
tational methods using PET/CT imaging for head and neck
cancer radiotherapy-related applications. Initiated in 2020
through the Medical Image Computing and Computer
Assisted Intervention Society, the first edition of the chal-
lenge sought to develop automatic methods to segment pri-
mary gross tumor volumes in patients with oropharyngeal
cancer (Fig. 8).75 The challenge utilized data from multiple
Canadian and European medical institutions to provide par-
ticipants with highly curated imaging and segmentation
data. Participants were able to develop AI models, predomi-
nantly based on deep learning, to generate high-quality pri-
mary tumor segmentations on unseen test data. In the 2021
edition of the challenge, additional imaging data from a
greater number of institutions were added to the training
and testing datasets. Moreover, new tasks based on the

Table 4 Currently Published Data Collections on The Cancer Imaging Archive (TCIA) Related to Radiation Oncology
Applications

Collection Location Subjects Image Types Supporting Data

Vestibular-Schwannoma-SEG Ear 242 MR, RTSTRUCT, RTPLAN, RTDOSE Image Analyses
HNSCC Head-Neck 627 CT, PT, MR, RTSTRUCT, RTPLAN,

RTDOSE
Clinical, Image Analyses

NSCLC-Cetuximab
(RTOG-0617)

Lung 490 CT, RTSTRUCT, RTDOSE, RTPLAN Clinical

TCGA-HNSC Head-Neck 227 CT, MR, PT, RTSTRUCT, RTPLAN,
RTDOSE, Pathology

Clinical, Genomics

HNSCC-3DCT-RT Head-Neck 31 CT, RTSTRUCT, RTDOSE Image Analyses
Head-Neck-PET-CT Head-Neck 298 PT, CT, RTSTRUCT, RTPLAN,

RTDOSE
Clinical, Image Analy-
ses, Software/Source
Code

NRG-1308 (RTOG 1308) Lung 12 CT, RTSTRUCT, RTPLAN, RTDOSE Image Analyses
Head-Neck Cetuximab
(RTOG 0522)

Head-Neck 111 CT, PT, RTSTRUCT, RTPLAN,
RTDOSE

Image Analyses

Data were generated from TCIA collections page (https://www.cancerimagingarchive.net/collections/) using RTDOSE or RTPLAN as filtering
criteria on February 18, 2022.
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prediction of progression-free survival were integrated into
the challenge. While the official post-challenge analysis for
the 2021 edition has not been made public yet, participants
were shown to improve upon segmentation from the previ-
ous year's challenge76 and demonstrate encouraging results
to predict prognosis.77,78 A new edition of the challenge has
been planned for 2022, which will include incorporating

metastatic cervical lymph node segmentations and additional
datasets from more institutions. The HECKTOR challenge is
increasingly seen as a leader in current day radiation oncol-
ogy related data challenges; we anticipate it will lead to
important clinical innovations for translational AI
approaches in coming years as its corresponding datasets
continue to mature.

Figure 6 Overview of 2016 oropharynx cancer (OPC) radiomics challenge. Reprinted from Elhalawani et al.70 (Color
version of figure is available online.)
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Health Equity Considerations
related to Public Datasets
While AI holds immense promise in improving the radiation
oncology workflow through public medical imaging datasets,
a thorough understanding of the current limitations of exist-
ing AI approaches is crucial before their widespread imple-
mentation. One such limitation is algorithmic bias/fairness,
which if severe enough could further inequity and disparities
in patient care. Algorithmic bias is not unique to advanced
machine learning approaches. For example, a landmark

paper by Obermeyer et al. demonstrated a widely used com-
mercial algorithmic risk score based on simple demographic
factors severely underestimated the health needs of the sick-
est marginalized groups (black patients) by focusing on
financial costs.79 Subsequently, it is crucial to capture the
biases in AI systems before they can be deployed in large-
scale clinical settings. Unfortunately, most guiding principles
for machine learning in healthcare applications do not
directly address model fairness in detail.80 However, there is
growing widespread interest in racial, gender, and socioeco-
nomic disparities of AI-based healthcare algorithms.

Figure 7 Contoured structure [left submandibular gland (red), right submandibular gland (green), left parotid gland
(yellow), right parotid gland (brown), left lymph node level II (blue), right lymph node level II (pink), left lymph node
level III (orange), right lymph node level III (light-blue)] for 2019 “RT-MAC” challenge. Reprinted from Cardenas
et al.73 (Color version of figure is available online.)

Figure 8. Overview of 2020 HEad and neCK TumOR (HECKTOR) challenge. Reprinted from Oreiller et al.75 (Color
version of figure is available online.)
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Radiation oncology is not immune to biases in patient
care, both at the level of the individuals,81 and systemi-
cally.82 It is well documented that marginalized racial groups
often receive inferior care compared to wealthy or white
patients,83 so the potential amplification of inequality caused
by AI software in radiation oncology is a significant concern.
While racial disparities have been modestly investigated for
healthcare in AI generally, specific mechanisms for the exis-
tence of these disparities in imaging data/models remains rel-
atively unexplored. However, a recent study by Banerjee
et al.84 demonstrated that standard deep learning models
could predict self-identified race from medical images with
high performance. Importantly, they showed that this ability
was not due to imaging-related surrogate covariates for race.
Moreover, the performance of models persisted over a wide
spectrum of clinical applications and image modalities, sug-
gesting a significant and prevalent problem that warrants fur-
ther investigation. These results are important since they
suggest AI can trivially predict race where clinical experts
cannot, thereby limiting human oversight and leading to
potential downstream disparities, particularly for minorities.

In an ideal setting, machine learning models should be
trained and evaluated on data that accurately represent real-
world data. In designing public data challenges, these con-
cepts should be considered in the curation of training and
test sets. Since data-driven methods inherently recognize

patterns in training data, any bias already present in the data
will be propagated to downstream models. Naturally, all
datasets at some level will contain biases inherently tied to
the sampling procedures. Importantly, biased sampling may
lead to inaccurate predictions in unseen evaluation data, as
illustrated in Figure 9. For example, data from public access
clinical repositories are often disproportionately represented
by Caucasian males. Ensuring representative sampling across
time and data sources is an important method to reduce bias
inherent to training data.85

Recommendations for operationalizing fairness for AI in
medical data have been previously suggested,80 and these
approaches should be subsequently implemented in imaging
data for radiation oncology applications/data challenges.
When curating datasets for data challenges or public dissemi-
nation, regardless of the target application, data on race, eth-
nicity, and socioeconomic status should also be collected
and made available in order to assess their relationship to the
underlying models where appropriate. Methods to circum-
vent algorithmic bias would include increases in model
interpretability/explainability, either through inherently
interpretable models or post-hoc techniques.86 Moreover,
when developing and conceptualizing new AI models, it
stands to reason that individuals with a vested interest in
combating inequalities should be included in discussions to
address potential sources and consequences of bias.87

Figure 9. Statistical biases associated with AI predictions. Adapted from Chua et al.85 (Color version of figure is
available online.)
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Conclusion
In summary, we describe how radiation oncology has
benefited from FAIR scientific data distribution principles
and will continue to benefit in the coming years. Given
increasing attention by governing institutions and collabora-
tive efforts, dissemination of radiation oncology data through
structured repositories and public data challenges have led to
algorithmic development and advancement, particularly with
respect to AI-driven clinical decision support tools. A variety
of concerns still plague the public dissemination of radiation
oncology data, namely proper protection of patient PHI,
ensuring standardized data objects and nomenclature,
addressing health equity concerns, and consolidation of indi-
vidual components of scientific dissemination. However, the
future of public data distribution remains bright, and is cer-
tain to lead to continued innovation and clinical impact
within the radiation oncology community.
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