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A B S T R A C T

Structural health condition monitoring of bridge structures has been a concern in the last decades due to their
aging and deterioration, in which the core task is damage detection. Recently, the drive-by method has gained
much attention as it only needs several sensors installed on the passing vehicle. In this paper, we proposed
an automatic damage detection method, which can be exploited in real time when the vehicle is passing the
bridge. There are three steps in the proposed method: (1) The vehicle’s framed short-time vibrations instead
of full-length data are utilized for training a deep auto-encoder model; at this stage, not commonly used
time-domain accelerations of the passing vehicle, but its selected frequency-domain responses are employed
to circumvent the influence of noises, (2) For the bridge with unknown health conditions, damage indicators
can be extracted from its passing vehicle’s short-time vibration data using the trained model, and (3) The
bridge’s health states are determined by real-time extracted damage indicators. To verify the proposed idea,
a U-shaped continuous beam and a model truck are used to simulate the vehicle bridge interaction system in
engineering. Results showed that the proposed method could identify the bridge’s damage with an accuracy of
86.2% when different severity was considered. In addition, it was observed that higher damage severity could
not be revealed by greater values of damage indicators in the laboratory test. Instead, a novel index called
identified damage ratios was employed as a reference for assessing the severity of the bridge’s damage. It was
shown that with the increase in damage severity, the index would increase and gradually approach 100%.

1. Introduction

Bridges play an essential role in modern transport systems and have
a significant impact on people’s daily lives. In recent years, however,
the aging and deterioration of bridges have become a serious concern in
many countries due to the rapidly increasing number of aged bridges.
Many bridges in Europe were built in the middle of the last century
and have served beyond their design years [1]. It was reported that in
Finland, around 7,000 out of 15,160 bridges would require renovation
by 2020, and around 5% of all bridges were in poor conditions [2].
In the U.S., nearly half of all bridges were rated as fair and 7.6% of
them were regarded as poor bridges [3]. In Japan, a large number
of bridge constructions started in the 1960s and the majority of them
have stood for three to four decades [4]. Health condition assessment
of bridges becomes crucial to keep them safely operating in their rest
life [5]. Damage detection, as an important component of structural
health monitoring (SHM), can provide safety assessment and early
warning for bridges. One promising method for bridge damage detec-
tion is to extract damage indicators (DIs) from its vibration data [6,7],
such as natural frequencies, modal shapes, and damping [8–11]. DIs
before and after damage can be utilized as references for assessing the
bridge’s health conditions. Traditionally, these DIs were extracted from
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vibration data of sensors attached to the bridge directly, namely the
direct method. Therefore, a large number of sensors need to be installed
on the bridge to form a monitoring system. Nevertheless, the system
can suffer from environmental hazards, battery capability, time syn-
chronization, etc., and long-term monitoring is still challenging [12].
Besides, it is worth noting that the monitoring system is predominately
equipped on long-span or super long-span bridges rather than small or
middle-span bridges despite the fact that they are the majority of all
bridges worldwide.

In this background, the drive-by bridge damage detection method
was proposed by Yang et al. in 2004 [13]. In this study, it was
confirmed that the passing vehicle’s vibration data contained dynamic
properties of the bridge, and the first-order natural frequency was
successfully extracted. The proposed method does not need sensors
installed on the bridge; instead, it simply requires a small number of
sensors instrumented on the vehicle to collect the bridge’s dynamic
information indirectly, namely the indirect method. Since there is no
monitoring system to be installed on the bridge, it will not interrupt
public traffic. Besides, the indirect method can suit various bridges
compared to the direct method which usually requires one-to-one sys-
tems. Due to the above reasons, the drive-by bridge damage detection
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method has become a hot topic in recent years. Initially, researchers
mainly put efforts into determining the bridge’s natural frequencies
from the vehicle’s vibration data. In 2005, Lin and Yang [14] suc-
cessfully extracted a field bridge’s fundamental natural frequency with
an instrumented tractor–trailer and a heavy truck (as the exciter) at
speeds less than 40 km/h. In 2008, Wang et al. [15] proposed to extract
the bridge’s natural frequencies using a calibrated vehicle passing road
with unknown roughness. A particle filter approach was employed, and
the bridge’s first frequency could be clearly identified in the power
spectrum. In 2021, Shi and Uddin [16] investigated the theoretical
principles of extracting multiple natural frequencies from the vehicle’s
vibration data. The results showed that the vehicle’s frequency pa-
rameters had significant influences on bridge frequency extraction. To
improve the frequency identification precision, a single-axle test vehicle
with two Degrees of Freedom (DOFs) was designed by Yang et al. [17]
in 2022. The authors tried to utilize contact point (CP) responses rather
than the traditional accelerations of the vehicle’s axles. Temporary
vehicle stops were employed to refine the results, and the first three-
order natural frequencies were extracted with good precision. However,
the bridge’s natural frequencies may not be suitable DIs since local
damage sometimes cannot cause a perceptible change of the bridge’s
natural frequencies [18]. For this reason, several researchers put efforts
into exploring the vehicle’s complete time-domain or frequency-domain
responses rather than just peaks. In 2017, a time-domain signal pro-
cessing approach using wavelets to detect the bridge’s damage was
proposed by Hester and González [19]. The vehicle was considered as
a point load or a two-axle sprung model, and results showed that when
the Signal Noise Ratio (SNR) was high, the damage was noticeable. But
when it decreased to 20 dB, the results could not detect the damage. In
2014, Cerda et al. [20] proposed to classify different damage scenarios
using the vehicle’s frequency responses. Results represented that differ-
ent changes in the support conditions, damping, and damage in bridges
could be classified well. Despite the studies performed, the drive-by
damage detection method is commonly applied to small span bridges
currently, and few studies have been explored for middle or large span
bridges. Theoretically, the passing vehicle’s short-time vibration data
can reveal the bridge’s health conditions, which is conducive to damage
detection for large span bridges.

In recent years, artificial intelligence (AI) has been influencing
different fields due to the rapid development of computer science [21].
Employing machine learning and deep learning (DL) techniques in
SHM has gained much attention owing to its characteristics of intel-
ligence and automation [22,23]. Researchers began to investigate the
application of DL in drive-by bridge damage detection. In 2019, Locke
et al. [24] trained convolutional neural networks to classify differ-
ent bridge damage severity. The environmental temperature, vehicle
speeds, and vehicle weights were also considered during the training
process. The results showed that the damage severity classification
could be achieved with good accuracy (> 80%) when only low fre-
quency (3–10 Hz) response peaks were utilized. In the same year,
Malekjafarian et al. [25] trained two artificial neural networks (ANNs)
to predict the bridge’s health conditions. The first model utilized the
vehicle’s positions and speeds as input features and its acceleration
as labels. In the second model, input features were frequencies and
the speeds, and the vehicle’s frequency responses were labeled accord-
ingly. In the training stage, the vehicle’s vibration data when passing
a healthy bridge were used. Then errors between predicted signals
and true signals were calculated as DIs. Results showed that both the
bridge’s damage and its severity could be identified. Liu et al. [26]
proposed that all the vehicle’s frequency-domain responses were in-
formative and required analysis in the process of damage detection.
The authors utilized a stacked auto-encoder (SAE) model to reduce
the input dimensions. Then the low-dimension hidden state in the
bottleneck was used to feed a semi-supervised model with a few labeled
data. The test results showed that a near 0.1% mass increase could

be detected. In 2021, Feng et al. [27] utilized the bridge’s instanta-
neous forced frequencies and k-Nearest Neighbors (KNN) to locate and
quantify its damage. Results showed that the damage’s degree and
position could be identified in optimal cases, but near supports, the
precision was relatively low. In 2021, instead of using the vehicle’s
frequency-domain responses directly, Corbally and Malekjafarian [28]
proposed to utilize the CP frequency responses to feed ANNs. The dam-
age detection results showed that CP responses were more robust than
traditional accelerations of the vehicle’s axles, and the damage could be
distinguished when different vehicle speeds, ambient temperatures, and
road roughness were investigated. However, for the existing DL-based
methods, labels for different damage cases were needed beforehand.
In practical engineering, damage scenarios of the bridge are scarce
and even cannot be found and labeled, making the supervised learning
techniques (labels data are needed) difficult to be applied in the real
world.

Unsupervised learning can overcome the above problem because
it does not need data with labels; instead, data can learn features
from themselves. In 2022, the K-means algorithm was utilized by Yang
et al. [29] to cluster peak frequencies of the CP’s principal components
based on the singular spectrum. An experimental test demonstrated
that the proposed algorithm could recognize the first two natural
frequencies of the bridge. Auto-encoder model, as a good unsupervised
learning method, has been investigated by researchers in SHM recently.
In 2018, Pathirage et al. [30] utilized an auto-encoder model as a
dimension reduction tool to obtain dense features, and the features
in the bottleneck were utilized for training a linear regression model
and then to predict stiffness reduction parameters. Compared to the
traditional ANN model, the proposed framework can improve accuracy
and efficiency simultaneously. In 2021, Wang and Cha [31] combined
auto-encoder and one-class support vector machine, and 91.0% dam-
age detection accuracy could be reached using extracted features by
the auto-encoder. Later, Shang et al. [32] built a deep convolutional
auto-encoder model to reconstruct the cross-correlation functions of
original signals. Compared to the traditional auto-encoder, the pro-
posed approach was robust to noises and environmental impacts. The
capability of auto-encoder has been proved in SHM. However, it is
rarely investigated in drive-by bridge damage detection to the author’s
best understanding.

In this paper, an unsupervised deep auto-encoder (DAE) model is
proposed to automatically detect the bridge’s damage in real time, in
which short-time data are employed to detect the bridge’s health con-
ditions when the vehicle is running on the target bridge. The potential
of the proposed idea was explored by a laboratory U-shaped beam and
a model truck installed with two accelerometers. Then the DIs are ex-
tracted by the trained DAE model. Finally, real-time damage detection
was performed. The remainder of this paper is organized as follows:
Section 2 introduces the basic principles of the deep auto-encoder and
the process of extracting DIs from original vibration data. Section 3
shows the laboratory setups and damage scenarios. Section 4 explores
the results of experiments and some discussions on the proposed idea.
Finally, conclusions and future work of this paper are provided in
Section 5.

2. Proposed method

The proposed method mainly includes three phases: data prepro-
cessing, training DAE, and damage indicator extraction. In the first
phase, vertical acceleration signals of the passing vehicle are collected
and truncated, and accelerations are transformed from time-domain to
frequency-domain to obtain the vehicle’s frequency responses. In the
second phase, frequency responses of the vehicle passing the healthy
bridge are utilized for training a DAE that can identify the bridge’s
health conditions. In the third phase, the trained DAE is utilized to
reconstruct the vehicle’s frequency responses, and DIs are extracted by
the original and reconstructed responses. The proposed method only



Structures 47 (2023) 1167–1181

1169

Z. Li et al.

Fig. 1. Overview of the proposed method.

requires acceleration data of the vehicle passing the intact bridge,
and critical information about the bridge’s health conditions can be
provided using the extracted DIs. An overall schematic view of the
proposed method is shown in Fig. 1. In later subsections, all phases
are explained in detail.

2.1. Data preprocessing

Acceleration selection. Since the proposed method is to identify the
bridge’s conditions in real time, the vehicle is expected to run at a
constant speed on the bridge when the analysis starts. Besides, to
analyze as accurate as possible, only when both front and rear tires
are on the bridge, the vehicle’s accelerations are utilized for analysis.

Framing. After acceleration data of the vehicle passing the healthy
bridge are collected, in order to make a real-time damage detection
later, the collected acceleration data need to be divided into different
frames. As the vehicle is running on an intact bridge, each frame of
the passing vehicle’s vibration data should reveal the bridge is healthy.
When framing, an overlapping area is needed between two adjacent
frames to keep the signal’s stationarity and detect the damage in real
time. The overlapping area is selected according to the updated rate
of damage detection (namely damage detection frequency, DDF). For
example, if the DDF is set as 100 Hz, the non-overlapping time between
two adjacent frames is 0.01 s. The frame length 𝑙𝑓 needs to be properly
selected. Long 𝑙𝑓 means more signals to be analyzed, and it can cause an
increase in analysis time that needs to be less than 1∕𝐷𝐷𝐹 . Also, a long
frame means the vehicle must run a long distance on the bridge before
the analysis, which may not be suitable for relatively short bridges.
Nevertheless, the frame cannot be too short because the vehicle may
not be able to collect enough dynamic information for analysis. It is
recommended to determine the frame length by using two thresholds,
including the minimum and longer frame length. The minimum frame
length is supposed to be determined by the estimated bridge’s first
natural frequency 𝑓𝑏1 and natural period 𝑇𝑏1, where 𝑇𝑏1 = 1∕𝑓𝑏1. In
one frame, the bridge needs to vibrate at least once following the first
modal shape; thus, the vehicle can at least collect the bridge’s vibration
once in the selected frame. Therefore, the frame’s length 𝑙𝑓 is expected
to be greater than 𝑇𝑏1. Generally, in practical engineering, the bridge’s
first natural frequency is less than 10 Hz, thus the minimum length of
𝑙𝑓 is 0.1 s. But in order to secure a high accuracy of damage detection,
a longer frame length, such as 10𝑇𝑏1, is recommended. In terms of the
longer frame length, half of total passing time is recommended.

Windowing. After the vibration data are truncated into different
frames, windows are added to alleviate spectrum leakage. General
window functions include Hann, Rectangular, Flat top, and Blackman
windows. As the vehicle’s vibration data are easily influenced by
environmental noises, the Hann window is selected in this paper.

Short-time fourier transform (STFT). Employing the selected parameters
above, the STFT can be carried out to extract frequency responses of
each frame. It is worth noting that not all frequency responses of each
frame need to be utilized for analysis because the bridge’s first three-
order natural frequencies are relatively low. If the vehicle passes the
healthy bridge 𝑋 times (represented by 𝑋 runs) in the training stage,
and the 𝑖th passing vibration data can be divided into 𝐹𝑖 frames, we can
get 𝑀 =

∑𝑋
𝑖=1 𝐹𝑖 frames in total. Then one frame’s frequency responses

can be regarded as a sample to feed the auto-encoder in the next step.
Suppose that �̃� frequency responses are selected, then there are �̃�
features in one sample.

2.2. DAE

Auto-encoder is an unsupervised neural network that does not need
labels for different samples. The auto-encoder model is used to make
the outputs as similar to inputs as possible. The traditional auto-encoder
consists of an encoder and a decoder, and there is one hidden layer
only, which can be represented by Eqs. (1) and (2).

𝒉 = 𝑓 (𝐖𝒔 + 𝒃) (1)

�̂� = 𝑔
(

𝐖∗𝒉 + 𝒃∗
)

(2)

where 𝒔 is the input vector, and �̂� is the output vector. 𝒉 is the hidden
state of inputs. 𝑓 and 𝑔 are the activation functions for the encoder and
decoder respectively. 𝐖 and 𝐖∗ are weight matrices for encoder and
decoder, and 𝒃 and 𝒃∗ are bias vectors for the hidden layer and output
layer respectively. The target of the auto-encoder is to optimize 𝐖,𝐖∗,
𝒃 and 𝒃∗ to minimize the difference between inputs and outputs.

As the auto-encoder needs to reconstruct the inputs using the infor-
mation in the hidden layer, the hidden layer consists of the most crucial
information of inputs. Some unrelated or insignificant information will
be dropped in the hidden layer. Therefore, it can be used to reduce the
dimensions of inputs. On the other hand, because some information is
lost in the hidden layer, the auto-encoder cannot reconstruct the inputs
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completely. The error between inputs and outputs can be utilized as a
loss function to train the auto-encoder.

DAE is an improved auto-encoder model, and it has more hidden
layers. With these hidden layers, the auto-encoder’s learning capability
is boosted. It can be used to address more complex inputs. However,
with the increase in the number of hidden layers, the auto-encoder
may have overfitting problems that mean the auto-encoder learns
from some noisy information and the trained auto-encoder cannot be
generally utilized for other samples. The number of hidden layers is
a hyperparameter needed to be determined before training the DAE.
For a DAE model, given an unlabeled dataset 𝐒 = [𝒔1, 𝒔2,… , 𝒔𝑁 ] and
the reconstructed dataset �̂� = [�̂�1, �̂�2,… , �̂�𝑁 ], the loss function can be
represented by Eqs. (3) and (4),

(𝜽;𝐒, �̂�) = 1
𝑁

𝑁
∑

𝑖=1

(

‖

‖

𝒔𝑖 − �̂�𝑖‖‖
2
)

+𝛺(𝜽) (3)

[

𝐖𝑙 , 𝒃𝑙 ,𝐖∗
𝑙 , 𝒃

∗
𝑙
]

= argmin
𝐖𝑙 ,𝒃𝑙 ,𝐖∗

𝑙 ,𝒃
∗
𝑙

(𝜽;𝐒, �̂�), 𝑙 = 0, 1,… , 𝐿 (4)

where 𝜽 represents all parameters in the DAE network, including wight
matrices 𝐖𝑙 ,𝐖∗

𝑙 and bias vectors 𝒃𝑙 , 𝒃∗𝑙 ; here, the subscript 𝑙 denotes
the parameters for the 𝑙th hidden layer and there are 𝐿 hidden layers
in total. 𝛺(𝜽) is a regularization term imposed on weights to prevent
overfitting problems.

Then, all parameters will be updated in the opposite direction of
the loss function’s gradient ∇𝜽(𝜽) to minimize the loss. In case the
computer cannot address all inputs at the same time, the mini-batch is
commonly utilized in the training process. It has been proved that mini-
batch can improve training efficiency and accelerate convergence [33].
The next step is determining the step length (namely, learning rate
in DAE). It is usually difficult to decide on a proper learning rate
because the loss function’s hyperplane is very complex, and the starting
point is random. Fortunately, the adaptive moment estimation (Adam)
algorithm is proposed, and it can change the learning rate in every step.
In this work, it is observed that Adam can perform better than other
optimization algorithms.

In this paper, the DAE is employed to extract features of the vehicle’s
vibration data when passing the healthy bridge. The objective of the
DAE is to minimize the errors when reconstructing input. It is worth
noting that compared to the previous auto-encoder studies, we employ
the vehicle’s frequency responses as input features to feed the DAE
model. This is because accelerations usually contain high frequency
components induced by noises, which may have negative influences
on damage detection results. It is easy for the DAE model to learn the
features of noisy signals rather than the natural characteristics of the
signal [32]. Therefore, frequency responses are utilized in this paper to
improve the DAE model’s robustness under noises instead of commonly
used time-domain responses.

2.3. Damage indicator

For damage detection, given a frame’s original frequency responses
𝒔 and its reconstructed frequency responses �̂� using trained DAE, the DI
can be represented by the square error as shown in Eq. (5).

DI = ‖𝒔 − �̂�‖2 (5)

There will be one DI value for one frame. For the vehicle’s one run (it
passes the bridge once), the DIs can be calculated in real time. Because
the DAE is trained by frequency responses only when the vehicle passes
the healthy bridge, it can reconstruct ‘‘healthy’’ frequency responses
with delicate precision. When the vehicle passes on a damaged bridge,
the vehicle’s frequency responses will become abnormal for the trained
DAE. Based on this principle, the trained DAE can differentiate the
bridge’s healthy conditions automatically. When the bridge is intact,
DI values will be pretty low. However, when the bridge is damaged,
the trained DAE model cannot identify these frequency responses as
‘‘healthy’’, so DI values will be relatively high. Therefore, DI values can
be utilized to determine health conditions of the bridge.

Fig. 2. Bridge model in the experiment.

Fig. 3. Model truck and the remote unit.

3. Experimental model

3.1. Setups

In this section, a lab-scale vehicle bridge interaction model is uti-
lized to verify the proposed method. In the experiment, a UPE300 steel
beam is used to simulate a two-span continuous bridge in practical
engineering. The beam’s cross-section parameters are shown in Fig. 2.
The material of the beam is Q355 with tested average Young’s modulus
of 199.0 GPa. The length of the beam is 6.0 m with three hinge supports
at 0.15, 3.0, and 5.85 m, respectively. The beam’s mass is weighted as
248.64 kg.

For the vehicle, a Tamiya model truck is utilized, and it can be
controlled by a remote unit to run on the bridge (see Fig. 3). The
length, width, and height of the truck are 570, 200, and 260 mm
respectively. It has its independent suspension system, connection shift,
rubber tires, etc., as shown in Fig. 4. The truck’s mass is 4.305 kg. Since
heavy vehicles are conducive to increasing amplitudes of the bridge’s
vibrations and improving the accuracy of damage detection [34,35],
5.157 kg of extra mass is added to the truck’s trunk. After adding
extra mass, the truck’s front axle mass is 4.315 kg, and the rear one
is 5.147 kg. In current research studies, the vehicle–bridge mass ratio
is typically lower than 5% [36–38], and it is 3.8% in this paper, which
is acceptable to simulate a real VBI system.

In order to control the truck to run in a straight way when it passes
the bridge, two guide cables are used. This is to simulate that the
vehicle is driven straightly in practical engineering. The cables have
little influence on the truck’s vertical vibration because they go through
two pipes that are fixed on the truck (see Fig. 3a). It is worth noting
that the cables are not considerably tight, so the truck’s traces when
passing the bridge are different.

It has been reported that the vehicle’s speed can influence drive-by
damage detection [39]. In order to make the experiment more realistic,
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Fig. 4. Configuration of the truck and sensors.

Fig. 5. Relative frequency of the truck’s speed.

the truck is running at a constant speed when passing the beam as
discussed in Section 2.1. However, for different runs in the laboratory
test, the truck’s speeds are not exactly the same. In the experiment, a
wood acceleration runway is set to accelerate the truck from a static
state to the highest speed. At the end of the beam, there is a decel-
eration runway to decelerate the truck. Therefore, the truck is driven
at its highest speed when passing the beam. As mentioned before,
only vibration data when both the truck’s front axles are on the beam
are analyzed. In the experiment, the relative frequency distribution of
speeds in this experiment can be found in Fig. 5. It can be seen that
all speeds are between 0.72 and 1.05 m/s, and are nearly subject to a
normal distribution.

In the experiment, two acceleration sensors are installed on the
truck’s front and rear axles to collect its vibration data. Two sensors are
made by Brüel & Kjær, and their type is 4371. There are also four sen-
sors attached at the bottom of the beam for analysis and comparison to
the drive-by bridge damage detection results. The sampling frequency is
10 kHz. A laptop installed with data collection software is employed in
the experiment. Apart from these, the I/O device and signal amplifiers
are utilized. The experiment is performed with normal environmental
noises in the structural laboratory at Aalto University. The laboratory
deployment can be found in Fig. 6.

With regard to the dynamic characteristics of the above VBI model,
the vehicle is scaled from a real truck (scale = 1:14). When the
accelerometer is attached to the rear axle, it can be measured the first
order frequency is 19.531 Hz (introduced in Section 4.2). For a real
car in Ref. [40], the rear axle’s frequency is tested as 15.075 Hz. The
scaled vehicle not only scales the dimensions but can also keep a real
car’s dynamic characteristics well.

For the bridge model, the speed parameter 𝛼 can be used to evaluate
the scaled laboratory model [41–43]. It can be obtained by Eq. (6),

𝛼 = 𝑣
2𝑓𝑏1𝐿

(6)

Fig. 6. Experimental deployment.

Table 1
Damage scenarios.
Damage scenarios DS 0 DS 1 DS 2 DS 3 DS 4 DS 5 DS 6

Truck runs 506 49 50 42 51 51 47
Added mass 0 kg 5 kg 10 kg 15 kg 20 kg 25 kg 30 kg
Damage degree 0.00% 5.63% 9.65% 13.67% 17.70% 21.72% 25.74%

where 𝑣 is the vehicle speed; 𝑓𝑏1 means the fundamental frequency
of the bridge, and 𝐿 represents its length. From Fig. 5, it can be
seen that the scaled vehicle’s speed is around 0.9 m/s. The laboratory
beam’s first three order frequencies are tested as 30.748, 42.528, and
98.033 Hz (introduced in Section 4.2). Substituting 𝑓𝑏1= 30.748 Hz,
𝐿=6 m, and 𝑣=0.9 m/s into Eq. (6), we can get the speed parameter
that is 0.0027. If we keep the bridge’s fundamental frequency constant,
the experimental model can be utilized to simulate a vehicle with 9 m/s
(32.4 km/h) speed when passing a 60 m continuous bridge with two
spans. Rather, we can see that the beam’s first three natural frequencies
are in the 0∼100 Hz scale and are higher than the natural frequencies of
real bridges. In practice, generally, the bridge’s fundamental frequency
is lower than 5 Hz, and the first three order frequencies are within
0∼50 Hz [44–46]. However, the main objective of this paper is to
investigate the bridge’s dynamic information hidden in the passing ve-
hicle’s vibrations. Thus, when selecting the range of utilized frequency
responses, it can be selected wider than applications for a real bridge,
e.g., 0∼100 Hz, to train the DAE model. In engineering applications,
since the range including the real bridge’s first three order frequencies
is lower, frequency responses within 0∼50 Hz can be used for real-time
monitoring of bridges.

3.2. Damage of the bridge

Theoretically, once the damage occurs, the local stiffness of the
bridge will reduce. As the bridge’s natural frequencies are associated
with structural mass and stiffness matrices, a practical way to simulate
the bridge’s damage is to add additional mass to the bridge [47–49]. In
this experiment, different masses are added to the bridge’s two spans.
The damage degree can be represented by the ratio of the added mass
with respect to the bridge’s span mass. For each span, there are six
damage scenarios (DS) in total: 5 kg, 10 kg, 15 kg, 20 kg, 25 kg, and
30 kg, represented by DS 1–6 as shown in Table 1, and DS 0 represents
that the bridge is intact. At each span, one hook is employed to clamp
the beam, and its mass is 2.0 kg. For instance, a 5 kg mass added to
the beam’s one span is shown in Fig. 7.
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Fig. 7. Bridge with additional mass (5 kg).

4. Experimental results and discussions

4.1. Data preprocessing

After the truck runs several times on the healthy bridge in the ex-
periment, both the front and rear axle’s acceleration data are recorded.
Since they do not have apparent differences and the rear axle is heavier
than the front one, only the rear axle’s vibration data are utilized for
the later analysis in this paper. One of the truck’s rear axle’s vibration
data is shown in Fig. 8.

Then the next step is to select the length of the frame. In order
to make the frame contain sufficient dynamic information about the
bridge and improve the DAE model’s robustness, the frame is selected
as 1.0 s in this paper. The DDF is set as 100 Hz. Namely, the time
resolution of automatic damage detection in real time is 0.01 s.

After the above preprocessing on all 506 runs of DS 0, 291,170
frames of the truck’s vibration data are obtained, and each frame is 1.0
s. For every frame, after the windowing and STFT, the vehicle’s fre-
quency responses in a range of 0–5000 Hz are obtained. However, not
all frequency responses are suitable for damage detection of the bridge.
On one hand, high frequency responses can contain much information
about the ambient noises. On the other hand, selecting more frequency
responses means that the increase of the DAE’s input layer’s neurons,
and the DAE model will become very large. The computational cost will
boost sharply, which cannot meet the requirements of real-time damage
detection. Since the bridge’s first three-order natural frequencies are
smaller than 100 Hz [5,48], in this paper, frequency responses within
0–100 Hz are selected. In order to include as many details of frequency
responses as possible, padding zeros is employed when performing FFT.
The FFT resolution of each frame after padding is 0.0763 Hz, and there
are 1310 data points between 0–100 Hz.

4.2. Real-time frequency responses analysis

The above process can be applied to DS 1–6, and the vehicle’s fre-
quency responses with respect to time can be obtained. For comparison,
acceleration data of sensors attached to the bridge (the direct method)
is also plotted. The results are shown in Fig. 9.

It can be seen from Fig. 9 that when the truck’s vibration data are
utilized (indirect method), responses at the truck’s frequency are the
highest because the sensor is attached to the truck’s axles, and it can
be easily identified as near 20 Hz. If the bridge’s vibration data are
used (direct method), some peaks in the bridge’s frequency spectrum
can be captured. For the intact bridge (see DS 0: direct), it can be
initially assumed that its first natural frequency is near 30 Hz as it is
the highest amplitude. Since the frequency–time spectrum is complex,
we employed a finite element (FE) simulation for the U-shaped beam.

The basic parameters for the FE model are listed in Table 2. It is built
in Abaqus with S4R shell elements. There are 3200 elements and 3417
nodes in total, and each node has six DOFs: x, y, z-translation, and x,
y, z-rotation. The boundary conditions are set according to Fig. 2. After
modal analysis, the beam’s first natural frequency can be obtained as
30.790 Hz, and its first order modal shape is shown in Fig. 10b. Thus,
we can understand that in the DS 0: direct of Fig. 9, the amplitude
around 30 Hz is the beam’s fundamental frequency.

To verify our assumptions, free vibrations tests are performed to
determine the fundamental frequencies of the vehicle (𝑓𝑣1) and the
bridge (𝑓𝑏1), and the results are shown in Figs. 11a and 12a. Exponent
windows are employed on the free vibration signals to avoid spectral
leakage. After FFT is employed, it can be seen from Figs. 11b and
12b that the bridge and vehicle’s fundamental frequencies are 𝑓𝑏1 =
30.748 Hz and 𝑓𝑣1 = 19.531 Hz, respectively. We can see that the results
of free vibration tests agree with our initial assumptions using Fig. 9. By
analyzing DS 0–6 frequency–time spectrum using the direct method, we
can find: (1) To some degree, the vehicle’s frequency can be identified
in the bridge frequency responses, so the sensors installed on the bridge
can capture the truck’s frequency as well. But these signals are rela-
tively weak. (2) With the increase of damage degree, the beam’s first
natural frequency decreases to 28.571, 27.551, 26.326, 25.306, 24.286,
and 23.674 Hz for DS 1–6, respectively, but the vehicle frequency
remains constant. Compared to the direct method, in the frequency–
time spectrum using the indirect method, the bridge’s natural frequency
is submerged by the vehicle’s frequency responses. Even if some traces
can be found around 30 Hz, they cannot be adequate references for
damage detection as they are too weak and sometimes disappear.
Therefore, detecting the bridge’s damaged conditions is rugged with
only the truck’s real-time frequency response peaks. The following
sections will introduce the damage detection method using DAE.

4.3. Model configuration

In view of the fact that frequency responses of the passing vehi-
cle are not on the same scale (see Fig. 9: indirect method), feature
normalization is needed to improve the DAE model’s capability. The
process can be represented by Eq. (7), where 𝒙𝑗 is the 𝑗th feature. In this
paper, it means the 𝑗th frequency’s response. 𝜇 is the mean value, and
𝜎 is the standard deviation. It is worth noting that for normalization,
only training data are utilized to obtain the mean value and standard
deviation.

𝒙𝑗𝑠 =
𝒙𝑗 − 𝜇(𝒙𝑗 )

𝜎(𝒙𝑗 )
(7)

The training, validation, and testing datasets are split as follows.
There are 506 runs in DS 0 in total. The first 400 runs are used for
training and validation, and 401–506 runs are employed for testing.
For training and validation, random 90% runs are selected for training,
and the rest are used for validation. It is worth noting that the split of
training, validation and testing should not be based on all frames of DS
0’s runs. The reason is that the adjacent frames (with 0.99 s overlapping
vibration data) are very similar. This will make the DAE model fit both
the training and validation data very well but cannot be generalized for
testing data. Besides, overfitting problems may not be noticed by this
strategy. Instead, the split needs to be based on different runs. In our
split, the test datasets are purely new for the trained DAE model. The
validation datasets are randomly selected, and they can be utilized to
monitor the training process in case there are overfitting problems.

In the following training process, the optimizer is selected as Adam
and the learning rate is set as 1𝑒−5 to optimize the DAE model. A
batch size of 128 is employed. To avoid overfitting problems, the
early stopping strategy is adopted: the training stops when it reaches
the loss of 0.0001 or 1200 epochs. The trained DAE model at every
epoch is saved, and the best model (determined by the validation loss)
is selected in 1200 epochs. In addition, the regularization parameter
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Fig. 8. Vibration data of the truck’s rear axle.

Fig. 9. Comparison of frequency responses with respect to time using indirect and direct methods.

Fig. 10. Two-span continuous beam’s FE modal.

Fig. 11. Free vibration tests of the two-span continuous beam.
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Fig. 12. Free vibration tests of the scaled truck.

Table 2
Basic parameters of the beam’s FE model.
Flange’s thickness Web’s thickness Beam’s length Span length Density Young’s modulus Poisson’s ratio

15 mm 9.5 mm 6.0 m 2.85 m 7850 kg∕m3 199.0 GPa 0.3

Table 3
Model configuration hyperparameters.
Hyperparameters Values

Hidden layers 1, 3, 5, 7
Bottleneck neurons 16, 32, 64, 128
Activation functions ReLU, Leaky-ReLU, Sigmoid, Tanh
Regularization parameter 1𝑒−6 , 5𝑒−6 , 1𝑒−5 , 5𝑒−5 ,… , 1𝑒−1 , 5𝑒−1

is added to the DAE model as a penalty to circumvent overfitting.
The above training and numerical computations are executed on a
workstation at Aalto University with Intel Core i9-11900 CPUs and
32 GB RAM, and NVIDIA RTX 3090 graphic card is used to accelerate
tensor computations. All DAE programs are finished in Python 3.8
environment with Pytorch [50] and sci-kit learn [51] packages.

Before training the DAE model, some hyperparameters need to be
adjusted to suit bridge damage detection problems so that the features
of frequency responses can be learned accordingly. The DAE model
configuration includes (1) the number of hidden layers, (2) the number
of neurons in the bottleneck, (3) the activation function, and (4) the
regularization parameter. All employed hyperparameters are listed in
Table 3

Number of hidden layers. When a different number of hidden layers is
analyzed, the number of neurons in the bottleneck is fixed as 16. The
activation function is selected as Leaky-ReLU, and the regularization
parameter is selected as 1𝑒−5. It can be seen from Table 4 that with the
increase of hidden layers, the DAE model’s learning capability becomes
stronger, and the validation loss becomes lower. The traditional auto-
encoder model (1 hidden layer) performs poorly, and it nearly cannot
learn any features of the input frequency responses. Also, we can see
that the testing loss is greater than the validation loss. This is because
the training and validation datasets are randomly selected from 1–
400 runs. In two adjacent runs, the truck’s dynamic characteristics,
engine capability, speeds, etc. do not vary quite much, so after the
DAE model is trained by training datasets, it will not be too hard for it
to fit validation datasets. But for testing datasets, they are completely
new for the DAE model, so the loss is a little greater than training
and validation loss. Besides, we can see that when 7 hidden layers are
utilized, the training loss can continue to decrease, but the validation
and testing loss rebounds. The overfitting problem begins to emerge.
In real testing in engineering, the testing datasets are unknown, so we

can only determine the DAE model’s performance by using validation
datasets. In this paper, 5 hidden layers are selected for later analysis.

Number of neurons in the bottleneck. Table 5 shows the training results
when 16, 32, 64, and 128 neurons are utilized in the bottleneck. It can
be seen that with the increase of neurons, the training loss decreases
sharply. The number of neurons can represent how much information
is retained in the DAE model’s bottleneck. More neurons denote that
less information is dropped in the DAE model so that the frequency
responses can be reconstructed with high precision. If there are only a
few neurons, the DAE model has to drop much information, including
the bridge’s dynamic properties. However, if the DAE model owns too
many neurons in the bottleneck, the noise information may also be kept
when reconstructing frequency responses. According to the author’s
experience, the neurons’ number can be selected near 1/10 of neurons
in the input layer. In this paper, 128 neurons in the bottleneck are
selected.

Activation functions. As discussed above, the architecture
1310→512→256→ 128→256→ 512→ 1310 is selected. Different acti-
vation functions have various properties. In this paper, four activation
functions: ReLU, Leaky-ReLU, Sigmoid, and Tanh are tested on the
datasets. When the four activation functions are selected, their best
validation losses within 1200 epochs are: 0.00071, 0.00068, 0.13782,
0.00082. It can be seen that the Sigmoid function performs the worst,
and the rest three’s best loss does not vary much. The loss reaches
the minimum when the Leaky-ReLU function is utilized. This matched
the results of Ref. [52] where time-domain responses were utilized for
training an auto-encoder model.

Regularization parameter. Another important hyperparameter for the
DAE model is the regularization value that is represented by 𝛺(𝜃) in
Eq. (3). It is used to apply penalties on the weights of the DAE model so
that the noisy representations in the training datasets can be reduced.
As a result, the model’s generalization capability will be improved, and
the overfitting problem can be circumvented. There are two kinds of
regularization terms used in DAE models as shown in Eqs. (8) and (9)

𝛺(𝜽) = 𝛼‖𝜽‖1 = 𝛼
𝑛
∑

𝑖

|

|

𝜃𝑖|| (8)

𝛺(𝜽) = 𝛼‖𝜽‖2 = 𝛼
𝑛
∑

𝑖
𝜃2𝑖 (9)
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Table 4
Selection of hidden layers.
Number of hidden layers 1 3

Architecture 1310→ 16→ 1310 1310→ 512→ 16→ 512→ 1310

Loss Training Validation Testing Training Validation Testing
0.31849 0.31522 0.36593 0.04135 0.06144 0.09686

Number of hidden layers 5 7

Architecture 1310→ 512→ 256→ 16→ 256→ 512→ 1310 1310→ 512→ 256→ 128→ 16→ 128→ 256→ 512→ 1310

Loss Training Validation Testing Training Validation Testing
0.04135 0.05984 0.08909 0.02989 0.06754 0.11513

Table 5
Selection of neurons in the bottleneck.
Number of neurons in the bottleneck 16 32

Architecture 1310→ 512→ 256→ 16→ 256→ 512→ 1310 1310→ 512→ 256→ 32→ 256→ 512→ 1310

Loss Training Validation Testing Training Validation Testing
0.04136 0.05984 0.08909 0.01255 0.02307 0.03329

Number of neurons in the bottleneck 64 128

Architecture 1310→ 512→ 256→ 64→ 256→ 512→ 1310 1310→ 512→ 256→ 128→ 256→ 512→ 1310

Loss Training Validation Testing Training Validation Testing
0.00399 0.00622 0.00915 0.0004 0.00071 0.00105

Fig. 13. Loss with respect to the regularization parameter.

where 𝛼 > 0 is a hyperparameter representing the penalty term’s
contribution. ‖ ⋅ ‖1 is the 𝑙1 norm and ‖ ⋅ ‖2 represents the 𝑙2 norm.
𝑛 means all weights that need to be penalized. Specifically, in the
proposed DAE model, only weights in the encoder need to be penalized.
When reconstructing signals in the decoder, no penalty is needed
because we want it to reconstruct signals better with the decoder.
The main difference between these two penalties is that 𝑙1 can force
unimportant features’ weights to be zeros so that the weight matrix
will become sparsity. However, 𝑙2 regularization will make weights of
unimportant features as small as possible rather than make them zeros.
For the vehicle’s frequency responses, a lot of features are about the
vehicle rather than the bridge, so they have no strong connection to the
bridge’s health states (they can be understood as unimportant features
for damage detection). Therefore, in order to avoid the singularity of
the weight matrix and potential problems, the 𝑙2 norm is selected to
apply to the DAE model’s encoder. To select the optimal 𝛼, DAE models
with different penalty terms are built, and the results are shown in
Fig. 13. It can be seen that when 𝛼 increases, the training, validation,
and testing losses increase simultaneously. The regularization term has
played its role in limiting weights, but the testing loss increases the
most sharply. In order to avoid overfitting and not to make validation
and testing losses increase too much, 𝛼 = 1𝑒−5 is selected in this paper.

Fig. 14. Training, validation and testing loss for the intact bridge.

In summary, the final DAE model is the architecture of 1310→
512→ 256→ 128→256→512→ 1310 (5 hidden layers) with 128 neu-
rons in the bottleneck, Leaky-ReLU activation function, and 𝑙2 regular-
ization value of 1𝑒−5.

4.4. Automatic damage detection

Utilizing the above-selected hyperparameters and training the DAE
model in 1200 epochs, the training, validation, and testing loss are
shown in Fig. 14. It is apparent that after 1200 epochs of training,
the loss between original and reconstructed frequency responses has
been quite low. An example of the reconstructed frequency responses
of training, validation, and testing data is shown in Fig. 15. We can see
that the frequency responses between 0–100 Hz of the passing vehicle
on the healthy bridge can be reconstructed with high precision. For
testing data, the reconstruction precision is close to validation datasets.
The results mean that the trained DAE model has learned the properties
of frequency responses of the passing vehicle when the bridge is intact.

For DS 1–6, the reconstruction frequency responses can be found in
Fig. 16. It is evident that when the bridge’s damage is relatively low (DS
1), the truck’s frequency responses can be reconstructed with relatively
good precision. However, with the increase in damage severity, the re-
construction performance becomes worse, and the DI becomes higher.
For DS 2, 3, and 4, we can see that the trained DAE model starts not
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Fig. 15. Reconstruction of DS 0’s training, validation and testing frequency responses.

to be able to reconstruct peaks of the truck’s frequency responses, and
for DS 5 and 6, some details of the frequency responses are lost when
reconstructing. Therefore, the DI calculated by Eq. (5) can be utilized
to determine the bridge’s health conditions automatically.

4.5. Damage detection in real time

By reconstructing all frames for DS 0’s 401–506 runs (testing), we
can get Fig. 18a: DS 0: 401–506 runs. It can be seen that most DIs
are near zero, indicating that the trained DAE model can reconstruct
frequency responses with high precision for the healthy bridge. In
addition, we can see that when the truck is near the end of the bridge,
DIs increase greatly, and this happens to DS 1–6 as well. Therefore,
when the truck is near the support, it is easy for the proposed method to
determine that the bridge has been damaged mistakenly. This matches
the results of Ref. [27] that when the vehicle runs close to the supports
at the end, detection results become worst. Due to this reason, the
outliers in DS 0 need to be removed before making decisions on real-
time damage detection. By sorting all 54,455 frames’ DIs of DS 0’s
401–506 runs in ascending order, Fig. 17 is obtained. It can be seen that
the first 4𝑒4 DIs are near zero, and DIs increase slightly with the increase
of the order number with a near-constant slope (green background
area). However, due to the influence of supports at ends, after the first
4𝑒4 DIs, the DI values begin to increase sharply, and the slope becomes
higher (red background area). Therefore, it can be deemed that there
are 4𝑒4∕54455 × 100% = 73.46% data are not outliers in DS 0’s 401–506
runs. The value at the 4𝑒4 position can be used as the health damage
threshold of DIs. In this paper, the threshold is 7.815𝑒−4.

For all runs in DS 1–6 shown in Table 1, the real-time DIs are
shown in Fig. 18a. We can see that for a certain DS, the real-time DIs
are similar. Also, it can be found that for damaged scenarios (DS 1–
6), the real-time DIs become greater and unordered compared to DS
0. When the damage severity is low (see DS 1), the real-time DIs are
relatively low and are similar to DS 0: 401–506 runs. When the damage
severity is increased, DIs become higher. In DS 2’s runs, most DIs are
within [0, 0.1]. But for DS 3, it becomes quite hard for the trained
DAE to reconstruct all frequency responses, and all DIs are between [0,
0.3]. For DS 4 and 5, the scale of DIs goes back to [0, 0.1]. For DS
6, DIs become greater and the scale is [0, 0.5]. It can be found that
the value of DIs does not have a positive linear correlation relationship
with damage severity. Thus, the value of DIs may not be suitable for
determining the severity of damage. For comparison and to show the
performance of the proposed method, one run’s DIs in DS 0–6 are
plotted in Fig. 18b. As shown in the figure, for a DS 0’s run (intact
bridge), the bridge can be identified as healthy most time. When the
bridge is damaged with low severity (e.g., DS 1 and 2), sometimes the
proposed method can determine the bridge is intact wrongly (see DS
1: 5.43–5.50 s, 5.78–5.83 s, 5.88–5.89 s, 5.49–6.21 s, and DS 2: 3.21–
3.24 s, 3.31–3.34 s). However, with the increase in damage severity,
it can be seen that the trained DAE model can constantly identify the
bridge’s damage when the truck is passing the bridge (see one run
for DS 3, 4, 5, and 6). Therefore, in this paper, a new index named
identified damage ratio (IDR) is proposed to estimate the damage
severity of the bridge as shown in Eq. (10).

𝐼𝐷𝑅 =
𝑁𝑑
𝑁

× 100% (10)

where 𝑁𝑑 is the sum number of the moments when the bridge is iden-
tified as damaged, and 𝑁 is all frames for a certain DS. For example,
for DS 1, there are 49 runs and 26,828 frames in total, in which, at
19,205 moments, the bridge is identified as damaged. That is to say,
IDR = 19205/26828 = 71.58%. It can be understood that when the
truck is passing the bridge, it can be identified as damaged at 71.58%
of the total time. By analyzing DS 2–6’s damage indicators, their IDRs
are 80.29%, 82.42%, 92.87%, 97.54%, and 97.62%, respectively. It can
be seen that with the increase in damage severity, the IDR is increasing
as well. In other words, if the bridge is damaged severely, it will be
easier for the trained DAE to determine if the bridge is damaged with
fewer mistakes. However, it must be noticed that when the bridge is
damaged to a relatively high degree, the trained DAE can detect the
bridge’s damaged state in real time with high accuracy (> 90%), namely
high IDR. At this time, if the damage degree increase, the IDR’s increase
speed will be slow (e.g., for DS 5 and 6, only 0.08% increase of IDR)
and the IDR is gradually approaching 100%.

In order to investigate the property of DIs, Fig. 19 plots the his-
togram of DIs for DS 0–6. It can be noticed that with the increase of
the DI’s value, the occurrence of DIs increases sharply at the beginning
and decrease slowly after the peak. The DIs are approximately subjected
to a lognormal distribution for a certain scenario. The fitted lognormal
probability distribution functions (PDFs) for DS 0–6 are shown. When
the bridge is healthy (see DS 0: 401–506 runs in Fig. 19), most DIs are
in the healthy area (green background), and a small part of DIs are in
the damaged area (red background). After the bridge is damaged, the
proportion of the healthy area is gradually shrunken and approaches
zero. Also, it can be seen that when the damage severity is high
(e.g., DS 6), there will be a large number of DIs with high values
(>0.04) compared with DS 1–2 in which most DIs are in [0, 0.03].
By summarizing all IDRs for DS 1–6, the overall damage detection
accuracy of the proposed method is 86.2%.

4.6. Consideration of engineering applications

This paper proposes an unsupervised method to monitor the health
conditions of the bridge. Compared with other methods, it only needs
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Fig. 16. Reconstruction of DS 1-6’s frequency responses.

Fig. 17. Sorting frames of DS 0: 401–506 runs in ascending order. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version
of this article.)

an initial condition of the healthy bridge and does not require labeled
data of the damaged case. The approach is based on detecting minor
changes in time-variant frequency responses of passing vehicles before
and after the bridge is damaged using DAE. Employing the proposed
DIs, the bridge can be monitored in real time when the vehicle passes
the bridge. The proposed approach needs many runs when the vehicle
passes the ‘‘healthy’’ bridge to learn its features hidden in vehicular
signals. Then, after months or years, the vibrations of the same vehicle

passing the bridge will be collected again for the real-time diagnosis of
bridge health conditions.

However, in engineering applications, many factors can challenge
the proposed method’s applications, for example, temperature effects,
wind loads, control of vehicle speed, etc. One key obstacle is the inverse
influence of road roughness. The experiments in this study are based on
relatively smooth road roughness, and good results have been obtained.
Still, in practical engineering, the road roughness can be worse than
the laboratory tests. Generally, the classification of road roughness can
be determined by power spectral density (PSD) as A∼H (smoothest ∼
poorest) in ISO 8608 [53]. It has been reported that the road profile of
bridges is better than normal roads [54] and can be typically regarded
as A-class [55–57]. When the road roughness is relatively smooth, the
excitation source of the vehicle is mostly from the bridge’s vibrations,
so the vehicle’s vibrations of a single axle can contain much information
about the bridge’s dynamics, that is, frequency-domain responses in
this study. However, as the road roughness becomes poorer, the vehicle
will be stimulated by the road roughness and the bridge’s vibrations.
It can be observed that the scale of road roughness is generally greater
than the bridge’s deflection [46,54,58,59], making excitation from the
road roughness (random external excitation) the main source for the
vehicle. Under this condition, the vehicle will vibrate greater, but the
road roughness can submerge the bridge’s dynamic information. As
little information about the bridge is contained in the vehicle’s single
axle’s vibrations, it can become more challenging for the DAE to extract
features related to the bridge’s damage.

Therefore, eliminating the effects of poorer road roughness when
employing the proposed method will be in our future work. There
are two ways to remove the influence of road roughness that deserve
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Fig. 18. Real-time damage detection results.

further verification before being applied in engineering applications.
The first method is to utilize residual responses of two connected
vehicles to weaken the inverse effects of road roughness. The method
typically needs to subtract vibrations of the rear axle from the front
one at the same point of road roughness (residual accelerations). It
was found that the bridge’s frequency responses are more outstanding
when the residual accelerations are employed compared to using raw
accelerations of one axle [60–62]. However, utilizing two connected
vehicles may be hard to operate in practical engineering [45]. The
second approach is related to back-calculating a two-axle vehicle’s CP

responses and using the residual CP responses of two axles [45,63].
Since CP responses are related to the bridge’s vibrations and road
roughness, the vehicle’s information is completely removed in the
frequency domain. Further, the influence of road roughness is mostly
eliminated by subtracting the CP responses of the rear axle from the
front one. However, this method relies on precise calculating of CP
responses from vehicular accelerations as they cannot be measured
directly. Besides, requiring the vehicle to be driven strictly straight
and wheels to undergo the same road roughness may be challenging
to achieve in engineering applications. The above two methods for
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Fig. 19. Distribution of DS 0–6’s DIs. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

removing the influence of road roughness will be further investigated in
our future studies when the DAE is employed to extract weak damage-
sensitive features of bridges from the vehicle’s vibrations before it is
applied to practical engineering.

As our initial investigation, this study investigates the influence of
engine effects, different traces of driving, various vehicle speeds, etc.,
on real-time damage detection using the DAE. The relatively smooth
roughness is employed at first in the laboratory tests. Our research will
be extended to weaken the influence of road roughness, ongoing traffic,
and effects of other external loads, etc. before the proposed method can
be employed in engineering applications.

5. Conclusions and future work

Utilizing the passing vehicle’s vibration data, an automatic drive-
by bridge damage detection method is proposed in this paper. The
frequency responses of the vehicle were employed as inputs to train
a DAE model which can identify the bridge’s health conditions. By
dividing the vibration data into frames, the damage detection process
can be accomplished in real time. That is to assess the bridge’s condi-
tions instantaneously when the truck is passing on the bridge instead
of analyzing data after it has passed the bridge. The main conclusion
remarks are shown below:

(1) When passing the bridge, short-time vibration data from the
vehicle can be used to evaluate the bridge’s health states. In
comparison with the existing methods that typically need the
vehicle to pass the bridge and collect all vibration data, utilizing
short-time accelerations is more efficient and can assess the
bridge’s health condition in real time.

(2) The proposed method can automatically identify the bridge’s
health conditions using the extracted damage indicators from the
vehicle’s vibration data. When six different damage scenarios are
explored, a relatively high accuracy can be achieved (86.2% in
this study), though the trained DAE model may misreport the
health condition of the bridge near the support.

(3) According to the results from the laboratory tests, the value of
DIs may not be suitable for determining the damage severity.
Instead, the proposed IDR can be utilized as a reference for
detecting the bridge’s damage severity. With the increase in
damage severity, the IDR increases remarkably at first and then
gradually approaches 100%.

It is worth noting that the proposed method is a baseline-based
method, which requires a large number of the vehicle’s vibration data
when passing the ‘‘healthy’’ bridge. Despite the findings summarized
above, there are many external factors (e.g., seasonal temperatures,
winds, the bridge deck’s road roughness, and other traffic influences)
that can influence the automatic damage detection procedure that de-
serves further exploration. Our future work will initially be extended to
check the influence of road roughness and investigate ways to weaken
its influence on the proposed method. Then, other possible factors will
be tested before field tests.
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