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High-gain amplifiers of electromagnetic signals operating near the quantum limit are crucial for quantum
information systems and ultrasensitive quantum measurements. However, the existing techniques have a
limited gain-bandwidth product and only operate with weak input signals. Here, we demonstrate a two-port
optomechanical scheme for amplification and routing of microwave signals, a system that simultaneously
performs high-gain amplification and frequency conversion in the quantum regime. Our amplifier,
implemented in a two-cavity microwave optomechanical device, shows 41 dB of gain and has a high
dynamic range, handling input signals up to 1013 photons per second, 3 orders of magnitude more than
corresponding Josephson parametric amplifiers. We show that although the active medium, the mechanical
resonator, is at a high temperature far from the quantum limit, only 4.6 quanta of noise is added to the input
signal. Our method can be readily applied to a wide variety of optomechanical systems, including hybrid
optical-microwave systems, creating a universal hub for signals at the quantum level.
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Recent advances in near-quantum-limited amplifiers in
the microwave-frequency regime have led to breakthroughs
in the understanding of quantum measurement processes
[1–4] and are necessary in quantum error correction and
feedback [5–7]. Of particular interest for most applications
are phase-insensitive linear amplifiers, which provide a
faithful reconstruction of both quadratures of the input.
Such amplifiers are bound by the standard quantum limit
(SQL), which states that at high gain at least half an energy
quantum of noise is added to the input signal [8]. This limit
has been approached with Josephson parametric amplifiers
[9–14]; however, such amplifiers are limited to relatively
weak input signals. Optomechanical amplifiers or detec-
tors, utilizing the interaction between electromagnetic
waves and a mechanical resonator inside a cavity [15],
have been demonstrated in the microwave and optical
regime [16–19], but existing techniques suffer from a
limited gain and bandwidth as well as noise levels well
above the SQL.
In this paper, we demonstrate a two-port optomechanical

device, motivated by the proposal in Ref. [20]. It consists of
two electromagnetic cavities with different resonant
frequencies, simultaneously coupled [21–23] to a single
mechanical resonator. In the presence of appropriately

chosen external pump tones, the mechanical resonator
mediates interaction between the cavities, enabling strong
amplification of a signal reflected from one of the cavities.
Moreover, the scheme supports frequency-converting ampli-
fication, where a signal incident in one cavity can irradiate
out from the other cavity at a completely different frequency,
while being amplified at the same time. As we show
theoretically, our scheme can reach the SQL for both of
these processes. Unlike existing optomechanical amplifiers
[16,17], the bandwidth of amplification in our scheme can be
in principle increased up to the cavity linewidth, and the
product of gain and bandwidth has no fundamental limit.
Remarkably, we show in experiment that the quantum limit
can be closely approached even at a high temperature where
the mode occupation numbers ≫ 1, which allows for an
interpretation in terms of reservoir engineering [20,24–27].
In a microwave-frequency optomechanical [28] experi-

ment, we obtain a gain of 41 dB with a gain-bandwidth
product of 137 kHz, while adding only 4 quanta of noise
above the SQL. Additionally, we show how the multimode
system can act as a spectrally pure microwave source in the
regime of self-oscillations. Finally, using an alternate pump
scheme, our system also supports frequency conversion
without amplification, similar to previous experiments in a
range of systems [22,23,29,30]. With that method, we
observe near-unity conversion efficiency, wide bandwidth,
and added noise on the single photon level.
Our setup is shown in Fig. 1 and discussed in detail in the

Supplemental Material [31]. At the heart of our device is a
suspended aluminium drum resonator [3], with a resonant
frequency of ωm ¼ 2π × 8.3 MHz and a linewidth of
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γ ¼ 2π × 100 Hz, fabricated on a quartz substrate. The
drum is surrounded by two inductor-capacitor (LC)
cavities, with resonant frequencies ω1 ¼ 2π × 7.0 GHz
and ω2 ¼ 2π × 8.4 GHz, respectively. The mechanical
resonator is suspended over two electrodes to form a
variable capacitance in each cavity, simultaneously cou-
pling the mechanical motion to both cavities. Each cavity is
capacitively coupled to an individual transmission line with
a strong coupling rate, κe ¼ 2π × 4.8 MHz, compared to
the internal loss rate, κi ¼ 2π × 0.50 MHz. The total cavity
linewidth is κ ¼ κi þ κe.
The two-mode amplifier is created by injecting two

pump tones [Fig. 1(d)], one at the blue mechanical sideband
of cavity 1 (ωPþ ¼ ω1 þ ωm), and the other at the red
sideband of cavity 2 (ωP− ¼ ω2 − ωm). In the presence of
strong pump tones, the optomechanical interaction is
effectively linear and enhanced by the cavity, with coupling
strengths Gþ ¼ ffiffiffiffiffi

n1
p

g1 and G− ¼ ffiffiffiffiffi
n2

p
g2, where gi is the

single-photon coupling strength and ni the photon occu-
pation of cavity i. We also define G2 ¼ ðG2

− −G2þÞ and the
effective damping γeff ¼ γ þ 4G2=κ of the mechanical
resonator. Quantum-limited amplification in related multi-
cavity configurations have been theoretically proposed
[20,32,33]. Reference [20] treats a special case of equal
pump tones, G− ¼ Gþ, whereas Ref. [32] discusses an
inverted dissipation hierarchy, where the linewidth of the
mechanical resonator is much larger than κ. The latter case,
using cavity damping to enhance γ, was experimentally
realized in a work simultaneous to ours [34]. In our work,
we treat the case G− ≳Gþ and γeff ≪ κ. Moreover,
we introduce the possibility for frequency-converting

amplification, in addition to unity-gain frequency conver-
sion [22,23,29,30].
The effective Hamiltonian describing the coupling

between the subsystems is

HI ¼ ðG−c† þ GþaÞbþ H:c: ð1Þ

(ℏ ¼ 1 hereafter), where the operators a, a† and c, c†

represent cavity 1 and 2, respectively, and b, b† represent
the mechanical mode. HI can be interpreted as a two-step
process composed of nondegenerate parametric amplifica-
tion [1,35] between cavity 1 and the mechanics (term
Gþabþ H:c:), followed by a beam splitter between the
mechanics and cavity 2 (term G−c†bþ H:c:), which acts as
a means to transfer the amplification to cavity 2.
Using input-output theory, and assuming G− ≳Gþ, we

find the system behaves as a two-port phase-insensitive
linear amplifier, as depicted schematically in Fig. 1(c). The
output field aout of cavity 1 has the from

aout ¼ Adain þ Axc
†
in þ F; ð2Þ

and similar for cout of cavity 2. Here, Ad is the direct gain of
signals ain incident on cavity 1 and Ax is the cross
(frequency-converting) gain of signals incident on cavity
2. Operator F describes the added noise due to the
internal modes of the device, viz. G2 ≪ G2

−. In this case,
the direct and cross gains are approximately equal, with
peak values on resonance

(a) (b)

(c)

(d)

FIG. 1. Experimental setup. (a) Schematic of our device, showing two LC microwave cavities (ω1, ω2) both coupled to a central
mechanical drum resonator (ωm) aswell as an individual feed line. Signals (ωs1,ωs2) and pumps (ωPþ,ωP−) are fed to the cavities as shown.
The output of cavity 1 is preamplified andmeasured with a signal analyzer. (b) Atomic force micrograph of the drum resonator. Scale bar is
10 μm long. (c) Conceptual two-port amplifier, exhibiting both direct (Ad) and cross (Ax) gain. (d) Schematic representation of the cavity
modes and pump frequencies used to realize a two-port amplifier. As an example, an input signal with frequencyωs2 is injected to cavity 2,
with the frequency-converted and amplified output emerging from cavity 1.
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jAdj2 ≈ jAxj2 ≈
����2 κeκ

4G2
−=κ

γeff

����
2

: ð3Þ

Similar to optomechanical amplifiers powered by a single
blue-detuned pump [16], the amplification bandwidth is
associated with the effective mechanical linewidth γeff . In
the present case, however, the parametric instability thresh-
old is not reached as long as γeff > 0 (see Ref. [27]), and
further, the bandwidth can be increased beyond the intrinsic
linewidth γ, in principle up to the onset of mode splitting
γeff ≃ κ [20]. Moreover, the gain-bandwidth product,
GBW ¼ jAdjγeff , is determined by G− ≈Gþ, and is not
fundamentally limited outside the mode-splitting region.
The latter, however, can be fully controlled by G, and, thus,
the GBW is rigorously unlimited in the limiting case
G− ¼ Gþ.
To characterize the noise performance, we calculate the

expected output noise power-spectral density (PSD),
Sout ¼ 1

2
ha†outaout þ aouta

†
outi, from Eq. (2) (and similar

for cout). The input-referred added noise is then calculated
as Sadd ¼ ðSout − SinÞ=jAj2, where A is Ad or Ax for direct
and frequency-converting amplification, respectively, and
Sin ¼ 1=2 is vacuum input noise driving both cavities. In
principle there could also be thermal input noise entering
via the ports, but this is typically negligible. In the regime
γκ=4 ≪ G2 ≪ G2

− (that is, in the case of high gain and
significantly broadened γeff ), the added noise for direct
amplification can be expressed as [31]

Sadd ≈
γκ

4G2
−

κ

κe

�
nTm þ 1

2

�
þ κi
κe

ðnTa þ nTc þ 1Þ þ 1

2
: ð4Þ

Here, the first term originates from the thermal environment
of the mechanical oscillator, with an effective temperature
Tenv corresponding to an occupation nTm ≈ kBTenv=ℏωm.
The second term corresponds to the thermal environment of
the cavities, with thermal occupation numbers nTa and nTc
for cavity 1 and 2, respectively. Finally, the last term is the
vacuum noise of cavity 2. For large G− and Gþ, strong
external coupling κe ≫ κi, and narrow intrinsic mechanical
linewidth such that γκ=4 ≪ G2

−, the added noise
approaches the quantum limit of one-half quantum.
These conditions are available in realizations using either
microwave or optical cavities. The fundamental quantum
noise is effectively set by cavity 2 (the mode which is not
the input). Importantly, the added noise due to the
mechanical thermal environment is reduced by a cooper-
ativity-like factor γκ=ð4G2

−Þ. Hence, the quantum limit can
be nearly reached even when the mechanical oscillator is at
a high temperature, in stark contrast to the regular non-
degenerate parametric amplifier [35].
Another figure of merit of an amplifier is the capability to

handle large signal levels. Josephson parametric amplifiers
operating near the quantum limit are poor in this regard.
This is because the Josephson energy limits the energy

stored in a single junction up to approximately 102 photons.
Our approach is expected to show a clear improvement
because it does not involve nonlinearities close to single-
quantum energies. The limiting factor in our system is the
critical current of aluminum, which typically allows 108

photons inside the cavity. Although Eq. (1) could be
realized in Josephson junction systems as well, the large
signal handling capabilities favor an electromechanical
realization.
In experiment, we measure the performance of our

amplifier in a cryogenic environment at a base temperature
of 7 mK.We inject pumps and signals in both cavities, while
measuring the output of cavity 1. Figure 2(a) shows the direct
gain jAdj2, where the signal is injected into cavity 1. Data are
shown as a function of signal frequency for G− ¼ 2π×
355 kHz and several values of Gþ up to Gþ ¼ 0.99G−,
corresponding to the highest gain. We achieve a maximum
gain of jAdj2 ¼ 41 dB with a 3-dB bandwidth of
γeff ¼ 1.2 kHz, resulting in GBW ¼ 137 kHz. The data
are in excellent agreement with fits to our model [31].
Figure 2(b) shows an example of frequency-converting

(a)

(b) (c)

FIG. 2. Two-mode amplifier performance. (a) Direct gain jAdj2
versus signal frequency for fixed G− and various values of Gþ
(colored lines, legend shows G=2π) together with theory fits
(black lines). Inset: Amplifier configuration; the signal is input to
cavity 1. (b) Example output spectrum of cavity 1 (blue line),
showing high-gain frequency conversion of a weak signal
injected in cavity 2 (narrow peak). The peak height at different
frequencies (circles) agrees with the fitted model (red line). Inset:
Amplifier configuration. (c) Effective input-referred noise for the
same G−,Gþ as in (a) (colored lines). The theory model (black
line) is plotted only for the highest gain. The blue shaded area
shows the input noise of one-half quanta at each input, and the red
shaded area shows the modeled added noise Sadd.
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amplification. Shown is the output spectrum of cavity 1,
while a weak sinusoidal signal is injected into cavity 2 close
to resonance, forG− ≈ 2π × 140 kHzandG ≈ 2π × 40 kHz.
The converted output signal is visible as a narrow peak. The
peak output ismeasured for several frequencies (circles), and
the peak gain is jAxj2 ≈ 26 dB.
To accurately quantify the noise performance,we calibrate

the total system gainwith two independent methods (see also
Ref. [31]). First, we compare to a resistor with known 2.9-K
thermal noise at the output side of the sample [Fig. 1(a)].
Second, in a subsequent cooldown, we verify the calibration
with a tunable noise source at the input side of our sample.
Using the latter method, we do not need to know the cable
attenuation between the sample and the preamplifier. Using
this calibration, we measure the effective noise Sout;eff at the
sample output. Figure 2(c) shows the effective input-referred
noise spectrum, Sin;eff ¼ Sout;eff=jAdj2, with no signal input,
expressed as number of quanta per unit bandwidth and
regarding cavity 1 as the input port. Sin;eff is the total system
noise: it consists of the input vacuum noise Sin ¼ 1=2 (blue
shaded area), the added noise Sadd of the mechanical
amplifier (red shaded area), as well as the output technical
noise SH;eff added by all further amplification stages [31].
The latter dominates off resonance, but is negligible at high
gain. The measured effective noise therefore reduces at
increasing gain, saturating at Sin;eff ≃ 5 quanta for
jAdj2 ≳ 20 dB. This corresponds to an added noise of
Sadd ¼ 4.6� 1.0 quanta at the highest gain measurement.
The same result applies to frequency-converting amplifica-
tion (with cavity 2 as the input port), since at high gain
jAxj ≈ jAdj. The uncertainty of Sadd is dominated by the
residual power calibration uncertainty.
In Figs. 3(a)–3(c), we summarize the performance of our

amplifier for a wide range of pump powers. For fixed G−,
the gain-bandwidth product is approximately independent
of G, as expected from our model. The highest GBW ¼
137 kHz as well as the highest absolute gain are achieved at
highest G−, which is, in turn, limited only by the exper-
imentally available pump power. The optimal bandwidth,
while maintaining a total system noise of 5 quanta, is
γeff ¼ 2π × 11 kHz, measured at a gain of 21.5 dB.
Figure 3(c) shows the total input-referred noise Sin;eff on
resonance, as well as the added noise Sadd of our amplifier.
At low pump powers, and thus low gain, we observe added
noise below 2 quanta, but for high pump powers, Sadd
increases. Comparing to our theory model, we find that the
noise performance is well described by heating of the
mechanical environment at high pump powers, up to nTm ≈
5 × 103 quanta. These results are consistent with the
heating we observe with standard optomechanical cooling
measurements [31]. While heating processes limit the noise
performance of the current experiment, they do not pose a
fundamental limit on our scheme. The heating could be
reduced by increased optomechanical couplings g1 and g2
and improved mechanical and cavity quality factors, and
further depends on the details of device fabrication.

In addition to operating the pump frequencies at
sideband coresonance, our amplifier can be tuned over
the cavity linewidth κ by shifting the pump frequencies. We
measure high-gain (jAdj2 > 26 dB) and low-noise
(Sin;eff ≈ 5 quanta) amplification over a tuning range of
2 MHz. Further tuning could be achieved with tunable
microwave cavities [36]. Free-space optical cavities, which
have been used in optomechanical systems [15], directly
provide tuning over a wide range.
In contrast to existing amplifiers operating near the

quantum limit, our amplifier can handle large signal levels.
Figure 3(d) shows the output power versus input power, as
measured at the sample port, for several nominal gain
settings and for the largest input powers where the system
remains stable. With a gain of 23 dB and similar pump
powers as in Fig. 2, our amplifier remains stable up to an
input power of −69 dBm, or 3 × 1013 photons=s. This is
30 dB higher than reported in Josephson parametric
amplifiers [14], and corresponds to a very large dynamic
range of 127 dB in a 1-Hz measurement bandwidth. In
these large-signal measurements, the signal-to-noise ratio

(a)

(b)

(e)

(d)

(c)

FIG. 3. Amplifier performance and oscillations. (a) Gain-
bandwidth product for several values of G− (legends show
G−=2π) as a function of G. (b) Peak direct gain and (c) effective
input-referred noise (closed circles) and added amplifier noise
Sadd (open squares) on resonance, for the same parameters as (a).
(d) Performance of direct amplification at large input powers,
measured for G− ≈ 2π × 350 kHz and several values of G
(colors). Legend shows the nominal gain for each setting.
(e) Harmonic spectra of oscillations in the instability regime
without (open squares) and with (closed circles) the red-detuned
pump at ωP− enabled. For the latter case, each harmonic
component is measured separately and the horizontal line shows
the measurement noise floor.
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(SNR) is > 100 dB in a 1-Hz measurement bandwidth,
limited by the phase noise of our signal generator. Since we
see no evidence of increased noise towards higher input
powers, we believe the SNR is equal to the dynamic range,
which is 5 orders of magnitude higher than in typical
Josephson parametric amplifiers [10], and comparable to
the highest values obtained with nearly quantum-limited
microwave measurement systems [37].
When increasing Gþ beyond the stability requirement

γeff > 0, the system undergoes a lasing transition to self-
sustained oscillations, which can be a source of spectrally
pure electromagnetic radiation [32]. Figure 3(e) shows the
measured harmonic spectrum of such oscillations for
the two-cavity case (both pumps ωPþ and ωP− on) and
for the case of a single pump ωPþ. Whereas the single
pump case shows many harmonic components, in the two-
cavity case we observe only a single sideband at �ωm
around the pump frequency ωPþ. The absence of higher
sidebands demonstrates that the mechanical resonator has
pure sinusoidal oscillations, which can allow for applica-
tions as a source of a clean clock signal.
In a third experiment, we demonstrate coherent frequency

conversion of microwave signals without amplification, a
frequency-converting analog to an optical beam splitter. This
method has been previously demonstrated with optical
frequencies [22,23], hybrid microwave-optical systems
[29], and very recently in a system similar to ours [30].
Both cavities are pumped at the red mechanical sideband,
with pump frequencies ωPi ¼ ωi − ωm for cavity i ¼ 1, 2,
respectively. A weak input signal with frequency ωs is
injected into cavity 2. The converted signal appears at the
output of cavity 1, with a frequency ω0

s ¼ ωs − ωP2 þ ωP1.
The internal conversion efficiency between the two cavities
is [22]

ηint ¼
4G2

1G
2
2

ðG2
1 þ G2

2 þ γκ
4
Þ2 ; ð5Þ

which approaches unity for G2
1 ¼ G2

2 ≫ ðγκ=4Þ. Here,
Gi ¼ ffiffiffiffi

ni
p

gi. The total conversion efficiency from input to
output is η ¼ ηintκ

2
e=κ2.

The experimental results are shown in Fig. 4. Figure 4(a)
shows the output power spectral density Sðω0Þ for several
input frequencies close to ω2. The output signal is visible as
a narrow peak. The conversion has a bandwidth of 50 kHz,
corresponding to the mechanical linewidth broadened by
optomechanical cooling by both pumps. Figure 4(c) shows
the maximum internal conversion efficiency at ωs ¼ ω2 as
a function of output-cavity pump power PP1, for various
input-cavity pump powers PP2, together with a global fit of
all the data to Eq. (5). We obtain a peak internal efficiency
of ηint > 0.99, and the total efficiency is limited only by the
cavity coupling η ≈ κ2e=κ2 ≳ 0.82. Similar to the two-port
amplifier, we observe an increase in noise due to heating of
the mechanics at the highest pump powers, resulting in an

added noise of 3.9 quanta at near-unity conversion effi-
ciency. Using lower pump powers, we obtain an added
noise of 1.4 quanta, while retaining a conversion efficiency
of ηint ¼ 0.95. In optical and hybrid systems, much lower
efficiencies have been reached, mostly limited by κe
[22,23,29]. To verify coherence of the conversion process,
we externally mix the input and output signals, generating
their difference frequency δs ¼ ωs − ω0

s. Similarly, we mix
together the two probe tones to generate δP ¼ ωP2 − ωP1.
We then combine δs and δP on a resistive adder, and with
appropriately adjusted relative phase and amplitude we
observe 15 dB of destructive interference between the two
tones, as shown in Fig. 4(d). We thus demonstrate coherent
frequency conversion near the quantum limit.
Our concept of a two-port optomechanical phase-

insensitive amplifier can be readily applied to other
optomechanical systems which have been recently dem-
onstrated, including optical [22,23] and hybrid optical-
microwave systems [29], providing an essential link to
create hybrid networks of otherwise incompatible quantum
systems [38–40]. Extending our scheme to multiple cavity
modes creates a universal hub for electromechanical or
optomechanical signals at the quantum level [41,42], with
high-gain, high-power amplification enabling interconnec-
tion of remote systems. At optical frequencies [43], the
quantum limit of added noise should be accessible at room
temperature. Given that in the present microwave experi-
ment the added noise is limited by residual heating of the
mechanical resonator, we expect the quantum limit can be
reached by, first of all, improving the coupling efficiency.
With a factor of 2 higher coupling, and an order of
magnitude higher pump powers feasible, in particular, in
3D cavities [44] with niobium technology, the device can

(a)

(b)
(d)

(c)

FIG. 4. Frequency conversion without amplification. (a) Output
spectrum Sðω0Þ (arbitrary units, each curve offset by 10 dB)
showing the frequency-converted output signal ω0

s ≈ ω1 for
several input frequencies ωs ≈ ω2. (b) Pump and signal configu-
ration. (c) Conversion efficiency on resonance (ωs ¼ ω2) along
with fitted theory (see text), for PP2 ≈ 4 dBm (yellow), 14 dBm
(red), and 22 dBm (blue), in the same units as PP1. Arrow
indicates data shown in (a). (d) Coherence of conversion. Shown
are spectra of the mixed-down pump tone δP (blue line) and the
destructive interference of δP and δs (red line).
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operate at MHz-range bandwidth close to the standard
quantum limit at 4-K temperatures, hence presenting an
attractive alternative to HEMT amplifiers in narrow-band
microwave measurements.
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PO Box 35 (YFL), FI-40014 University of Jyväskylä, Finland
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THEORETICAL MODEL

In this section we provide some further details of the theoretical description of the system. In the laboratory frame,
the Hamiltonian of the system is given by

H = ω1a
†a+ ω2c

†c+ ωmb
†b+

(
g1a
†a+ g2c

†c
)

(b† + b) (S1)

where a and c represent the cavity modes for cavity 1 and 2 with resonant frequencies ω1 and ω2, while b (b†) is
the lowering (raising) operator associated with the mechanical resonator, with resonant frequency ωm. The coupling
between the cavities and the mechanics is described in terms of radiation pressure interaction with coupling constants
g1 and g2. We follow [1] and consider below the experimental situation where the pump frequencies satisfy ωP− =
ω2 − ωm and ωP+ = ω1 + ωm. We then expand the cavity operators around the classical response. In the rotating
frame with respect to cavity frequencies, the first quantum corrections are described by H = H0 + HI , where the
uncoupled Hamiltonian is H0 = ωm(b†b + c†c − a†a). Retaining only the resonant terms in the remaining linearized
interaction yields the coupling Hamiltonian

HI = (G−c
† +G+a)b+ h.c., (S2)

where G− = g2
√
n2, G+ = g1

√
n1, and n2 and n1 are the photon numbers for the red-detuned and blue-detuned

pumping tones for cavity 2 and 1, respectively. Applying the two-mode squeezing operator S(ξ) = exp
[
ξc†a† − ξca

]
,

to the cavity operators

ηA = S†(ξ)cS(ξ) = cosh ξ c+ sinh ξ a†

ηB = S†(ξ)aS(ξ) = cosh ξ a+ sinh ξ c†, (S3)

the Hamiltonian HI can be recast as a beam-splitter Hamiltonian

HI = G
(
ηAb
† + η†Ab

)
, (S4)

where we have defined

cosh ξ = G−/G, sinh ξ = G+/G with G2 = G2
− −G2

+, (S5)

with G− > G+. Note here how ηB is a mechanically dark mode (i.e. it does not couple to the mechanics). Assuming
the standard dissipation mechanism for the cavities and the mechanics, with dissipation coefficients given by κ (equal
for both cavities) and γ, the quantum Langevin equations for ηA and ηB can be solved to give [2]

ηA =
χ−1

m

χ−1
m χ−1

c + G2

√
κηA −

iG√γ
χ−1

m χ−1
c + G2

bin (S6)

ηB = χc
√
κ cosh ξ ain + χc

∗√κ sinh ξ c†in, (S7)

where χm = [γ/2− iω]
−1

and χc = [κ/2− iω]
−1

are the bare mechanical and cavity responses in the rotating frame.
Transforming ηA and ηB back to a and c,

a = S(ξ)aS†(ξ) = cosh ξ ηB − sinh ξ η†A

c = S(ξ)cS†(ξ) = cosh ξ ηA − sinh ξ η†B, (S8)
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and, taking into account the input-output relations for the cavity fields [3],

aout + ain =
√
κea

cout + cin =
√
κec, (S9)

we can write the expression for the output fields a and c. It reads

aout = (−κeAaa − 1)ain − κeAacc†in

−
√
κiκeAaaaI,in −

√
κiκeAacc†I,in + i

√
γκe

G+

(χcχm)−1 + G2
b†in (S10)

cout = (κeAcc − 1)cin + κeAcaa†in

+
√
κiκeAcccI,in +

√
κiκeAcaa†I,in − i

√
γκe

G−
(χcχm)−1 + G2

bin (S11)

where

Aaa = (χec sinh2 ξ − χc cosh2 ξ)∗

Acc = χec cosh2 ξ − χc sinh2 ξ

Aca = A∗ac = (χec − χc) cosh ξ sinh ξ (S12)

and χec = χc

(
1 + G2χcχm

)−1
represents the effective cavity response in the presence of the two-tone optomechanical

drive. In eqs. (S10, S11), we have explicitly included the possibility of internal cavity losses (and noise) for both
cavities by introducing the operators aI,in and cI,in. From eqs. (S11, S12), one readily obtains the direct gain Ad and
cross gain Ax for output field a,

Ad = −κeAaa − 1

Ax = −κeAac. (S13)

In the case of strong pumping 4G2
− � γκ, the maximum direct gain Ad can be written as

Ad|ω=0 ≈
(8κe

κ − 4)G2
− + 4G2

+ + γκ

4G2 + γκ
. (S14)

Assuming further G2 � G2
− (and hence G+ ' G−), the term −1 in eq. (S13) can be neglected, and the maximum

gains become

Ad|ω=0 ≈ 2

[
κe
κ

4G2
−/κ

γ + 4G2/κ

]
, Ax|ω=0 = 2

[
κe
κ

4G−G+/κ

γ + 4G2/κ

]
. (S15)

The bandwidth of amplification is given by the effective mechanical damping, given by

γeff = γ +
4G2

κ
. (S16)

When the bandwidth is determined by the optomechanical pumping, i.e., 4G2/κ � γ, the expressions for the direct
and cross-gains become particular simple,

Ad|ω=0

4G2�γκ
≈ 2

[
κe
κ

1

1− x2

]
, Ax|ω=0

4G2�γκ
≈ 2

[
κe
κ

x2

1− x2

]
, (S17)

where x = G+/G− . 1.
From the expression of the output fields given by eq. (S10), the added noise at the output port of cavity 1, assuming

direct amplification, can be written as

Sadd,d =
1

2
〈a†outaout + aouta

†
out〉 −

1

2
|Ad|2 〈a†inain + aina

†
in〉

= κiκe|Aaa|2
(
nTa +

1

2

)
+|κeAac|2

(
nc +

1

2

)
+ κiκe|Aac|2

(
nTc +

1

2

)
(S18)

+
γκeG

2
+

|(χcχm)−1 + G2|2

(
nTm +

1

2

)
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Figure S1. Measurement setup and cryogenic temperature stages. a) Main setup. Shown are network analyzer (VNA),
signal generators (ωP1, ωP1), signal analyzer (SA), power splitters / combiners (+), circulators (CIRC), directional coupler
(CPL), switch (SW), noise source Rref, HEMT amplifier, filters, attenuators and room-temperature amplifiers. b) Alternative
low-temperature setup used in a separate calibration cooldown.

while for cross-amplification we have

Sadd,x =
1

2
〈a†outaout + aouta

†
out〉 −

1

2
|Ax|2 〈c†incin + cinc

†
in〉

= | − κeAaa − 1|2
(
na +

1

2

)
+ κiκe|Aaa|2

(
nTa +

1

2

)
+κiκe|Aac|2

(
nTc +

1

2

)
(S19)

+
γκeG

2
+

|(χcχm)−1 + G2|2

(
nTm +

1

2

)
,

and analogous expressions hold for cavity 2. Here, nTa , nTc , and nTm are the bath temperatures of cavity 1, cavity 2,
and the mechanics, respectively, expressed as number of quanta. The occupation numbers na and nc correspond to
the ain and cin, respectively. From eqs. (S19) and (S20) in the large-gain limit (G− ' G+) and for small internal
losses (κe � κi, γ), both Sadd,d and Sadd,x approach the quantum limit (Sadd,d/|Ad|2 ' Sadd,x/|Ax|2 & 1/2).

It is interesting to note how the contribution from the mechanical resonator bath is reduced in this scheme compared
to the amplification with only blue-detuned cavity driving [2]. Namely, for a signal on resonance (ω = 0), and for
4G2 � κγ the equivalent added noise from the mechanical bath (last lines on eqs. (S17) and (S18)) is

Sadd,m/|Ad|2 =
γκ2G2

+

4κeG4
−

(
nTm +

1

2

)
. (S20)

For cross-amplification this result is further multiplied by G2
−/G

2
+. These results mean that near-quantum limited

amplification is possible even when the bath of the mechanical resonator responsible for the non-linear interaction is
not very close to its ground state.

EXPERIMENTAL SETUP

Our measurement setup is shown in figure S1a. We use a Bluefors dry dilution refrigirator to cool the sample to a
base temperature of 7 mK. The input lines are attenuated at each temperature stage to prevent thermal noise from
reaching the sample, so that the sample sees essentially only vacuum noise at its inputs.

The two pump tones, here labelled ωP1 and ωP2, are generated by Anritsu MG3692C signal generators, and passed
through a notch filter tuned to ω1 and ω2, respectively, to prevent generator phase noise from coupling to the cavities,
and injected into cavity 1 and 2, respectively. The probe tone at ωs is generated by a R&S ZVA40 vector network
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analyzer (VNA) is combined with either probe ωP1 (shown) or ωP2, depending on the measurement. All signal
generators and analyzers are frequency locked to the same reference.

The output signal of cavity 1 is separated from the input by a circulator, and pre-amplified by a HEMT amplifier
(LNF-LNC4 8A) at 2.9 K. To avoid saturating the HEMT amplifier, we add part of the pump signal to the sample
output using a directional coupler, carefully adjusted to cause negative interference with the pump signal that was
reflected off the sample. At the input of the HEMT amplifier, a mechanical switch can switch in a thermal noise
source at 2.9 K to give an absolute calibration of the output power (described below).

The output signal is further amplified at room temperature, and split to the input of the VNA and of a Anritsu
MS2830A signal analyzer (SA). The SA input signal is first passed through a filter with a pass-band of a few MHz
around ω1, in order to further reduce the amplitude of the pump tone ωP1.

We also use the VNA to measure the line shape of cavity 1 in a reflection measurement. To establish a reference of
the background reflection due to the tranmission lines and filters, we fit a polynomial to the magnitude data outside the
cavity resonance. We then divide the complex reflection data by this fit, and extract κint = 2π×(0.50±0.05) MHz and
κext = 2π× (4.8±0.2) MHz from the resulting amplitude and phase data. The background fit is also used to calibrate
the amplifier gain, assuming a gain of 1 (perfect reflection) off resonance from the cavity. A direct measurement of
cavity 2 was not possible in the experiment, as the output of cavity 2 was not measured. From the circuit geometry
and fabrication uncertainties, we expect the cavity linewidths to be similar within about a factor 1.5. We have verified
numerically that such differences do not affect the expected gain profiles and added noise. Hence, for plotting theory
curves, we assume cavity 2 to have the same line width as cavity 1.

Calibration of output noise and system gain

A precise calibration of the power at the output of the sample is crucial for our measurements. We perform this
calibration by comparing to a known noise source Rref. We first turn off all pump and probe tones and measure
the vacuum noise originating from the mK stage. At the signal analyzer (SA), this results in a noise power spectral
density (PSD) of S0 = ( 1

2 + SH)A2
H, expressed in number of quanta (multiplication by ~ω gives power per unit

bandwidth). Here, SH is the effective noise added by the cryogenic HEMT amplifier, and A2
H is the total power gain

from the input of the HEMT to the SA. Then, we flip switch SW and measure the reference noise S1 = (Sref +SH)A2
H,

where Sref = 8.67 is the thermal noise of resistor Rref at a measured temperature of 2.91 K. By comparing these
measurements, we find SH = 17.6± 1.3 and A2

H = (75.7± 0.3) dB.
In a typical measurement, we wish to measure the output PSD of the sample, Sout, which results in SSA =

(αSout + SH)A2
H at the SA. Here, α accounts for any attenuation between the sample and the HEMT amplifier. We

estimate α = −1.5 ± 1.0 dB based on the low-temperature cabling. In the main text, we plot the effective output
PSD,

Sout,eff =
SSA

αA2
H

, (S21)

which is equal to Sout plus technical noise. In noise measurements we plot the effective input noise PSD, referred to
the input of cavity 1,

Sin,eff =
SSA

αA2
HA

2
d

, (S22)

where Ad is the direct gain of the mechanical amplifier, measured independently. We emphasize that the quantities
(S21, S22) characterize the total system performance, including the added noise of all further amplification stages.
The total calibration uncertainty in (S21) and (S22) is 1.0 dB, dominated by the uncertainty in α.

The theory curves in figure 2 of the main text include the quantum noise of the input, the predicted added noise of
the mechanical amplifier (equation S19), as well as the effective HEMT noise, and is calculated as

Sin,eff =
1

2
+ Sadd,d +

SH,eff

A2
d

, (S23)

where Ax is the the predicted cross gain of the mechanical amplifier and SH,eff = SH/α the effective technical noise
of the HEMT amplifier as well as any further amplification stages.

To verify the calibration of α, we performed a second cooldown where the reference noise source is at the sample
input, as shown in figure S1b. The noisy resistor R′ref is connected to the sample input, and the input signal and pump
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Figure S2. Optomechanical cooling. a) Total linewidth γeff obtained from fits of the output spectrum to equation (S25) at a
fridge temperature of 8 mK (circles) and 30 mK (triangles), as a function of pump power. The dashed and solid lines show the
fitted γeff and γopt ∝ P−, respectively. b) Mechanical mode occupation nm and mechanical bath temperature nT

m extracted
from the fits, expressed as number of quanta, showing optomechanical cooling down to nm,min = 3.4 quanta.

are combined with it on a -20 dB directional coupler. The noise resistor has an independent heater and temperature
sensor, and we vary its temperature to create a calibrated variable noise source Sref(T ). We measure the PSD at the
SA, which is epxected to follow

SSA(T ) =
(
Sref(T )A2

d + SH,eff

)
αA2

H. (S24)

Off cavity resonance (A2
d = 1), a fit to equation (S24) alows us to extract SH,eff independently of α and AH. We

find SH,eff = 24, in excellent agreement with the main calibration described above (αSH = 25). With the pumps
enabled, and measuring on cavity resonance, equation (S24) also allows us to directly measure the amplifier added
noise. However, due to the additional directional coupler in this cooldown the pump power available at the sample
was limited to G+ ≈ G− ≈ 2π×60 kHz. At this power, we find Sadd,d = 6 quanta, in good agreement with the values
reported figure 3c of the main text.

Optomechanical cooling

To calibrate the thermal bath temperature of the mechanical oscillator, we perform a series of standard optome-
chanical cooling measurements. Here, we use a single pump at the lower (red) mechanical side-band co-resonance of
cavity 1. The output spectrum at frequency δ = (ω − ω1)� κ, ωm has a Lorentzian form [4]

Sout(δ) =
4κe

κ
nTa + γopt

κe

κ

γeff

δ2 + γ2
eff/4

(
nm − 2nTa

)
, (S25)

where γeff = γ(T ) + γopt is the total mechanical line width, γopt the opto-mechanical cooling rate (see eq. (8) in
ref. [5]), nm the occupation of the mechanical mode, and nTm and nTa the bath temperature of the mechanics and
cavity 1, respectively, expressed in number of quanta.

We first calibrate the intrinsic mechanical linewidth γ = 2π × (103 ± 20) Hz from measurements at low pump
power and low cryostat temperature T , where γeff ≈ γ. Then, we measure the output spectrum as function of pump
power P−. We perform the measurements at two temperatures, 8 mK and 30 mK, both in the low-T limit where
γ(T ) ≈ γ. Using the calibrated total system gain from eq. (S21), we can directly fit eq. (S25) to the data and extract
the quantities γeff, nTa , and γopt(nm − 2nTa ), corresponding to line width, offset and peak area of the Lorentzian,
respectively. The fit results show nTa � 1 for all measured powers.

Figure S2a shows the extracted γeff versus P−. Here, the P− is the output power of the microwave generator. At
high powers, γeff is dominated by γopt ∝ P−, and we extract the proportionality coefficient from a fit to this data
(solid line in figure S2a). Using the now calibrated γopt, we caculate nm from eq. (S25) and nTm from the relation [4]

nTm =
γ(T ) + γopt

γ(T )
nm, (S26)
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Figure S4. Fit results for two-port amplifier measurements. a) Fitted G− (circles) and G+ (squares) as function of pump power
at the generator. Solid lines show the expected scaling G2

± ∝ P±. b) Fitted internal cavity linewidth κi, showing a sharp
decrease at the highest pump powers. c) Thermal environment of the mechanical oscillator, expressed as effective number of
quanta. In all panels, data with the same color was taken with the same value of G−, as indicated on the legend.

which holds for γopt � κ � 4ωm and nTa � 1. The results are shown in figure S2. At low pump powers, the
mechanical mode is thermalized with the bath. As P− increases, the mechanical mode is optomechanically cooled,
down to nm,min = 3.4 quanta. For higher power, cooling is limited by heating of the environment as nTm ∝ P 2

− up to
nTm ≈ 103 for the highest pump powers used in our experiments.

Next, we measure the thermalization between the mechanical bath and the cryostat. We perform again a mea-
surement with a single red-sideband pump, but using low power P− and varying the temperature of the cryostat.
Figure S3 shows nTm extracted from fits to eq. (S25), using γopt calibrated by the data in figure S2a. The data shows
that the mechanical mode thermalizes down to 20 mK, showing good agreement with the expected nTm = kBT/~ωm
(solid line) above this temperature. This agreement also confirms the calibration of the total system gain αA2

H.

DATA ANALYSIS AND ADDITIONAL DATA

Two-port amplifier

We measure the direct gain of our amplifier by injecting a weak signal into cavity 1, and recording the resulting
reflection spectrum with the VNA. The gain is calibrated by assuming |Ad|2 = 1 outside the cavity resonance. We
then record the output noise Sout,eff for the same pump powers but no input signal on the SA, immediately following
the gain measurement to avoid any drifts in the gain profile. The input noise Sin,eff = Sout,eff/|Ad|2 is then calculated
directly from the data.
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Figure S5. Frequency conversion from cavity 1 to cavity 2. a) Reflection spectrum S(ω) of cavity 1 (normalized) for PP2 =
28 dBm (at the signal generator) and several powers PP1, showing a strong dip when the signal is converted to cavity 2. b)
Value of S(ω) at the dip or peak, for a range of pump powers. Circles indicate the data shown in panel a.

To compare our results to theory, we fit the measured direct gain |Ad| to equation (S13) using G−, G+ and κi as
free parameters. In addition, we allow for a O(kHz) frequency shift arising from the radiation pressure force of the
pumps. Figure S4a,b shows the results of the fit. We find the coupling strengths G2

± are in excellent agreement with
the expected scaling proportional to pump power P±. The internal cavity linewidth κi decreases significantly at high
pump powers, which is a common effect observed in superconducting circuits and attributed to saturation of two-level
systems in the substrate, reducing the effective loss channels.

We then compare our measured noise data Sin,eff to the expected theory calculated with equation (S23), where
Sadd is calculated with the parameters obtained from the gain fit. In accordance with the optomechanical cooling
measurements discussed in the previous section, we assume nTa = nTc ≈ 0, and adjust nTm. We find that the theory
describes the data well for all pump powers with the values for nTm shown in figure S4c. The scaling, nTm scales
approximately with P 2

+, and the magnitude is consistent with that observed in figure S2b at high pump powers. At
the highest values of P+ the scaling is reduced, which may be related to the steeper decrease in κi observed at those
powers (figure S4b).

As discussed in the main text, the amplifier can be tuned within the cavity line width κ by shifting the pump
frequencies in unison. We find the highest gain is obtained slightly away from the cavity center of the resonance
dip observed in reflection measurements. We therefore assume this optimum point to be the true value of ω1 in
the presence of pumping. Similarly, we find the value of ω2 (which cannot be measured directly in our setup) by
maximizing the gain obtained in the two-port amplifier.

Frequency conversion without amplification

Here we show additional data of frequency conversion without amplification, using the pump scheme depicted in
figure 4b in the main text. Figure S5 shows frequency conversion from cavity 1 to cavity 2. The reflected signal
of cavity 1 is shown for several pump powers, normalized to unity reflection with all pumps off. As the signal is
frequency-converted to cavity 2, a dip is visible in the reflection signal. For balanced pump powers, we observe an
attenuation of the signal by 29 dB.
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