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Abstract: This study highlights the use of a linear model to generate lateral forces in a nonlinear vehicle
driving simulation. The crucial thing about modeling lateral forces is the centripetal acceleration limit
a ground vehicle may experience. One can employ a linear model to simulate lateral forces when the
commanded lateral acceleration for an off-road car-like vehicle (such as Polaris — an electric all-terrain
vehicle) is limited to 3 m/s2, and for a heavy forest truck (for example, Ponsse’s Bison — a forwarder)
to about 1 m/s?. Tire construction, which plays a significant role in the load-carrying capability and the
cornering of a ground vehicle, is considered in this paper. An estimate of the cornering stiffness for the
tires is determined using Hewson’s model, which uses only the basic information mentioned in their
datasheets. At the maximum rated load, a cornering stiffness coefficient value is obtained. The cornering
coefficient is used to simulate lateral forces as the function of vertical load and sideslip angle. The
simulation results highlight the advantages and deficiencies of using a linear tire model to generate lateral
forces for off-road vehicles. Finally, the simulation data is analyzed, where the results are compared with

those obtained from a standard kinematic model.

Copyright © 2022 The Authors. This is an open access article under the CC BY-NC-ND license

(https://creativecommons.org/licenses/by-nc-nd/4.0/)
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1. INTRODUCTION

Forests are the most important natural resource in harvesting.
In Finland, forests cover over 70% of the land with annual
growth of around 107 million cubic meters, and the total is 94
million cubic meters. At Aalto University, one of the research
and development platforms for autonomous driving in uneven
terrains is Polaris electric All-terrain vehicle (e-ATV). ATVs
are used by farmers and loggers in forests. The other machine of
interest is Ponsse’s Bison forwarder, which serves the purpose
of transporting cut-to-length logs from forest stands to roadside.
The main aspect of this study involves the demonstration of
(semi-)autonomous driving in the forest using these vehicles.
Therefore, it necessitates the development of a nonlinear sim-
ulation platform to test, for example, navigation and control
methods for these vehicles. This study focuses on the tire lateral
forces in vehicle handling simulations.

The magic formula illustrated in Pacejka (2012) has been used
for almost 30 years to model the lateral tire forces. It is magic
as it suggests an empirical tire model and does not depend on
first principles for its derivation. Naturally, it requires extensive
testing to estimate several coefficients used in the formula.
The magic formula, however, depicts that the relation between
the tire’s lateral force F, and the sideslip angle « is linear at
the origin (of the F), versus « curve). Pacejka (2012) further
illustrates that at o = 0, the slope of the F), versus o curve
— defined as the cornering stiffness C', — is not considerably
influenced by the variations in speed and driving conditions.

* The research is funded by the Technology Industries of Finland Centennial
Foundation and Jane and Aatos Erkko Foundation.

Dixon (1988) noted four types of handling regions for a ground
vehicle (either car or truck) by describing the variation of the
steering angle d5 with the lateral acceleration a.. The range
of a. in the primary handling regime goes up to 3 m/s? for
cars and 1 m/s? for trucks. For this range of a., the steering
angle ¢, required in addition to the Ackermann steering angle
d4 is directly proportional to the lateral acceleration, where
the constant of proportionality is the understeer gradient K.
Therefore, if we restrict the scope of vehicle handling to the
primary handling regime, a linear tire behavior depicting the
relationship between F, and o would be adequate (see, for
example, Pauwelussen (2014)).

The cornering stiffness value of a tire primarily depends on
the constructions of its carcass (Wong (2008)). A tire’s carcass
consists of several rubber-coated plies (cords). The geometrical
layout of these plies on top of one another determines the
characteristics of a tire and the vehicle dynamics in the primary
handling regime, that is when a. < 3 m/s? for cars (Dixon
(1996)). Bias-ply tires (also known as cross-ply tires) have a
low angle of about 40° between the circumferential centerline
of the tire and the plies. This angle is known as the crown
angle (Wong (2008); Dixon (1996)). Radial-ply tires have one
or more plies at a 90° crown angle. A low crown angle depicts
better cornering properties, whereas a tire with a high crown
angle has better ride comfort (Wong (2008)).

Wong (2008) notices that the lateral force I, of a bias-ply tire
increases slowly with an increase in « than that of a radial-ply
tire. The two main factors that affect the cornering properties
of a tire include the vertical load and the inflation pressure. The
impact of varying inflation pressure over the cornering is small,
especially for the bias-ply tires. However, the load significantly
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influences the lateral force generated by a tire. A parameter
called cornering (stiffness) coefficient C,, often describes the
effect of load on cornering. Dixon (1996) mentioned (1) linear,
(2) power, and (3) exponential models to describe the variation
of cornering (or lateral force) coefficients with the load. In
general, the cornering coefficients for bias-ply tires at rated load
is lower than the radial-ply tires; see, as an example, (Wong,
2008, Table. 1.4). Moreover, the rise of the cornering stiffness
values for light and heavy truck tires stay almost linear beyond
the rated load; see, for example, (Wong, 2008, Fig. 1.27).

To find an initial estimate of the cornering stiffness is the first
and foremost step in modeling lateral forces in vehicle handling
simulation. However, the only practical way to determine C,, is
through experiments, which are expensive and time-consuming
(see, for example, Georgieva and Kunchev (2015); Vorotovi¢
et al. (2013)). To circumvent such extensive experimentation,
Hewson (2005) derives an expression for the cornering stiffness
of the tire in terms of the basic tire parameters. Hewson’s
model, too, considers a linear region of the vehicle handling
domain. Although Hewson’s study concerns radial-ply tires, the
same can be true for a bias-ply tire. Since the only factor in the
expression of C, estimated from the tire data is the modulus of
elasticity (E) of the beam structure. This quantity is associated
with the lateral displacement (hence, the lateral stiffness) of the
tire’s belt in the beam model. It is noteworthy that the lateral
stiffness for heavy truck tires, either with a radial-ply or a bias-
ply construction, does not vary much, as illustrated in (Wong,
2008, Section 1.4.4).

The organization of the rest of the document is as follows.
Brief details about the 6-DOF (6 degrees of freedom) model
of the vehicle used in the simulation is provided in Section 2. It
follows by describing the tire lateral force equations used in the
simulations. The determination of cornering coefficients of tires
used in Polaris and Bison is carried out in Section 3. Simulation
results are presented in Section 4. Lastly, critical observations
from this study are highlighted in the conclusions section.

2. VEHICLE MODEL

A higher-order model is necessary to, for example, include the
dynamics of suspension heights installed at each corner of the
car. However, the inclusion of these additional dynamics always
comes at a price of higher computational frequency to capture
the comprehensive dynamics of the system. The reason is the
model of a tire, if included as the mass-spring system to the
simulation, introduces high frequencies. For bias-ply tires, it
is an issue as the vertical stiffness of such tires is very high
(see, for example, the discussion about Ride Comfort in Wong
(2008)). Since the natural frequency of the mass-spring system
is inversely proportional to the coefficient of stiffness of the
spring, the corresponding frequency of the tire would be very
high compared to the sprung mass. Thus, we restrict ourselves
to a 6-DOF model corresponding to the sprung mass of the
vehicles instead of an exhaustive 14-DOF model (as illustrated
in Shim and Ghike (2007)) to design a simulation that runs at a
reasonably lower computational frequency. Thus, in this study,
the tire only introduces a central force component (F5) and a
drag force component (F};) to the 6-DOF model via the steering
angle (Dixon (1996)).

2.1 Nonlinear 6-DOF vehicle model

The vehicle is considered as a rigid body with a frame (zyz)
fixed to its center of gravity (CG). The position coordinates
(X,Y, Z) represent the position of vehicle’s CG in a 3D inertial
(fixed) frame of reference. The body frame velocities, i.e. the
linear velocities of the vehicle CG are defined as longitudinal
(forward) velocity (u), lateral (left-side) velocity (v), and up
velocity (w). The state vector contains roll rate (p), pitch rate
(@), and yaw rate (r) which are the angular velocities of the
vehicle frame. Finally, the state vector constitutes Euler angles
roll angle (¢), pitch angle, and yaw angle. Thus, the state vector
is defined as X = {X,Y, Z, u,v,w,p, q,7,%,0, ¢} with the
equations of motions collected from Shim and Ghike (2007);
Etkin and Reid (1995) are as follows:

X =wucosfcostp + v(costsinfsin ¢ — cos ¢ sin )

1
+ w(sin ¢ sin 1) + cos ¢ cos P sin §) M
Y = ucosfsiny + v(cos ¢ cos Y + sin O sin ¢ sin ) @
+ w(cos ¢ sin fsiny — cos Y sin @)
Z:—usin9+vcos€sin¢+wcos€cos¢ 3)
u:&—kgsinﬂ—qw—krv, 4)
m
F
bzﬁ—gsinqﬁcos@—&—pw—Tu, o)
w:&—gcosqﬁcosﬂ—pv—&—qu, (6)
m
. L—qgr(l,,-1
p= Dm0 ) ™
o M —rp({pe — 1.,
j= M ee — Los), ®)
vy
7= N _pQ(II’yy _Im)’ )
. sin ¢ + r cos
1/):(] o (b’ (10)
i cosf
0 = qcos ¢ — rsin ¢, (1)
b =1)sind + p. (12)

In above equations, F,, F,, and F, are forces experienced
by the vehicle body along x, y, and z axes, respectively. m
is the sprung mass of the vehicle. I, I,,, and I, are the
moments of inertia of the rigid body around its CG. L, M,
and N are the rolling, pitching and yawing moments of the
vehicle body, respectively. The forces and moments include
those transmitted to the sprung mass via suspensions — modeled
as spring-damper systems — at each corner of the vehicle (Shim
and Ghike (2007)).

2.2 Tire Lateral forces

In the coordinate frame (z'y’z’) fixed to center of each wheel,
the lateral slip angle is given as (Shim and Ghike (2007))

—1 ngz
Qg = tan () —0A,kl,

Ugy,

where, the subscript (kl) represents left front (I F'), right front
(rF), left rear (IR), and right rear (rR) tires. 64 x; denotes the
Ackermann’s steering angle, where for rear ones 04, g = 0.
Ug,,> Vgi,» and wy,, are the longitudinal, lateral, and vertical
velocities at the tire contact patch, respectively. These velocities
can be obtained by transforming the CG velocities (see, for
example, Shim and Ghike (2007)).

(13)
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In the primary handling regime, the lateral tire force is related
to the sideslip angle as

F,. (14)

where C,, i, is the cornering stiffness of klth tire. The subscript
t represents the forces in the wheel fixed coordinate frame.
Here, we consider a linear relationship between cornering stiff-
ness and vertical force (Vorotovic et al. (2013)), given as

= —Co k10,

Ca kl
CC,LM = Fi’ﬂ (15)
Ztr1,0
where Cc,, ,, is the cornering stiffness coefficient, and £,

is the normal force on the klth tire at its maximum rated load
and the given inflation pressure. This, ultimately leads to the
following relationship between the lateral force and the vertical
force on each tire

Ethl = 7CCa,MFZtkl QK- (16)
The longitudinal force on the klth tire is computed as
wakl = MFZ%Z’ (a7

where p is the rolling resistance coefficient (Dixon (1996)).
These wheel forces in body frame are obtained by transforming
the tire aligned forces to the strut (vehicle motion) aligned
forces. Such transformation is obtained by (Shim and Ghike
(2007))

" F
Lo Ty,
Fyp | = Ra(=0)Ry (=O)R.(02) | Fyp, |, (18)
Zbgy 2ty

where R, (-), Ry (), and R (+) are the rotation matrices about
z, 1y, and z axes, respectively (see, for example, Etkin and Reid
(1995) for the definition of rotation matrices). The subscript b
represents the forces in the vehicle body frame.

3. ESTIMATION OF C,,

Both machines use bias-ply tires as their objective is to trans-
port heavy loads at low speeds on uneven terrains. Bison for-
warder is by default an 8-wheeler articulated machine that uses
Nokian Forestry F2 tires with sidewall ratings 710/45-26.5,
whereas Polaris e-ATV comprises of 4 Carlisle’s 25x9.00-12
tires. The important parameters for both tires are highlighted in
Table 1.

Table 1. Tire Parameters

Quantity Bison Polaris Unit
Manufacturer Nokian Carlisle -
Rating 710/45-26.5  25x9.00-12 -
Radius (p) 336.55 152.4 mm
Thickness (7) 35 19 mm
Width (v) 710 228.6 mm
Aspect Ratio (a) 0.45 0.7 -
Sidewall Deflection (s)  0.1533 0.1 per unit
Ply Rating (PR) 20 4 -
Rated Load 6900 374.2 kg

In Hewson (2005), the expression of the cornering stiffness
using basic tire parameters is given as

2ET13
(p+va)?sin(A) (r —sin(4))’
where v is the belt width, 7 is the belt thickness, p is the wheel

radius, a is the wheel aspect ratio, s is the unitized (per cent)
vertical deflection of the sidewall when loaded, and

Co =

19)

A = cos—] p+va—sva
N p+va '

The suggested values for parameters s and 7 for road tires
are 0.15 and 15 mm, respectively. Parameter 7 is associated
with the material thickness of the belt. Typically, a belt is the
constituent parts of a radial-ply tire. However, the carcass of
a bias-ply tire does not include belts. Besides, Hewson (2005)
estimated the value of E from experimental data of a sample of
radial-ply tires. Therefore, it again leads to the dependency of
using experimental data to compute C,,. Here, we introduce a
different approach to estimate s, 7, and E for the bias-ply tires.

Firstly, we select 7 as the depth of the tread, which is usually
mentioned in the tire datasheet. Thus, the belt thickness for the
radial-ply tires is replaced with the tread thickness for bias-ply
tires. Secondly, the computation of parameter s is as follows:

(1) Read the unloaded tire radius from the datasheet. We
denote this quantity by
pu = p+ra. (20)

(2) Read the static loaded radius of the tire at the rated load
and rated inflation pressure. This quantity becomes

pi = p+rva— sva. 2n

(3) Calculate the value of s by using
g= i Pu (22)

va

As an example, we know p; = 670 mm and p,, = 622 mm
from the datasheet of Nokian Forestry F2 tires. The values of p,
a, and v are already provided in Table 1. Using Equation (22),
we get s = 0.1533. This value of s matches closely to that
suggested in Hewson (2005) for the road tires.

Lastly, we apply the concept of friction ellipses (see, for exam-
ple, Wong (2008)) illustrated by

2 2
() () =
EJ,mam Fr,mam -

to select the value of E in the simulations. To achieve this,
we specify the limits on longitudinal acceleration command
a,. and the curvature command K. for the vehicle. In other
words, a nominal speed command V, is fixed such that the
vehicle (car or truck) operates in the primary handling regime
for the given K. Thus, for the given road conditions, assuming
zero skidding, we select a value of E such that the simulated
lateral force F,, = F,(a, F,, E) satisfies Equation (23). We
will discuss the selection of E in the forthcoming section.

(23)

4. SIMULATION RESULTS

The important vehicle parameters are mentioned in Table 2.
Notice that the Bison forwarder uses articulated steering mech-

Table 2. Vehicle Parameters

Quantity Bison Polaris ~ Unit
Type Forwarder e-ATV -
Mass (Self) 22600 793.8 kg
Load Capacity 16000 455 kg
Length 10.3 2.74 m
Width 2.6 1.44 m
Height 39 1.85 m
Turning Radius 10 3.81 m
Nominal Speed 2 5 m/s
Max. Curvature 0.1 02625 m~!
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anism (see, for example, Li et al. (2013)), whereas Polaris e-
ATV utilizes Ackermann’s steering. For simulations, we model
the dynamics of both type of vehicles as provided in Section 2.1
as the focus is on modeling lateral forces. The nominal speed
mentioned in Table 2 is not the maximum rated speed of the
vehicle rather it is the speed at which the vehicle nominally
operates. For Bison, if we set £ < 5 MPa, Equation (23)

2
(axc, ax) --m/s (Kc, Kp) --1/m
r —I ~] 0.1 —
0 - 4
V! /
0.1 (R 0.05 /
' 1 /
|
-0.2 0
100 100 120
Time-s Time-s
(Vc, Vg) -m/s (rc, r) --rad/s
1.5 \\ 0.15
1 \ 0.1 \
0.5 ™~ 0.05 >
0 0
0 100 0 100
Time -s Time-s

path curvature K,,, and yaw rate r of Bison forwarder at the
above-mentioned values of E, C,, and Cc¢, . Here, the actual
inputs to the dynamic model are the acceleration a,. and
curvature K. commands. The speed command V. is obtained by
integrating a,. while the commanded yaw rate 7, is illustrated
by the product K.V..

Figure 2 shows the open loop response of Bison forwarder
when E/ = 5 MPa was selected. The vehicle curvature K, starts
oscillating when commanded curvature K is at the designated

Fig. 1. The inputs forward acceleration command a., speed
command V,, curvature command K, and yaw rate com-
mand r. are shown in blue. The output responses of Bison
(ag, Vg, K}, and r) are shown in (dashed) red. A zoomed-

maximum value of 0.1 m~" for the given speed command.

2
(axc, ax) -- mI’s (Kc, Kp) --1/m
0 t 2 0.1
'
-0.2 1
0.4 'll 0.05
-0.6 y .
0 100 110 120 130
Time - s Time - s
(Vc, Vg) -mis (rc, r) --rad/s
4
A 0.4
/7 \
2 4 \ 0.2 \
\ N
0 0
0 100 0 100
Time-s Time -s

in (K., K,,) plot highlights oversteer.

is satisfied on flat terrain. At £ = 2 MPa, C,,
N/rad for the Nokian 710/45-26.5 tire. The estimated value of

Co, = 1.6439 rad—! at the rated load of 6900 kg.

(a._, a ) - mis> (K,K)--1/m
Xc’ "X 0.2 cp
AN
0 ]
1
O ( 0.1 =
1
-0.2 M 0
0 100 0 100
Time-s Time-s
(Vc, Vg) -m/s (rc, r) --rad/s
\
1.5 \ 0.15
b {
1 \ 0.1 N
0.5 ~10.05 ~
0 0
0 100 0 100
Time -s Time-s

Fig. 2. The open loop response at £ = 5 MPa. K, is already

oscillating at the end.

Figure 1 illustrates the open loop responses corresponding to
forward acceleration a; = 1, ground speed V, = vu? + v2,

Fig. 3. Open loop forward acceleration a,,, ground velocity V/,
curvature K, and yaw rate r responses of Polaris when
E = 2 MPa is selected.

In case of Polaris, unstable turns are obtained for £ > 2.25
MPa on even terrain. At E = 2 MPa, the value of C,, = 10,419
N/rad for the Carlisle 25x9.00-12 tire is obtained, which leads
to a value of C, = 2.8413 rad ™! at the rated load of 374.2 kg.
Figure 3 illustrates the open loop responses of Polaris e-ATV to
the a,. and K. commands.

Hence, we can use E = 2 MPa for both vehicles to simulate
lateral tire forces in the nonlinear 6-DOF simulation. It is
crucial to highlight here that this value of E is well-matched to
the average lateral stiffness value k; = 2.2275 MPa provided
in (Wong, 2008, Section 1.1.4) for heavy-duty truck tires.

5. DISCUSSIONS

It is important to mention here that for the selected nominal
speed V., curvature command K. for both vehicles is adjusted
such that the condition a. < 1 m/s? for Bison and a. < 3
m/s? for Polaris is always satisfied. The value of 1/K maq
(minimum turning radius) is usually provided in the datasheet
of the vehicle. However, K. is further tuned in the simulations
to not compromise the nominal speed of the vehicle. As shown
in Figure 3, the applied curvature command K, for Polaris is
limited to 0.15 m~! — that is reduced from rated maximum of
0.2625 m~! — when the commanded speed V/, is 4.5 m/s. These
values of V. and K. corresponds to the lateral acceleration of
about 3 m/s2.
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Fig. 4. Open loop state responses of Polaris when the condition
ac. < 3 m/s? is violated. Notice the oscillations in K, at
the end of simulation.

On the other hand, Figure 4 shows simulation results highlight-
ing an unstable case when the condition a. < 3 m/s? is not
satisfied for Polaris. In this case, the K, at the end increases
up to 0.16 m~—! given the same V., = 4.5 m/s, which corre-
sponds to a, = 3.2 m/s2. Therefore, special attention to lateral
acceleration limits is required while utilizing Equation (16) to
simulate lateral tire forces and Equation (19) to estimate C,, in
the nonlinear ground vehicles simulation.

Trajectory
20+ Kinematics
c Dynamics
> 10}
0
0 50 100 150
X-m
Heading
o 1001
(0]
S0
= Heading
-100 1 Yaw
100 200 300
Distance - m

Fig. 5. (X,Y)-path and yaw (or heading) angle v results for
Polaris e-ATV using dynamic model (shown in red) and
kinematic model (shown in blue). Notice the similarity
between graphs when the speed profile for both models
are same.

In addition, two critical observations in the dynamic model
simulation results are worth focusing on concerning the appli-
cation of the lateral tire forces. These observations are made in
comparison to those obtained from a standard kinematic model
that excludes tire forces (we refer to Kelly (2013) for details

about ground robot kinematics). First, there is a reduction in
speed while the vehicle starts turning. From Equation (18), it
is straightforward to write the vehicle motion aligned forces in
terms of the wheel aligned force as

Fy,,, = Fy,,, cosdp — Fy,  sindg, (24a)
——
Fq
Fybkz = Fxtkl sin g + Fytkz coS O - (24b)
N————

F,

Thus, the tire lateral force F), = resolves into two components
in the vehicle motion aligned forces [,  and Fy, ~namely (1)
drag force component F;, and (2) central force component Fi.
It is F that is providing necessary centripetal acceleration for
the vehicle to turn in a circular path, whereas F}; is responsible
for the deceleration of the vehicle (Dixon (1996)). Figure 5
highlights a similar observation noted in Karkee and Steward
(2010) that the open loop responses of a high-fidelity dynamic
model and a kinematic model match at operating velocities of
about 0 to 4.5 m/s.

The second effect is the positive understeer gradient which
is prominent in the simulations of both Bison forwarder and
Polaris e-ATV. For the linear tire behaviour, the understeer
gradient (Pauwelussen (2014))

(25)

This positive understeer, often termed as the oversteer, produces
anonlinear yaw angle during the cornering of the vehicle which
is depicted in Figure 5. Such nonlinear yaw is natural as the
CG position is changing with the acceleration and deceleration
of the vehicle. This shift induces a change in slip angles of
the front and rear wheels. Since our model has nonlinear slip
angles that are using wheel speed components (ug,,,vg,,)
and Ackermann steering angle 4 j;, oversteering occurs by
means of the difference o, — 1. For Polaris, this effect is
highlighted in Figure 3, where the resulting path curvature K,
starts leading the curvature command K at time 120 seconds.

K, = arr — axr.

6. CONCLUSIONS AND FUTURE WORK

This paper highlights the efficacy of using a linear tire model
to simulate lateral tire forces, provided the vehicle handling is
limited to the primary handling regime. At first, it is necessary
to compute the cornering stiffness of a tire, which requires
extensive testing on the tire. However, Hewson’s model was
effectively used to calculate the cornering stiffness value of two
different bias-ply tires by using nothing but the tire datasheet
specifications. The resulting lateral tire forces truly emulate
vehicle deceleration during the turn. Moreover, the analysis of
the simulation results illustrated the presence of the understeer
gradient while the vehicle turns.

Only through repeated tests and evaluation on actual machines
the utility of this study can be determined. However, this
study is crucial in, for example, designing test scenarios for
the ground vehicles. There is a need for a test procedure that
capture realistic cornering behavior by fixing, for example,
driving speed and steering angle. Once validated by real-time
data, the simulation platform will provide a functional basis
for furthering the mathematical model for forest machines
considering uneven terrains.
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