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Abstract—The world is moving towards a fully connected
digital world, where objects produce and consume data, at
a sultry pace. Autonomous vehicles will play a key role in
bolstering the digitization of the world. These connected vehicles
must communicate timely data with their surrounding objects
and road participants to fully and accurately understand their
environments and eventually operate smoothly. As a result, the
hugely exchanged data would scramble the network traffic that,
at a given point, would no longer increase the awareness level of
the vehicle. In this paper, we propose a vision-based approach to
identify connected vehicles and use it to optimize the exchange
of collective perception messages (CPMs), in terms of both the
CPM generation frequency and the number of generated CPMs.
To validate our proposed approach, we created a CARTERY
framework that integrates SUMO, Carla, and OMNeT++. We
also compared our solution with both baselines and European
Telecommunications Standards Institute solutions, considering
three main KPIs: the channel busy ratio, environmental aware-
ness, and the CPM generation frequency. Simulation results show
that our proposed solution exhibits the best trade-off between the
network load and situational awareness.

Index Terms—Carla, Collective perception message optimiza-
tion, Intelligent transportation system, OMNeT++, SUMO, Vehi-
cle identification, Vehicle to everything communication.

I. INTRODUCTION

Over the last decade, there have been significant break-
throughs toward enabling automated systems in different sec-
tors, including medicine, industry, and transportation. Specifi-
cally, the prominent advances witnessed in mobile broadband
networks (4G LTE), as well as the promising 5G performance,
and breakthroughs in the artificial intelligence (AI) have signif-
icantly contributed to the introduction of automation into many
aspects of our daily life. Intelligent transportation systems
(ITS), and particularly the Internet of Vehicles (IoV) [1],
is one of the beneficiary domains from these technological
advents, where automation is deemed to be a better alternative
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to humans by considerably reducing human errors as well as
the time-to-reaction at decision making [2]–[4].

Autonomous systems are capable of deciding for themselves
what to do and when to do it [5]. To this end, they should
be aware of their surroundings within a given spectrum. In
the case of autonomous vehicles, this is achievable using
different sensing devices such as radar, LiDAR, and cameras.
Additionally, they need to constantly exchange messages and
share relevant data available within their scope with other
autonomous vehicles via vehicle-to-vehicle (V2V) communi-
cations, as well as with the infrastructure (e.g., roadside unit
(RSU) via vehicle-to-everything (V2X) communications) [6]–
[10], to increase their own, as well as other vehicles, situational
awareness, notably at blind spots.

The ITS station reference architecture, proposed by the Eu-
ropean Telecommunications Standards Institute (ETSI), pro-
vides the protocol stack for V2X communications. As part
of the proposed architecture, the facilities layer provides ITS
applications with common functions and handles the transmis-
sion of infrastructure-related messages, such as cooperative
awareness messages (CAMs) [11] and collective perception
messages (CPMs) [12], [13]. While CAM messages contain
the sender’s status, such as the speed and heading direction,
CPM messages include additional information about objects
perceived from sensor data, such as cars and pedestrians.

To further increase both the vehicles’ awareness and the
trustworthiness of the V2X data, the V2X-sensor fusion tech-
nique can be employed. It consists of combining the received
information with the locally sensed data at the vehicle, ulti-
mately to determine the Communication ID (e.g., the network
address) of the perceived connected vehicle. Many ITS appli-
cations, such as cooperative adaptive cruise control (CACC)
and maneuver coordination, require the Communication ID to
initiate communication among connected vehicles. According
to the technology consulting firm Gartner, Inc [14], it is
expected, in the near future, that over 5.8 billion endpoints,
including IoT devices, will be in use across various market



segments, such as automotive, government, and healthcare
providers. Accordingly, overall data growth is outpacing the
network capacity growth, which calls for devising new mech-
anisms and approaches to efficiently deliver only the needed
data to its consumers in a timely fashion.

This paper leverages the V2X-sensor fusion approach to
mitigate the CPM redundancy problem. The ultimate goal is
to reduce the amount of generated and transmitted traffic,
including the generation rate, by connected vehicles without
compromising the vehicles’ situational awareness. Although
CPM redundancy mitigation was introduced in ETSI TR [15],
however, no specific methods have been proposed to achieve
it. Our proposed method uses the visible features of the
perceived vehicles, detected by local sensors, to determine
their Communication ID. Next, V2X data is fused with locally
sensed data, so that all previously identified vehicles that have
exchanged CAM messages will not be considered in future
CPMs.

The contributions of this paper are three-fold. First, we
propose a new vehicle identification framework based on
the visible features of the vehicles. A key advantage of the
proposed method is the constant ID derived from the visible
features. More importantly, the derived ID does not violate the
vehicles’ privacy making the proposed framework compliant
with the pseudonymization approach of V2X architecture.
Second, we apply the proposed vehicle identification method
to the object self-announcement redundancy mitigation rule
(OSARMR) [15], and assess its effectiveness based on the
channel busy ratio (CBR) and situational awareness. Third,
we develop a new simulation framework, named CARTERY,
to evaluate the proposed vehicle identification solution and
its application to the OSARMR. CARTERY integrates three
types of simulators, namely (a) physical, for generating sensor
data such as LiDARs and cameras, (b) network, for the
transmission of V2X data, and (c) traffic simulator, to imitate
real traffic. The comparison of the proposed method against
baseline and ETSI’s CPM redundancy mitigation approaches
proposed in [15], namely perceived object container inclusion
management, demonstrates its superiority in dense environ-
ments of connected vehicles in terms of network load and
situational awareness, particularly at high market penetration
rates (MPR).

The remainder of this paper is organized as follows. In
Section II, we discuss some related work concerning the three
main contributions of this paper. Section III describes some
use cases underpinning this study. The system design of the
vehicle identification framework is detailed in Section IV.
Section V provides the architecture of the developed CARTERY
simulation framework, followed by the performance evalua-
tion. Finally, Section VII concludes this paper, discusses the
limitation of this work, and eventually highlights some future
research work.

II. LITERATURE REVIEW

As discussed in the previous section, the contributions
of this work are three-fold. Below we review the related

work and potential pitfalls associated with each contribution.
Among our contributions is the created CARTERY simulation
framework, which provides the basis for discussion about
existing simulation environments in this section.

A. Vehicle Identification of Perceived Vehicle

The authors of [16] propose a GPS-based vehicle identi-
fication system that employs relative position measurement
derived from radar data. Considering the fact that GPS co-
ordinates are subject to non-negligible errors, they are only
used to narrow down the list of candidates. A more accurate
method, namely the relative position tracking method over a
short period, is then employed for vehicle identification. While
simulation results demonstrate that vehicles can be identified
with an accuracy rate of 93%, it also reveals that it takes a
few seconds (3 seconds) for the identification process to take
place, which is considered a limitation for this work.

Researchers in [17] developed a more real-time method that
uses ultra-wideband (UWB) sensors, to measure the round-
trip delay of signals and the distance between vehicles [18],
in addition to radar and GPS data.

In this study, the authors use statistical models to account
for measurement errors, and the simulation results show the
possibility of identifying a vehicle within 0.26 s, whilst 99%
of the identification was roughly performed in 1.3 s. Owing
to the short-range communication limitation of the UWB
sensors [19]–[21], this method is only applicable to adjacent
vehicles (i.e., those behind or ahead).

A major limitation of the work discussed above is the
omission of communication delay, which increases the GPS
measurement errors, especially when a vehicle moves at a
high velocity. To overcome this inherent limitation, other stud-
ies leverage image recognition techniques to extract relevant
features from captured images of detected vehicles.

Masuda et al. proposed an identification method for vehicles
using their license plates [22]. The latter consists of a unique
visual feature for every vehicle that could be used to instantly
identify vehicles by performing image recognition on the
stream captured by the local camera. A proof of concept
has been implemented and applied to Japanese characters and
numbers. The recognized plate numbers were embedded in
CAM messages where both GeoNetworking [23] and BTP [24]
protocols, proposed by ETSI, were used for communication.
Based on experimental results, only 17% of the objects were
correctly identified from the image recognition process, mostly
due to the small size of the characters. High image resolutions
are, however, expected to yield higher accuracy rates.

B. CPM Redundancy Mitigation

As discussed earlier, road participants can be perceived and,
consequently, broadcast by many vehicles via CPM messages.
As a result, the network traffic would thus become congested
without enhancing situational awareness. This section presents
previously conducted studies in this field.

The authors of [25] proposed two different approaches to
mitigate data redundancy, namely dynamic- and frequency-



Fig. 1. Use cases of vehicle identification.

based approaches. In this study, the authors examine the trade-
off between the content of CPM messages (i.e., to reduce
the size) and how frequently they are generated based on the
dynamics of the perceived objects. Simulation results revealed
the effectiveness of the proposed rules in achieving a good
balance between transmitted messages and network load. The
proposed solution was evaluated under challenging conditions,
including realistic and artificial setup scenarios. In a realistic
traffic scenario, the message size, CBR, and the number
of known objects were analyzed. Regarding the number of
successfully identified vehicles, a marginal improvement was
noticed. However, the message size was reduced compared
to the CPM generation method without filtering objects,
while CBR was significantly reduced to less than 50% on
average, which show that the proposed method can reduce
network traffic without impairing the environmental awareness
of the vehicles. This solution is similar in spirit to the
mitigation method proposed by ETSI [12], which is based on
both the frequency and dynamics. Besides, it considers other
road participants that do not have wireless communication
modules, such as pedestrians and animals, and periodically
broadcasts information about the non-connected objects (i.e.,
every 500ms for persons or animals, otherwise 1 s interval is
used). In [26], the authors conclude that reducing the CPM of
connected vehicles significantly reduces the CBR as well as
the message size, especially at high MPR, yet the identification
of connected vehicles was not considered in the study.

C. Simulation Environment

Simulation frameworks, which include physical and network
environments, define the most common method for evaluating
different approaches to optimize V2X communications among
connected vehicles. This section describes different simulation
frameworks and products used in previous research on ITS,
such as game engines [27]–[30] for the physical environment
and Artery [25], [26] for V2X communications.

In [31], the simulation tools SUMO, OMNeT++, and We-
bots were used for simulating vehicle traffic, V2X network
and the physical environment, as well as the vehicle dynamics,
respectively. While the Veins extension enables synchronizing

OMNeT++ and SUMO, Webots allows sending CPMs of
the sensed data from the simulated vehicle. In [32], NS3,
MATLAB, Simulink, and CarMaker were combined to sim-
ulate the cyber and physical environments. CarMaker and
NS3 are used to simulate the vehicle dynamics and LTE
network, respectively, while MATLAB and Simulink are used
as interfaces to link NS3 with CarMaker. The major limitation
of this setup is that V2X communications, based on ETSI ITS-
G5 [33], are not supported. Moreover, some of the simulators
are proprietary, which makes it difficult to verify their validity
from the source code.

III. USE CASES AND PROBLEM STATEMENT

To improve overall autonomous driving safety, vehicles
must be timely aware of their surroundings to the maximum
extent possible, so they can instantly react when something
happens. This objective is achievable by constantly exchanging
messages with road participants as well as the infrastructure.
There are, however, many objects (e.g., legacy vehicles, hu-
mans, and animals) that are not connected, hence, cannot
communicate and exchange signals. In such cases, connected
vehicles should use different sensors (e.g., LiDAR and camera)
to detect and avoid potential dangers, such as pedestrians
crossing the road. This information will be communicated to
other connected vehicles, using CPM messages, on the same
spot to alert them preemptively. However, multiple connected
vehicles may simultaneously perceive the same object (e.g.,
in crowded areas) and may end up unnecessarily exchanging
duplicated information about road participants, causing traffic
congestion and resource wastage, which, in turn, adversely
impacts timely communication.

In this section, we discuss some ITS-related use cases
that require vehicle identification, followed by the necessary
features’ properties for associating the network address to the
detected vehicle. Fig. 1 illustrates the use cases discussed in
this section.

A. Use cases

The vehicle identification process is vital for many ITS
applications. In this section, we describe some relevant ITS use



cases that require the ID of perceived vehicles to accomplish
their respective goals.

1) Cooperative Adaptive Cruise Control (CACC): Coop-
eration is crucial in vehicular networks to enable various
autonomous driving functions [34], such as CACC. The latter
relies on V2V communication to ensure timely acceleration
and deceleration of vehicles that belong to the same platoon. In
this scenario, the following vehicles must be able to intercept
any intruder vehicle that may hook into the platoon, which
may have detrimental effects. By using V2X-sensor fusion,
it would be possible to obtain the Communication ID of the
preceding vehicle, enabling the verification of its legitimacy
within the platoon.

2) Road Monitoring: The vehicle identification can also be
used for remote assistance (e.g., remote driving or stopping
safely) when vehicles need help. For instance, an RSU can
detect a misbehaving vehicle (e.g., a driver is down owing
to sudden illness) and extract its Communication ID, by
leveraging V2X-sensor fusion, which is then supplied to the
remote operator to establish a connection to the vehicle and
take over driving duties from the onboard driver.

3) Maneuver Coordination: Maneuvers coordination ser-
vice uses traffic rules to orchestrate, for example, the conflict-
ing future trajectories and overtaking maneuvers [35], [36]
of autonomous vehicles, thereby ensuring road safety and
preventing accidents. To this end, connected vehicles share
their maneuver information with other connected vehicles, via
V2V or V2X communications, and conflicts between their
respective trajectory paths can be resolved through negotia-
tions. As shown in Fig. 1, the red vehicle declares that it
will give way to the green vehicle, and any maneuver that
would contravene that declaration may cause an accident. In
this case, the green vehicle needs to verify that the received
CAM message, indicating that the red vehicle will give way,
comes from the red vehicle in front of it, and not from another
vehicle on the same spot, likely with the same characteristics
(e.g., color and brand). To achieve this, vehicle identification
could be used to associate the received information (i.e., the
declared trajectory) with the perceived data (i.e., the detected
and recognized vehicles) by using the front camera of the
green vehicle.

4) CPM Redundancy Mitigation: Using CPM messages,
connected vehicles can share sensed data (such as detected
legacy vehicles or pedestrians crossing the road) between each
other to enhance their situational awareness. Instead of sending
raw sensor data, it is important to include in CPMs only the
extracted features from detected objects to reduce network
usage. Often, however, the same object is seen by different
vehicles from different angles, causing the same data to be
transmitted multiple times. In addition, if the detected object
is a connected car, similar data is received via CAM messages.
These redundant messages would contribute to the exhaustion
of the V2X communication channels, including ITS-G5 and
LTE-V2X, and the waste of vehicles’ computation resources.
It would be then possible to leverage V2X-sensor fusion to
obtain the Communication IDs of the connected objects and

only send CPM messages regarding non-connected objects,
while information about connected objects is received via
CAM messages.

B. Requirement Analysis

This section defines the four main properties of vehicle
features required for vehicle identification in this research
work.

1) Data are to be internally retrievable: The data to be
shared via V2X communication should be retrieved internally.
These data can be either static (e.g., vehicle type, plate number,
and Communication ID) or dynamic (e.g., position and speed).
While static data are stored locally and do not change over
time, dynamic data require accurate synchronization, should
be constantly measured, and associated with timestamps.

2) Data are to be externally perceivable: Connected ve-
hicles are equipped with several sensors, such as LiDAR
and cameras, that capture data regarding the surrounding
environment (e.g., the road participants). The captured data
via these sensors are labeled as externally perceivable data.
Similarly, these data can be either static (e.g., vehicle color
and number plate) or dynamic (e.g., position and speed).

3) Static data: Dealing with dynamic data requires very
accurate time synchronization, which is highly challenging,
notably at high velocity. For this reason, we only consider
static data in this study.

4) Unique data: The data uniqueness within the vehicle’s
perception range is essential for instant data association. In
general, vehicle characteristics, such as color and brand, are
not unique per vehicle. Geolocation can be combined with
other visible data to achieve data uniqueness, but it bears
the disadvantage of inherent measurement errors and a slow
association process.

IV. VEHICLE IDENTIFICATION FRAMEWORK

This section describes the proposed framework for iden-
tifying connected vehicles, which employs a feature-based
approach. It consists of evaluating the similarities between
the sensor and V2X data, acquired via onboard cameras and
CAMs or CPMs, respectively, to extract the vehicle ID of the
perceived vehicles.

Fig. 2 illustrates the overall architecture of the proposed
vehicle identification framework. This figure shows two main
layers, namely facilities and applications. According to the
ITS station reference architecture, the facilities layer provides
the core functionalities, such as local dynamic maps (LDM),
cooperative awareness (CA), and collective perception (CP)
services, which are used by various ITS applications (e.g.,
maneuver coordination and CACC).

As part of this framework, we propose adding a new
facility layer module, called Vehicle Identification. With only
visual information (e.g., color, vehicle brand, plate number),
this module can identify a perceived vehicle and extract the
Communication ID of the connected cars. Towards this end,
we propose to encode the visual features of the sending
connected vehicle, which can be retrieved locally, as a vector



CAM CPM

Sensor

CA CP Perception

LDM

Vehicle Identification

Facilities

CAVs

Application
CACC Road 

monitoring
Maneuver 

coodination

Fig. 2. Overall architecture of the vehicle identification framework.

and embed it in the Station ID field of CAM or CPM messages.
At the receiving cars, we extract from CAMs and CPMs, via
CA and the CP services, respectively, both the Station ID and
the Communication ID, and save them into the local database,
also called LDM. Information in this database includes a static
map of the environment and positions of nearby vehicles,
which is used by ITS applications (e.g., CACC and maneuver
coordination) to establish communication with other vehicles.
Following ETSI standards, and due to privacy issues, the
Communication ID keeps changing over time. Accordingly, we
keep updating the Communication ID field in the LDM, using
the constant Station ID that contains the visual features of
the vehicles. Likewise, visual features extracted from detected
vehicles using local sensors (i.e., cameras) are combined to
generate an ID for the perceived vehicle. The latter is then
compared against the existing Station IDs (i.e., extracted from
the CAMs and CPMs) in the LDM using the Euclidean
distance, and the association between the received and per-
ceived data occurs when the Euclidean distance falls below a
threshold only.

The proposed vehicle identification framework based on the
vehicle’s visual features fulfills all four requirements stated in
Section. III-B. Since the appearance of the vehicle does not
change over time, this verifies the property of being static.
Also, it could be saved in the vehicle’s local storage when
shipped from the manufacturer, so the appearance is locally
retrievable at any time. The visual information can also be

retrieved using image recognition techniques by surrounding
vehicles via their onboard cameras, which verifies the property
of being externally perceivable. Similarly, uniqueness can
be achieved when various perceived features of the vehicle,
such as plate number, brand, and geolocation, are considered
together.

According to current V2X protocol specifications, there are
no dedicated fields for communicating the visual information
of vehicles. To avoid any proposal for altering the current V2X
communication protocol, we encode the visual information in
the Station ID since, to date, no guidelines have been published
on how to use this field. Finally, it is worth emphasizing that
we adopted a distributed system in the proposed architecture
to avoid the single point of failure (SPOF) design flaw. Never-
theless, this architecture can be adapted easily to leverage edge
computing technology, such as RSU, to enhance overall system
performance in terms of accuracy and situational awareness,
as well as storage capabilities.

V. CARTERY SIMULATION FRAMEWORK

To evaluate our proposed framework, we created the
CARTERY simulation framework, which integrates three differ-
ent simulators, namely SUMO, Carla, and OMNet++, for sim-
ulating the traffic, physical environment, and communication
network, respectively. SUMO is the traffic simulator that is
used to simulate the vehicle’s route and speed. As the proposed
vehicle identification framework mainly relies on extracting
the visible features of the perceived vehicles, we use Carla to
simulate the local perception of the camera, considering the
occlusion of vehicles. The third simulator, i.e., OMNet++, is
used to simulate V2X communications and exchange CPM
messages.

Carla [37] is an open-source autonomous driving simulator
developed to support research and validation activities. It sim-
ulates 3D objects (e.g., vehicles and buildings) using Unreal
Engine 4, and local sensors such as LiDAR and depth cameras.
It officially supports integration with SUMO and offers APIs
to control vehicles in two popular programming languages,
namely Python and C++. Existing V2X simulators assume
100% detection accuracy when the vehicle is in line of sight
within a certain range. By contrast, as part of our goal in this
research, we want to simulate the impact of detection errors
on CPM redundancy mitigation through different identification
accuracy rates. These errors might arise from various factors
such as the hardware performance (e.g., CPUs and GPUs),
the machine learning models used to extract the IDs from the
vehicles’ visual information, the vehicle occlusion, the foggy
weather, and the low-resolution of the captured images.

Artery [38] is an open-source V2X simulation framework
used to simulate V2X communication and vehicle traffic.
Its design is based on the ETSI ITS-G5 reference architec-
ture [39], and it integrates OMNeT++ [40] and SUMO [41]. It
also provides middleware for sharing information among V2X
services. OMNeT++ is a C++ discrete-event simulation frame-
work wherein simulation modules are developed indepen-
dently. The INET module inside OMNeT++ allows simulating



Fig. 3. Architecture of the envisioned CARTERY framework.

the wireless link layer protocol for V2X communication, while
Vanetza [42] is used to simulate the ETSI ITS-G5 protocol
stack. These modules allow simulating the communication
range, delay, and congestion within OMNeT++. TraCI is
another module of OMNeT++ that serves as an interface
between OMNeT++ and SUMO. The latter allows simulating
and controlling the vehicle’s location and motions, as well as
the signal of traffic lights.

φ =

{
0, (pixels ≤ λ)

ζ, (pixels > λ)
(1)

Fig. 3 depicts an overview of the overall architecture of the
created simulation framework, wherein the white boxes show
the existing modules of the integrated simulation frameworks,
and the orange boxes represent the modules we developed to
integrate Carla with Artery. CarlaSensor is a sensor module
we implemented in Artery to make it possible for vehicles
in OMNeT++ to fetch sensor information from Carla. In the
proposed framework, we simulate the vehicle identification
module, assuming that it succeeds given a model accuracy ζ,
as shown in (1), where pixels represents the number of visible
pixels in the vehicle’s image, and φ is the corresponding
vehicle identification accuracy percentage when the vehicle
visibility is greater than a given threshold λ. As discussed
above, our evaluation of the proposed vehicle identification
framework accounts for detection errors and assesses its
impact on environmental awareness and network load. To
this end, based on the vehicle’s visibility, expressed by the

number of pixels in the captured image, we define three vehicle
identification rates, namely 60%, 80%, and 100%.

Algorithm 1: Algorithm executed in each vehicle.

while True do
foreach CAM in CAMs do

ExtractF ields(CAM) /* e.g.,
Station ID, position */

UpdateLocalDatabase(LDM);
end
p← GetSemanticallySegmentedP icture();
V ehiclesP ixels, StationIDs←
ExtractDataFromGroundTruth(p);

foreach (pixels, StationID) In (VehiclesPixels,
StationIDs) do

if (pixels > ∂) and (random(0, 1) >
ξ) and (V ehicleFoundInLDM(StationID))
then

ExcludeV ehicleFromNextCPM()
else

IncludeV ehicleIntoNextCPM()
end

end
SendCPM();

end

The pseudo algorithm that runs in each connected vehicle
is given in Algorithm 1. Each time a CAM message is
received, we extract the different fields, such as the Station ID



and position, and then build/update the vehicle-specific LDM
database. Next, it continually acquires semantically segmented
pictures, and from each picture p, it extracts from the ground
truth images all the pixels (V ehiclesP ixels) of the detected
vehicles, as well as the Station IDs (StationIDs). Thereafter,
only the detected vehicles that have a high resolution (1st

condition in the if statement) as well as high identification
accuracy (2nd condition), will be compared against the LDM
database (3rd condition). The vehicles that have their Station
ID stored in the LDM will eventually be excluded from the
next CPM message; otherwise, they will be included.

VI. PERFORMANCE EVALUATION

A. Simulation Setup

To demonstrate the relevance and effectiveness of our pro-
posed vehicle identification method in mitigating the CPM
redundancy, we extensively evaluated and compared our ap-
proach to the one proposed by ETSI [15]. A view of the street
layout from the simulated environment is shown in Fig. 4,
where experiments took place on the left side of the city. The
objective is to evaluate the performance of our proposed solu-
tion under critical conditions (i.e., congested road). Although
we used a high-performance hardware configuration (see the
last paragraph in this section), we could not obtain the entire
roads of the simulated city crowded with vehicles because
of the high computation resources required by simulation
environments, especially when three simulators are running
simultaneously.

Fig. 4. Road layout of the envisioned scenario.

We summarize the simulation parameters in Table I. Ac-
cording to [43], the minimum and maximum generation inter-
vals for CAM are 100ms and 1 s, respectively, whereas the
default value is 1 s. In our implementation, we generate CAMs
every 1 s, provided that heading, position, and velocity do not
drastically change. In case of drastic changes, we generate
CAMs at shorter intervals, but not less than 100ms. Our CAM
and CPM packet sizes adhere to the ETSI European standards
as described in [43]. During the entire simulation time, there

are at least 45 simulated vehicles on the road, appearing on
one side and disappearing on the other.

For our analysis, we collected data for 5 s, including 2 s
of warm-up, from vehicles moving 310m (i.e., in a straight
line), where each simulation step is worth 0.05 s. During
warm-up, vehicles start running, exchange CAM and CPM
messages with their surroundings to initialize the simulation
environment, and record the connected vehicles in their LDMs.
It is worth noting that we do not collect measurements during
the warm-up phase. As mentioned earlier in this section,
evaluating the proposed framework using a higher number of
vehicles is not feasible due to hardware limitations. On the
other hand, simulating for longer than 5 s will not change the
results as the number of vehicles does not change.

TABLE I
SUMMARY OF SIMULATION PARAMETERS.

Parameter Values
Protocol stack ITS-G5

Frequency band 5.9GHz
Data bitrate 6Mbit/s

Transmission power 200mW
Radio propagation model Free space path loss

CAM DCC profile DP2
CAM channel type G5-CCH

T GenCam 1000ms
CPM DCC profile DP2
CPM channel type G5-CCH

T GenCpm 100ms
Camera field of view [°] 40

Camera resolution 1920× 1080
λ [pixel] 10000

Vehicle identification model accuracy [%] 60, 80, 100
Market penetration rates [%] 10, 40, 70, 100

Vehicle speed 50 km/h
Number of vehicles 45

In our simulation framework, we use a 3D environment and
activate the identification process only when the pixels in the
cropped image of the perceived vehicle exceed 10000, unlike
previous line-of-sight-based works that use 2D coordinates
and draw rectangles to represent vehicles. Furthermore, these
works assume that vehicles can be detected even when a tip
of the rectangle is visible.

This section focuses on evaluating the proposed approach
for vehicle identification and applying it to the CPM re-
dundancy mitigation problem; that is why we simulated the
object detection process. Also, we did not consider obstacles
(e.g., construction barriers and stop signs) on the road that
might slow or even stop vehicles. This is mainly to avoid
reducing the frequency of CPM transmission, according to the
CPM generation rules mentioned in Section VI-C, leading to
a biased analysis. We recall that we assessed the proposed
framework using three different model accuracy rates, namely
60%, 80%, and 100%, to account for potential errors related
to the detection or classification process. Also, we conducted
our simulations with four different MPRs, i.e., the ratio of
connected vehicles compared to non-connected ones, corre-
sponding to 10%, 40%, 70%, and 100%.



The simulation was run on an Ubuntu 18.04 machine,
with versions of SUMO, OMNeT++, and Carla simulators of
1.8.0, 5.6.2, and 0.9.10, respectively. Regarding the hardware
specifications, we used an Intel i7-10875H CPU, 64GB of
memory, and a GPU NVIDIA GeForce RTX 2070 SUPER
(8GB).

B. Methods of CPM Redundancy Mitigation used for Com-
parison

We compared our proposed approach for CPM redundancy
mitigation against baseline and ETSI solutions. The baseline
solution includes in CPM messages all detected vehicles, every
100ms, resulting in high situational awareness, but at the cost
of increased network traffic (i.e., which may eventually lead to
network congestion). We have implemented the ETSI solution
in accordance with the CPM generation guidelines described
in [15], namely Perceived Object Container Inclusion Man-
agement, which reduce the number of objects to be included
in CPMs by applying frequency and dynamic filtering. The
rest of the graphs (i.e., with prefix V2X- in the figures) consist
of three variants from our proposed solution, corresponding to
the three different model accuracy rates 60%, 80%, and 100%
described previously. A similar method was adopted in prior
work [26], but without considering how the perceived vehicle
is associated with V2X received messages. Furthermore, in
prior work, the vehicle identification has been performed with
100% accuracy, whereas in our study, different accuracy rates
are considered. This will allow us to evaluate the impact of
misidentifying some connected vehicles, and eventually do not
include them in the CPM messages.

C. Performance Results

A comparison between the three solutions is driven by two
key factors 1) how scrambled the network is, also known as
CBR, and 2) how aware a vehicle is of its surroundings within
a given range.

Fig. 5 shows a comparison of the CBR between the three
solutions. It is readily apparent that the CBR is proportional
to the MPR for both baseline and ETSI solutions, but not
for our proposed feature-based approach. We conclude from
this figure that our proposed solution effectively reduces the
network load when both the MPR and the vehicle identification
accuracy are high. It requires nearly 100% identification
accuracy and 80% of MPR to outperform the ETSI method.
In this case, the CBR is entirely due to CAMs. ETSI solu-
tion, however, performs better in lower- and middle-market
penetration scenarios.

Fig. 6 illustrates the comparison between the three solutions
from the viewpoint of CPM generation frequency. As seen
in this figure, both the baseline solution and our proposed
solution always generate CPM messages more frequently than
the ETSI solution, which uses an interval of 250ms because
of the vehicle’s speed (i.e., at a speed of 50 km/h, the vehicle
moves four meters in about 250ms). As a result, ETSI’s CBR
rate is lower than the other solutions, taking into account that
the number of detected vehicles is the same for all solutions

Fig. 5. Performance evaluation in terms of channel busy ratio.

Fig. 6. Performance evaluation in terms of CPM generation frequency.

in our simulations. Please note that frequent CPMs do not
always imply higher CBR, as they could be smaller in size.
Furthermore, we notice from this figure that the curve of the
proposed solution (i.e., V2X-100) starting from 70% MPR
generates no CPMs, which explains the reduced CBR rate in
Fig. 5.

Fig. 7 depicts the results regarding the environmental
awareness ratio (EAR) within 100m range. It shows that all
solutions achieve high awareness rates, exceeding 90%, when
the MPR is greater than or equal to 40%. We can also see
from this figure that our proposed solution yields the highest
awareness rate at medium MPRs, i.e., between 40% and 70%,
with fewer generated CPM messages, as shown in Fig. 5, in
comparison to the baseline solution. By contrast, the ETSI
solution exhibits the lowest EAR at the same MPR interval.
At low MPRs, our proposed solution manifests the lowest
awareness rate, even with 100% identification accuracy. This
demonstrates that our proposed solution is more suitable for



Fig. 7. Performance evaluation in terms of environmental awareness ratio in
100m range.

environments where medium or all vehicles are connected.
It is worthwhile mentioning that the EAR considers vehicles
detected by local sensors and received via CAM or CPM
messages.

VII. CONCLUSION

Many ITS applications rely on vehicle identification func-
tionality in order to operate properly. This paper proposes
a feature-based vehicle identification method for identify-
ing connected vehicles based on their visible features. The
proposed method combines V2X data, exchanged via CAM
or CPM messages, with locally sensed data, using onboard
sensors, to eventually extract the Communication ID of the
perceived vehicles. To assess the efficiency of the proposed
method, we applied it to the CPM redundancy mitigation
problem, which addresses both the size and frequency of
CPMs. In addition, we created a simulation framework,
dubbed CARTERY, that integrates three different simulators
- SUMO, Carla, and OMNeT++, to be able to evaluate our
proposed solution and compare it against the baseline and
ETSI solutions. The obtained results reveal that the ETSI
method effectively reduces CPMs when the number of con-
nected vehicles is relatively small; however, it also reduces the
environmental awareness of the vehicles. On the other hand,
V2X feature-based vehicle identification, with 100% accuracy,
exhibits a better tradeoff between the network load and the
environmental awareness rate compared to both baseline and
ETSI methods, especially at high market penetration rates
(80% and above).

As part of future research, we plan to improve the proposed
solution to keep up with the growing number of non-connected
vehicles on the roads. We also intend to assess the processing
time of vehicle identification in the simulated environment,
even though the delay does not affect the simulation results
presented in this paper because the data association depends
mainly on the vehicle’s appearance. Lastly, taking obstacle

shadowing into account when calculating the radio power
could be another interesting subject for further study.
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